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With use of the square-well potential as a perturbation on the hard-sphere potential, the partial
structure factors defined by Ascroft and Langreth [Phys. Rev. 159, 500 (1967)] and also the
number-number, number-concentration, and concentration-concentration structure factors of Bhatia
and Thornton [Phys. Rev. 32, 3004 (1970)] are calculated for liquid potassium-cesium alloys at vari-
ous concentrations at 100°C. From the partial structure factors, the total structure factors are also
calculated and compared with experimental values. The hard-sphere values are also computed for
the same concentrations. The difference plots of the total structure factors of the square well and
those of the hard spheres are also presented. The total structure factors obtained from these partial
structure factors 'in the long-wavelength limit are used to calculate the isothermal compressibilities.
With the partial structure factors and using Helfand’s prescription extended by Davies and Polyvos,
we calculate the self-diffusion coefficients. From the self-diffusion coefficients, an estimate of the
mutual diffusion coefficients has been made to a good approximation.

1. INTRODUCTION

Extensive investigations by Alblas er al.! have revealed

conclusively that the K-Cs system behaves almost like an
ideal solution. The shape of the curve representing the
heat of mixing as a function of atomic composition is al-
most parabolic for the K-Cs system indicating that it
forms an ideal mixture.? Hence it is felt appropriate to
use the mean spherical model (MSM) approximation with
a square-well potential as a perturbation on the hard-
sphere potential and obtain the partial structure factors
similar to the potentials obtained by Ashcroft and
Langreth® for simple hard sphere mixtures. .
" The square-well potential is no doubt mathematically
convenient, but it is also found that the application of this
potential to a number of metals faithfully yielded good
structure factors*~’ and transport properties calculated
from these structures.®’

The x-ray experiments for the total structure factors at
various concentrations have been reported by Alblas
et al.! As is well known a binary system is characterized
by three partial structure factors, namely, S;(k), S (k),
and Si,(k). Hence a unique set of partial structure fac-
tors cannot be obtained from a single or even two sets of
measurements. Therefore, these model calculations be-

come all the more important. When once the above par-

tial structure factors are available, they can be used to cal-
culate the Bhatia-Thornton partial structure factors,'®
namely, the Syn(k), Scc(k), and Syc(k), the number-
number, concentration-concentration, and number-
concentration, respectively. The total structure factor can
.be obtained from the partial structure factors S;;(k),
Sy (k), and S1,(k) and compared with experiment. Fur-
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ther, the partial structure factors in the long-wavelength
limit are used to calculate the isothermal compressibilities
at various concentrations.

II. THEORY

As an extension of the MSM approximation for
square-well mixtures,!""!? we define the direct correlation
function as

“U;(r)
C,-}}S(r)=— kIBT , O<r <oy
Ct.j(r): €ij :
kBT’ o <r <Aij0ij (1)
0, r>Aijaij

where C,-‘}s(r) stands for the hard-sphere solution of the
Percus-Yevick equation for binary mixtures as given by
Lebowitz. oy, €;, and A4; stand for hard-sphere diameter,
depth, and breadth of the square well, respectively, used
for the species i. The mixed parameters are determined
by Lorentz-Berthelot mixing rules and they are given by

0'12=(0'11+0'22)/2 N
enn="(e116)""?, )
Ap=(A11011+A302)/(01+02) .

The Fourier transform of C;;(r) and C,(r) can be
written as
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a,-(koi,- )3[Sin(k0','i )—kO’,‘,‘ cos(kaii)]+ﬁi(k0ii )2[2k0',-,- sin(ka'i,- )—-(k20,2, —2)COS(k0','i )—2]

+7:[(4k303 —24k o) sin(koy; ) — (k*oh — 12k%0% +24) cos(koy; ) +24]

€; . .
— kB} (k0',~i)3[—Aiik0,~,- COS(AiikO',-,')+Sln(A,'ik0'ii)+kO'ﬁ cos(ka,-,-)—-sm(ka',-,-)] ,
(3)
and
Cpalk)=— % ({k*[a;4+2b014+4d0% (01, +20)]—24 do )k sin(koyy)
+{k%2b +12d0y109;) —k*[a 01,4+ bot +d o (01, +30)]1—24d ]} cos(koyy)
+(24d —2bk?) cos(Ak)+24A dk sin(Ak)
—(€12/kgT)k3[ — Ay koyco8(A ko) + ko, cos(k012)+sin(Alqulz)—sin(kalz)]) , 4)
where 7;; =(mp;;0%)/6, A=(03—011)/2.
Here p;; is the number density of the ith constituent. The Bi=boy;
various constants that enter into Eqgs. (3) and (4) are given . S
by Lobowitz, which are put together for convenience and =~ = —6[mi(g11)* +ma(l+a)algiy)?/4], ©)
written as Br=b,0,, (10)
=M+, ) =—6[n2(g%)’+m(1+al+(g1,)* /4], (1
a=01/02, (6) vi=doi=(ma; +a’n,a,)/2
, ,
ay={(m+a*n,)(4+4n+1?) =a’y;, (12)
, boyp=—3(1+a)(n g1 /a? 2812 - (13
31— [ 147y 41+ 7)1+ 217, — 1) on +a)mgu/a+1,82)81 )
Further,
_m3y_ _ )2 _ —4 7 ,
+(1—=7") =3 (1—n)(1—a)*} /(1—7)~%. (7) gh=[(147/2)+3nla—1)/2)(1—n)2 (14)
Agai h ’
gam we have gh =[(147/2)+3n,(1—a)2a)(1—n)2, (15)
q3a2={(m+a3172)(4+417-+—772) gn=[(14+7/2)
+3(1—a)mg;—n)(242a)" ) (1—7)"2. (16)

—3m(1—a)(1—m+2m)[ 1+ 1 +a(1+m,)]

+(1—=n¥a® =3y (1 —a)a(l—m)}(1—n)~*,

Here g;; are not to be confused with the radial distribution
functions g;;(r). The gj; are just constants. The partial
structures S;;(k) are now related to the direct correlation

(8) C;;(k) functions (DCF) as®
|
Sll(k)":{1—Plléll(k)'“Pllpzzé%2(k)/[1——pzzézz(k)]}_] , a7
S5(k)={1=ppCo(k)—py1 p3C LK) /[1—p1,Cri (K]}, (18)

Slz(k)=(P11P22)1/2612(k){ [1—pnCr(R][1 ?Pzzcéz(k)]—p11pzzé L)yt (19)
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Now, the total structure factor S (k) in terms of these par-
tial structure factors is given by!>

Filk)f(k)
Ci FHK)+C, f3(K)

2 2
sth=3 3 ¢}

i=1j=1

Sy(k)
(20)

where f1(k) and f,(k) are the atomic scattering factors
and C; and C, are the atomic fractions of components 1
and 2, respectively.

In this connection, we felt it necessary to see how much
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the hard-sphere contributes to the total structure function
[Fig. 1(b)] and to get an idea of the contribution of the at-
tractive part, the difference plots are also given in Figs.
1(c), 1(d), 1fe), and 1(f), while that of the square well is
given in Fig. 1(a). It may be noted from Fig. 1(b) that the
hard-sphere structure factors give low values for the total
structures at the first peak and the difference plot gives
mainly a positive contribution except at 0.95 concentra-
tion. With increase in K concentration the negative con-
tribution increases.
In the long-wavelength limit, Egs. (3) and (4) reduce to

050
(c) (d) (e)
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(f)
< 0301 030 030 030+
(%)
< ~ CON=0:2994
0.20~ < 020 =0. — 020+ __ 0201
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(%) 7 p—
£ 3l 2
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FIG. 1. (a) Total structure factor S (k) at different atom fractions of potassium, calculated results (

) compared with experi-

mental results (02@@). (b) Total structure factor S(k) at different atom fractions of potassium, calculated hard-sphere results

(

) compared with experimental results [©®®, concentration (CON) =0.3; OO, concentration =0.6; AAA, concentration

=0.95]. (c)—(f) Difference As (k) of total structure factor of square well and total structure factor of hard sphere marked against the

curves as the atom fraction of potassium.
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piiCii(0)=—24n,(a; /3+bo; /4+da} /6)
+8n;€i(Ai—1)/kpT ,
and (21)
C1p(0)=4me 0ty (A}y —1)/3kg T —4ma 0%/3
—4mai[b (o1 +20,)/12
+dAo1(3011+50,,)/10
+do?(201,+305,)/30] .

The isothermal compressibility B7 for a binary mixture
can be written in terms of those DCF’s in the long-wave
limit as'*

Br=[1—C;p1;C11(0)—C; pCy,(0)
—2C1C, p1C12(0)]~ /pkpT . 22)

Three other correlation functions Syn(k), Scc(k), and
Snclk) are also defined by Bhatia and Thornton, which
are related to S;;(k)s as!0

San(K)=CS811(k)+Cp85,(k)+2(C{C)V2S 1, k),  (23)
Scclk)=C1Cy[C2S11(k)+C Splk)

—2(C1C)28 1, (k)] (24)
Snc(k)=CC,[S1(k)—Sx(k)
+81,(k)NCy,—C)/(C1C)?] . (25)

III. RESULTS AND DISCUSSIONS
FOR STRUCTURE FACTORS

The computations have been performed for the K-Cs
alloy system at nine concentrations and a typical set of re-
sults for four concentrations, namely, 0.3, 0.5, 0.7, and
0.95 atomic fraction potassium, have been presented in
Figs. 2(a), 2(b), and 2(c) for the three partial structure fac-
tors S]l(k), Szz(k), and Slz(k)

The densities of the mixture were obtained from pure
liquid densities assuming ideal mixing.!* Thus, we have

P11=C1p019%/Ci(pH—p)+p%1 ,
p2=(1—C1)p1p%/C1(p%—pS) +p%1

where p?l and P(z)z are the densities of the pure components
under the same conditions, the values of which are
0.01265 and 0.008 122, respectively. The potential pa-
rameters of each component have been obtained by fitting
to the first peak of the experimental pure liquid structure
function curves individually. The total structure factors
are obtained from the partial structure factors using Eq.
(20) and the potential parameters used are those of pure
metals. While in the case of hard-sphere Percus-Yevick
(HSPY) structure factors evaluated by Alblas et al., the
parameter 77 is obtained by fitting the first peak of each
individual alloy composition and hence there is a variation
of values ranging from 0.46 to 0.48. The present method
uses the Lebowitz equation for hard-sphere mixtures and
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FIG. 2. (a) S;,(k)-vs-k curves for different atom fractions of
potassium marked against the curves. Subscript 1 denotes K.
(b) Sp(k)-vs-k curves for different atom fractions of potassium
marked against the curves. Subscript 2 denotes Cs. (c) S;,(k)-
vs-k curves for different atom fractions of potassium marked
against the curves.
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Berthelot’s rules for obtaining the potential parameters. It
is seen from Egs. (2) and (4) the parameters 7; and 7, are
fixed and the Sj;(k) are obtained from Egs. (17)—(19),
(23), and (25). The values obtained and which have been 5, 5001
used for the calculation of the S;;(k) of the alloy are 5
“e
011=4.220 A, €;,/ky=98.0K ; %, 250l °
0 &
05,=4.605 A, 622/kB =90.0K,
00 0l-2 OI-4 0-]6 0-‘8 1"0
A11=1_65, T =373.0 K , atomic fraction of K
Ay=1.60. FIG. 3. Isothermal compressibility vs atom fractions of po-

Here 1 stands for potassium and 2 stands for cesium. It is
found that both K and Cs have almost the same principal
(Sk) peak values which are 2.8 and 2.6, respectively.
Thus in Fig. 2(a) it can be seen that as the concentration
of K increases the peak height increases and shifts to the
right while with increase in atom fraction of K, the height
of Scs.cs(k), i.e., Sy(k) decreases [Fig. 2(b)]. It is impor-
tant to point out that in both S;;(k) and S,,(k) the region
of the principal peak lies between k=1 and k =2.2 in
both the cases. This is also found to be the case in pure
metals.!® In the case of S,(k) the maximum is obtained
with equiatomic concentration, and it is found that with
maximum concentration of potassium (0.95 at.%) the
peak height comes largest at £k =1.6 and with 0.5 at. %
concentration the maximum comes at the value of
k=1.5. As expected, the S;;(k) and S,,(k) go to unity
at large values of k while in the case of S;,(k) it attains a
value of zero at large k. It may be noted from Figs. 2(a)
and 2(b) the S(k) at low k values is smooth and no
shoulders are observed as is found in the case of the Cu-
Pb alloy.!” This again shows that K-Cs forms an ideal al-
loy. It can also be observed that the k region of the first
maximum of Sk.x(k) in both Na-K (Ref. 7) and K-Cs is
found to be the same, while that of S¢,.cs(k) is also found
to be the same in Na-Cs (Ref. 18) and K-Cs alloys. We
present the long-wavelength limit of values of S;(0) and
Br calculated from Egs. (17)—(19), and (22) in Table 1.

In Fig. 1(a) the total structure function calculated from
the theoretical S;;(k) using Eq. (20) at three typical con-
centrations 0.3, 0.6, and 0.95 have been shown. It is seen

tassium, calculated using the present model results.

that the calculated values agree very well with experi-
ment! except at low k. Even in this range the agreement
is fair.

In Fig. 3 we give the variation of compressibility as a
function of concentration of potassium. In this connec-
tion, it may be pointed out that alkali metals are difficult
to deal with in theoretical calculations except, though,
perhaps for the recent calculations of Singh and Holz,'
who used a pseudopotential approach and a k-dependent
dielectric function. Hence the present calculations be-
come all the more important and the agreement of S(k)
between the computed and the experimental values is
gratifying.

We give in Figs. 4(a), 4(b), and 4(c) the Bhatia-Thornton
structures Syn(k), Scc(k), and Sye(k) for four concen-
trations. In the case of Syn(k), the highest peak was ob-
tained with 0.95 atomic fraction potassium, and its varia-
tion is similar to that of S(k) in a pure liquid. The
Scc(k) and Snc(k) oscillate around C;C, and 0O, respec-
tively. It may also be noted that Syc(k) goes to zero
while Syn(k) attains unity at large k. Further, from Fig.
4(b), it can be noted that for 0.3 and 0.7 concentrations of
K the Scc(k) are coincident. At 0.95 atomic fraction of
K the concentration-concentration fluctuations are negli-
gible and it remains almost constant around 0.0475. A
similar trend has been observed in the case of gold-cobalt
alloy at 0.9 atomic fraction of cobalt.’’ The present stud-
ies were extended up to 0.95 atom fraction of K in the K-
Cs alloy and the fluctuations are negligible.

TABLE 1. Ashcroft-Langreth partial structure factors in the long-wavelength limit and isothermal
compressibilities for liquid potassium-cesium alloys at different atom fractions of potassium.

Concentration
(atomic fraction of K) S11(0) S2,(0) S12(0) Br(10'? cm? dyn—1)
0.2000 0.8773 0.1703 —0.3400 65.78
0.2994 0.8060 0.2480 —0.4075 60.18
0.4000 0.7220 0.3316 —0.4565 54.42
0.5001 0.6324 0.4200 —0.4880 48.71
0.6004 0.5326 0.5218 —0.5011 43.08
0.7004 0.4220 0.6291 —0.4910 37.65
0.8003 0.2297 0.7449 —0.4483 32.48
0.8746 0.2006 0.8364 —0.3841 28.84
0.9501 0.0926 0.9337 —0.2609 25.83
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FIG. 4. (a) Sxn(k)-vs-k curves for different atom fractions of potassium marked against the curves. (b) Scc(k)-vs-k curves for
different atom fractions of potassium marked against the curves. (c) Snc(k)-vs-k curves for different atom fractions of potassium

marked against the curves.

IV. RESULTS AND DISCUSSION FOR RADIAL
DISTRIBUTION FUNCTIONS

In this section we make a Fourier transformation of the
S;;(k) and obtain the radial distribution function g;;(r) us-
ing the equation?®!

1

() =14+ —F—"7-~
&ij » 20%p; p;)1?

o 2 sin(kr)
X [, [Sy(k)—8;1k Sk . (26)

Here 8;; is the well-known Kroneker 8 function. We use

the linear trajectory approximation due to Helfand?? ex-
tended by Davis and Polyvos®>?* to the alloy. We have

kgT
D i = £ ’
§ij
where D; is the diffusion coefficient of the ith constitu-

ent, kp is the Boltzmann constant, and &; is the friction
coefficient of the ith species, given by

E=E+E+&".

In the above equations £, &7, and &7 are the friction
coefficients due to repulsive core interactions, soft interac-

27

(28)
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TABLE II. Calculated friction coefficients of various liquid K-Cs alloys at 373 K.

EX/kpT & /ksT EH /kpT
Concentration (10° sec/cm?) (10° sec/cm?) (10° sec/cm?)
(atomic fraction of K) K Cs K Cs K Cs
0.0001 0.1139 0.1882 0.0501 0.0775 0.0891 0.1420
0.1000 0.1177 0.1922 0.0509 0.0780 0.0923 0.1454
0.2001 0.1219 0.1967 0.0517 0.0784 0.0959 0.1491
0.2994 0.1266 0.2015 0.0525 0.0787 0.0949 0.1532
0.4000 0.1320 0.2071 0.0534 0.0789 0.1045 0.1579
0.5001 0.1380 0.2133 0.0545 0.0792 0.1097 0.1632
0.6004 0.1450 0.2203 0.0558 0.0796 0.1157 0.1692
0.7004 0.1531 0.2283 0.0576 0.0804 0.1226 0.1760
0.8003 0.1626 0.2377 0.0600 0.0817 0.1307 0.1840
0.8746 0.1707 0.2454 0.0622 0.0832 0.1377 0.1907
0.8999 0.1737 0.2483 0.0631 0.0839 0.1403 0.1932
0.9501 0.1801 0.2544 0.0649 0.0853 0.1459 0.1985
0.9801 , 0.1843 0.2583 0.0661 0.0864 0.1494 0.2019
0.9999 0.1872 0.2610 0.0669 0.0870 0.1519 0.2042

tions, and the cross effect between the hard and the soft
forces in the potential, respectively. These are given by
the equations

2
£= 3 305 8;(0)p;2muyksT)' 2,

(29)
j=1
2, pi 172 -2
x [T K950k, (kdk (30)
and
SH & 20 172
P = 21 —g-g,-j(a,-j)(Zy,-j/‘;rkBT)
j=
X fowdk[kaijcos(koij)
—sin(koy)1P5(k) . (31)

pi; is the number density of the ith species. In the above
equations p; C;(k) and lﬁ}j(k) are the Fourier transforms

of the total correlation function and the soft part of the
potential v;;(r), respectively. Further, o; is the hard-
sphere diameter and u;; is the reduced mass given by

oMMy
B =" +m; (32)
and
h,-j(k)=[S,~j(k)—5,~j](p,~,~pjj)_1/2 .
For the square-well potential we have
Cy(k)=[S;;(k)—8,1(p; pj) 172, (33)
S 4776,'1'
¢t](k): k3 [A,jkau COS(A,‘jkO','j)
——sin(A,]ka'u)—ka,J COS(kO'ij)
+sin(koy;)] , (34)

where €;; and A;; are defined already. The computed re-
sults for friction coefficients and the diffusion coefficients

TABLE III. Calculated self-diffusion and mutual diffusion coefficients for liquid K-Cs alloys at 373 K.

Concentration Dy Dcs Dy ¢
(atomic fraction for K) 10~% (cm?/sec) 10~% (cm?/sec) 10~% (cm?/sec) Dg /Dg,
0.0001 3.9496 2.452 3.9495 1.61
0.1001 3.8315 2.4038 3.6889 1.59
0.2001 3.7091 2.3573 3.4386 1.57
0.2994 3.5829 2.3068 3.2008 1.55
0.4000 3.4490 2.2526 2.9704 1.53
0.5001 3.3084 2.1947 2.7514 1.51
0.6004 3.1587 2.1318 2.5421 1.46
0.7004 2.9995 2.0630 2.3435 1.45
0.8003 2.8302 1.9870 2.1554 1.42
0.8746 2.6977 1.9253 2.0222 1.40
0.8999 2.6514 1.9032 1.9781 1.39
0.9501 2.5578 1.8576 1.8926 1.38
0.9801 2.5010 1.8293 1.8426 1.37
0.9999 2.4631 1.8101 1.8102 1.36
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are given in Tables II and III. There is no experimental
data available on diffusion coefficients for the liquid K-
Cs alloys.

The ratio Dg /D¢, varies in the present case from 1.6
to 1.4 as the atom fraction of K varies from O to 1. Con-
stancy of this ratio is generally expected from the regular
solution theory.?>26

In the present case the maximum variation is 0.25 parts
in 1.5 (average value), which amounts to a variation of
16% and may be considered fair remembering the fact
that alkali metals do not form ideal solutions even though
thermodynamically the heat of mixing is nearly parabolic
in the present alloy. Thus a variation of 16% can be con-
sidered to be fairly constant as is found in rare-gas liquid
mixtures.?’

Unfortunately there is no theory for the mutual dif-
fusion coefficient. However, several workers have pointed
out that the mutual diffusion coefficient can be written

aSZ7 —-29

D, =CyD1+CDy+ -+, (35)

where the ellipsis represents some unspecified correction
terms. Unless the solution is very irregular, one can apply

this equation to evaluate the mutual diffusion coefficient.
In the present case it is a fairly satisfactory regular solu-
tion. The values calculated from the above equation are
also presented in Table III.

Thus it may be seen that the various parameters used in
these calculations are obtained from the structure factor
data of pure components only. These results acquire
greater importance in the absence of any experimental re-
sults and it also shows the usefulness of the model calcu-
lations through which we obtained the compressibilities as
a function of concentrations, the diffusion coefficients
and the partial radial distribution functions, namely, g;;
(0y;) necessary for the evaluation of the diffusion coeffi-
cients. It may also be pointed out that by the Fourier
transformation of the S;;(k) curves the g;;(r) curves were
obtained.
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