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With use of the square-well potential as a perturbation on the hard-sphere potential, the partial
structure factors defined by Ascroft and Langreth [Phys. Rev. 159, 500 (1967)] and also the
number-number, number-concentration, and concentration-concentration structure factors of Bhatia
and Thornton [Phys. Rev. 32, 3004 {1970)]are calculated for liquid potassium-cesium alloys at vari-
ous concentrations at 100'C. From the partial structure factors, the total structure factors are also
calculated and compared with experimental values. The hard-sphere values are also computed for
the same concentrations. The difference plots of the total structure factors of the square well and
those of the hard spheres are also presented. The total structure factors obtained from these partial
structure factors in the long-wavelength limit are used to calculate the isothermal compressibilities.
With the partial structure factors and using Helfand's prescription extended by Davies and Polyvos,
we calculate the self-diffusion coefficients. From the self-diffusion coefficients, an estimate of the
mutual diffusion coefficients has been made to a good approximation.

I. INTRODUCTION

Extensive investigations by Alblas et al. ' have revealed
conclusively that the K-Cs system behaves almost like an
ideal solution. The shape of the curve representing the
heat of mixing as a function of atomic composition is al-
most parabolic for the K-Cs system indicating that it
forms an ideal mixture. Hence it is felt appropriate to
use the mean spherical model (MSM) approximation with
a square-well potential as a perturbation on the hard-
sphere potential and obtain the partial structure factors
similar to the potentials obtained by Ashcroft and
Langreth for simple hard sphere mixtures.

The square-well potential is no doubt mathematically
convenient, but it is also found that the application of this
potential to a number of metals faithfully yielded good
structure factors and transport properties calculated
from these structures. '

The x-ray experiments for the total structure factors at
various concentrations have been reported by Alblas
et al. ' As is well known a binary system is characterized
by three partial structure factors, namely, S11(k), S22(k),
and S1z(k). Hence a unique set of partial structure fac-
tors cannot be obtained from a single or even two sets of
measurements. Therefore, these model calculations be-
come all the more important. When once the above par-
tial structure factors are available, they can be used to cal-
culate the Bhatia- Thornton partial structure factors, '
namely, the SNN(k), Scc(k), and SNc(k), the number-
number, concentration-concentration, and number-
concentration, respectively. The total structure factor can
be obtained from the partial structure factors S»(k),
Szq(k), and S12(k) and compared with experiment. Fur-

ther, the partial structure factors in the long-wavelength
limit are used to calculate the isothermal compressibilities
at various concentrations.

II. THEORY

As an extension of the MSM approximation for
square-well mixtures, "' we define the direct correlation
function as

0$ r )AfJ 0 gJ

where CJ'(r) stands for the hard-sphere solution of the
Percus-Yevick equation for binary mixtures as given by
Lebowitz. o.;;, e;;, and A;; stand for hard-sphere diameter,
depth, and breadth of the square well, respectively, used
for the species i. The mixed parameters are determined
by Lorentz-Berthelot mixing rules and they are given by

~12=(~»+~&2)~~,

1/2~1z=(e11~2z)

~12 (~11O11+~22~22)~( 11+~22)

The Fourier transform of C»(r) and C12(r) can be
written as

32



6430 R. V. GOPALA RAO AND B. DAS GUPTA

24';
p;;C;;(k)= 6 a;(ka;;) [sin(ka;;) —ko.;; cos(ko;;)]+p;(kcr;;) [2ko;; sin(kg;;) —(k cr;; —2) cos(ko;;) —2]

EJ

+y;[(4k o;; —24ko;;) sin(ko;;) —(k o;;—12k o;;+24) cos(ko;;)+24]

(ko;;) [ A;;k—cr;; cos(A;;ko;;)+'sin(A;;ko;;)+kcr;; cos(kyar;;) —sin( a,, )]
B

(3)

and

Clz(k) =— 4m 2(Ik [al+2bo 11+4do 11(o12+2k)] —24dolzjk sin(ko 12)

+ Ik (2b+12do»ozz) —k [alar, 2+boll+de»(alz+3X)] —24d j cos(ko, z)

+(24d —2bk ) cos(A, k)+24k, dk sin(l1, k)

—(elz/kzl T)k [—3 lzkcr 12 cos(A lzkcr 12) +ko 12 cos(kcrlz)+ sin(A lzko 12)—sin(ko 12)]), (4)

where 21;; =(mp;;o;; )/6, A=(crz, z o 1 1—)/2

Here p;; is the number density of the ith constituent. The
various constants that enter into Eqs. (3) and (4) are given
by Lobowitz, which are put together for convenience and
written as

Pl b 111

6[ l l(g 11 ) + l2(1+a) a(g 12) /4]

Pz bzazz

(9)

91+ I2 ~

al I /azz

&1=I(pl+a rlz)(4+4rl+rl )

(6)

= —6[212(gzz) +rll(1+a) +(giz) /4a ],
1 dal 1 (211& 1 +a 112122)/23

3=(X P2, (12)

—3212(1—a) [1+211+a(1+biz)](1+2211—gz)

+(1—21 ) —3rl1212(1 —21)(1—a) j/(1 —21) (7)

Again we have

a'az =
I (21, +a'112)(4+4q+212)

—3gl(1 —a) (1—pl+2212)[1+211+a(1+'112)]

b azz —3( 1 +a )( rl 1 g '» /a '+ 'll 2 g 22 )g 12 ~

Further,

g'l l
——[(1+g/2)+ 3rlz(a —1)/2](1 —rl )

gzz ——[(1+21/2)+3rl 1(1—a)/2a](1 —g)

g 12 = [(1+ll/»
+3(1—a)(g, —212)(2+2a)-'](1—g)-' .

(13)

(14)

(16)

+(1—g )a —3q1212(1—a) a(1 —11)j(1—21)

Here g,j are not to be confused with the radial distribution
functions g J(r). The g J are just constants. The partial
structures Sz(k) are now related to the direct correlation
CJ(k) functions (DCF) as

~11(k)= I 1 PllCl1 (k) P11P22C 12(k)/[1 p22C22(k)] j

~22(k) I 1 P22C22(k) P11P22C 12(k)/[1 pllC11(k)] j

~12«) =(Pl 1 pzz) '"Clz «) I [1—pl 1C11«)][1—pzzCzz«)1 —P 1 1 pzzC 12«) j

(17)

(18)

(19)
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and

do' /6)-(0)= 2—4g;(a;/3+her;; /4+do;;ll il

+Sr);;e;;(2;;—1)/k~ T,
(21)

25—
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3C, (0)=4&E12cr12 12(3 —1)/3k~ T 4m—a icr12/
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Berthelot's rules for obtaining the potential parameters. It
is seen from Eqs. (2) and (4) the parameters g~ and g2 are
fixed and the SJ(k) are obtained from Eqs. (17)—(19),
(23), and (25). The values obtained and which have been
used for the calculation of the S,z(k) of the alloy are

0

cr)) =4.220 A, e))/kg =98.0 K ';

0

a2z=4. 605 A, e22lkg =90.0 K,

Aii ——1.65, T =373.0 K,

75.0—

500
4P
C
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E

25.0

4.

0
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04 06
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I

0.8
I

10

322 ——1.60 .

Here 1 stands for potassium and 2 stands for cesium. It is
found that both K and Cs have almost the same principal
(Sk) peak values which are 2.8 and 2.6, respectively.
Thus in Fig. 2(a) it can be seen that as the concentration
of K increases the peak height increases and shifts to the
right while with increase in atom fraction of K, the height
of Sc, c,(k), i.e., Sq2(k) decreases [Fig. 2(b)]. It is impor-
tant to point out that in both S»(k) and S22(k) the region
of the principal peak lies between k =1 and k =2.2 in
both the cases. This is also found to be the case in pure
metals. ' In the case of S~2(k) the maximum is obtained
with equiatomic concentration, and it is found that with
maximum concentration of potassium (0.95 at. %) the
peak height comes largest at k =1.6 and with 0.5 at. %
concentration the maximum comes at the value of
k =1.5. As expected, the St~(k) and S22(k) go to unity
at large values of k while in the case of S~2(k) it attains a
value of zero at large k. It may be noted from Figs. 2(a)
and 2(b) the S(k) at low k values is smooth and no
shoulders are observed as is found in the case of the Cu-
Pb alloy. ' This again shows that K-Cs forms an ideal al-
loy. It can also be observed that the k region of the first
maximum of S~ z(k) in both Na-K (Ref. 7) and K-Cs is
found to be the same, while that of Sc, c,(k) is also found
to be the same in Na-Cs (Ref. 18) and K-Cs alloys. We
present the long-wavelength limit of values of S,J(0) and
PT calculated from Eqs. (17)—(19), and (22) in Table I.

In Fig. 1(a) the total structure function calculated from
the theoretical S,J(k) using Eq. (20) at three typical con-
centrations 0.3, 0.6, and 0.95 have been shown. It is seen

FIG. 3. Isothermal compressibility vs atom fractions of po-
tassium, calculated using the present model results.

that the calculated values agree very well with experi-
ment' except at low k. Even in this range the agreement
is fair.

In Fig. 3 we give the variation of compressibility as a
function of concentration of potassium. In this connec-
tion, it may be pointed out that alkali metals are difficult
to deal with in theoretical calculations except, though,
perhaps for the recent calculations of Singh and Holz, '

who used a pseudopotential approach and a k-dependent
dielectric function. Hence the present calculations be-
come all the more important and the agreement of S(k)
between the computed and the experimental values is
gratifying.

We give in Figs. 4(a), 4(b), and 4(c) the Bhatia-Thornton
structures SNN(k), Scc(k), and SNC(k) for four concen-
trations. In the case of SNN(k), the highest peak was ob-
tained with 0.95 atomic fraction potassium, and its varia-
tion is similar to that of S(k) in a pure liquid. The
Scc(k) and SNC(k) oscillate around C~C2 and 0, respec-
tively. It may also be noted that SNc(k) goes to zero
while SNN(k) attains unity at large k. Further, from Fig.
4(b), it can be noted that for 0.3 and 0.7 concentrations of
K the Scc(k) are coincident. At 0.95 atomic fraction of
K the concentration-concentration fluctuations are negli-
gible and it remains almost constant around 0.0475. A
similar trend has been observed in the case of gold-cobalt
alloy at 0.9 atomic fraction of cobalt. The present stud-
ies were extended up to 0.95 atom fraction of K in the K-
Cs alloy and the fluctuations are negligible.

TABLE I. Ashcroft-Langreth partial structure factors in the long-wavelength limit and isothermal
compressibilities for liquid potassium-cesium alloys at different atom fractions of potassium.

Concentration
(atomic fraction of K)

0.2000
0.2994
0.4000
0.5001
0.6004
0.7004
0.8003
0.8746
0.9501

Sii(0)

0.8773
0.8060
0.7220
0.6324
0.5326
0.4220
0.2297
0.2006
0.0926

S22(0)

0.1703
0.2480
0.3316
0.4200
0.5218
0.6291
0.7449
0.8364
0.9337

Si2(0)

—0.3400
—0.4075
—0.4565
—0.4880
—0.5011
—0.4910
—0.4483
—0.3841
—0.2609

Pr(10" cm dyn ')

65.78
60.18
54.42
48.71
43.08
37.65
32.48
28.84
25.83
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TABLE II. Calculated friction coefficients of various liquid K-Cs alloys at 373 K.

Concentration
(atomic fraction of K)

g; /kgT
(10~ sec/cm )

K Cs

g;/kgT
(105 sec/cm )

K Cs

/k T
(10 sec/cm )

K Cs

0.0001
0.1000
0.2001
0.2994
0.4000
0.5001
0.6004
0.7004
0.8003
0.8746
0.8999
0.9501
0.9801
0.9999

0.1139
0.1177
0.1219
0.1266
0.1320
0.1380
0.1450
0.1531
0.1626
0.1707
0.1737
0.1801
0.1843
0.1872

0.1882
0.1922
0.1967
0.2015
0.2071
0.2133
0.2203
0.2283
0.2377
0.2454
0.2483
0.2544
0.2583
0.2610

0.0501
0.0509
0.0517
0.0525
0.0534
0.0545
0.0558
0.0576
0.0600
0.0622
0.0631
0.0649
0.0661
0.0669

0.0775
0.0780
0.0784
0.0787
0.0789
0.0792
0.0796
0.0804
0.0817
0.0832
0.0839
0.0853
0.0864
0.0870

0.0891
0.0923
0.0959
0.0949
0.1045
0.1097
0.1157
0.1226
0.1307,
0.1377
0.1403
0.1459
0.1494
0.1519

0.1420
0.1454
0.1491
0.1532
0.1579
0.1632
0.1692
0.1760
0.1840
0.1907
0.1932
0.1985
0.2019
0.2042

tions, and the cross effect between the hard and the soft
forces in the potential, respectively. These are given by
the equations

2
—', o;1 gcj(crj )p/(2m@, jks T)'/ (29)

j=I
2

(2np; /k—~T)' (2~)
j=1 3

and

m) mJ.
~ ~

mt +mJ

h;J (k) = [SJ( k) 5;J ](p;;pj—i )

(32)

of the total correlation function and the soft part of the
potential g;J(r), respectively. Further, cr;; is the hard-
sphere diameter and p,J is the reduced mass given by

and

~ f k 3' (k)h;J (k)dk,

2

gj (o;1 )(2p;~/hark~ T)'/
J =1

1J JJ

X f, dk[ko.;, cos(ko;, )

For the square-well potential we have

CJ(k)=[SJ(k)—51](p;pj)

sin(A,
&

kcr,j )—ko;J cos(—ko,j )

(33)

—sin(kcr;1 )]fr;~(k) . (3 I) + sin(ko;1 )], (34)

p;; is the number density of the ith species. In the above
equations p;;Cij(k) and g,z(k) are the Fourier transforms

where e;J and A,J. are defined already. The computed re-
sults for friction coefficients and the diffusion coefficients

TABLE III. Calculated self-diffusion and mutual diffusion coefficients for liquid K-Cs alloys at 373 K.

Concentration
(atomic fraction for K)

0.0001
0.1001
0.2001
0.2994
0.4000
0.5001
0.6004
0.7004
0.8003
0.8746
0.8999
0.9501
0.9801
0.9999

10 5 (cm /sec)

3.9496
3.8315
3.7091
3.5829
3.4490
3.3084
3.1587
2.9995
2.8302
2.6977
2.6514
2.5578
2.5010
2.4631

Dcs
10 (cm /sec)

2.452
2.4038
2.3573
2.3068
2.2526
2.1947
2.1318
2.0630
1.9870
1.9253
1.9032
1.8576
1.8293
1.8101

DK-cs
10 (cm /sec)

3.9495
3.6889
3.4386
3.2008
2.9704
2.7514
2.5421
2.3435
2.1554
2.0222
1.9781
1.8926
1.8426
1.8102

D~/Dc.

1.61
1.59
1.57
1.55
1.53
1.51
1.46
1.45
1.42
1.40
1.39
1.38
1.37
1.36
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are given in Tables II and III. There is no experimental
data available on diffusion coefficients for the liquid K-
Cs alloys.

The ratio DK/Dc, varies in the present case from 1.6
to 1.4 as the atom fraction of K varies from 0 to 1. Con-
stancy of this ratio is generally expected from the regular
solution theory.

In the present case the maximum variation is 0.25 parts
in 1.5 (average value), which amounts to a variation of
16% and may be considered fair remembering the fact
that alkali metals do not form ideal solutions even though
thermodynamically the heat of mixing is nearly parabolic
in the present alloy. Thus a variation of 16% can be con-
sidered to be fairly constant as is found in rare-gas liquid
mixtures.

Unfortunately there is no theory for the mutual dif-
fusion coefficient. However, several workers have pointed
out that the mutual diffusion coefficient can be written
a 27 —29

D12 C2D1 +C1D2 +
where the ellipsis represents some unspecified correction
terms, Unless the solution is very irregular, one can apply

this equation to evaluate the mutual diffusion coefficient.
In the present case it is a fairly satisfactory regular solu-
tion. The values calculated from the above equation are
also presented in Table III.

Thus it may be seen that the vari'ous parameters used in
these calculations are obtained from the structure factor
data of pure components only. These results acquire
greater importance in the absence of any experimental re-
sults and it also shows the usefulness of the model calcu-
lations through which we obtained the compressibilities as
a function of concentrations, the diffusion coefficients
and the partial radial distribution functions, namely, g,J
(u;J ) necessary for the evaluation of the diffusion coeffi-
cients. It may also be pointed out that by the Fourier
transformation of the S~J(k) curves the g;~(r) curves were
obtained.
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