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A model Hamiltonian is used to calculate potential-energy surfaces for He and Ne on the (110)
faces of Ni, Cu, Pd, and Ag. The calculations are nonperturbative, self-consistent, and contain no
parameters which are fittable with respect to the gas-solid interaction. Static image-force effects are
included. The theory represents the first quantum-mechanical approach to rare-gas—transition-
metal potentials which includes the interaction of the rare-gas orbitals with the d electrons in a con-
sistent way. Corrugation is found to be approximately proportional to the d-electron charge density.
The sp band is represented by a Sommerfeld model with hybridization gap, which does not contri-
bute to the corrugation. Part of the potential arises through the hybridization of the rare-gas orbi-
tals with the unoccupied metal states. This interference energy is roughly a factor of 2 larger for
neon than for helium, leading to larger corrugations of the neon potentials as compared with the
helium potentials. This is in agreement with recent experiments, but in contrast to earlier theoretical
predictions. The theoretically calculated corrugations and well depths compare reasonably to the ex-
perimental data where available. The computed values of corrugation for He increase in the order
Ni, Cu, Ag, and Pd. This agrees with experiments where soft potentials have been fitted to the
scattering data, although the predicted He/Ni(110) corrugation is overly large by more than a factor
of 2. With increasing energy, the He corrugation increases slightly in the calculations. The depen-
dence is nearly constant for Ni and strongest for Pd. For Ne/Ni(110) and Ne/Pd(110) corrugation
decreases with energy. Image-force effects are found to be important for the corrugation and soft-
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ness of the neon potentials.

I. INTRODUCTION

Recent advancements in experimental techniques (im-
proved intensity and experimental resolution) led to the
observation of helium diffraction from a number
of transition-metal surfaces: W(112),! Cu(100),>2 Cu(117),’
Cu(110),* Cu(113),* Cu(115),* Ni(110),° Ag(111),°
Ag(110),” Pd(110),® and the reconstructed Au(110) sur-
face.’ For the smooth fcc (111) and (100) surfaces the
nonspecular intensities are so weak that no meaningful in-
formation about the He-metal interaction potential can be
obtained. For the open (113), (115), and (117) structures
the shape is so complicated and the corrugation ampli-
tudes are so large that most methods for calculating dif-
fraction intensities either stop working or become prohibi-
tively complicated. The bound-state resonances are, how-
ever, easily observable for these strongly corrugated sur-
faces and the well depths and energy levels have been
determined.>* '

The fcc (110) faces present an intermediate situation in
that the corrugation amplitude is usually large enough for
being analyzed by the standard methods, but it is too
small for the bound-state resonances to be observable.!?
An exception is Ag(110), which shows an unexpectedly
large corrugation so that selective adsorption data are
available.” These favorite circumstances permitted the
construction of an “experimental He/Ag(100) interaction
potential.” If one combines the information about the ad-
sorption well obtained from the He/Cu(113) and
He/Cu(115) data with the He/Cu(110) diffraction intensi-
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ties, one can derive what with some justifications might be
terrr}?}2 an experimental He/Cu(110) interaction poten-
tial.™"

These experimental interaction potentials offer an ideal
testing ground for adsorption theories. Quite a few
schemes have been developed in order to predict the in-
teraction energies of rare gases with metal surfaces. Many
of them'3—16 pay special attention to the so-called “van
der Waals force,” which is taken as the only attractive
contribution. The repulsive part of the interaction is es-
timated independently by either using the Hartree-Fock
approximation!® or the density-functional formalism.!* ¢
The superposition of the attractive and repulsive forces
produces then a minimum. This separation of the total
interaction energy is inadequate, because somewhere near
the equilibrium distance the van der Waals interaction
loses its clear-cut character and merges into the
exchange-correlation interaction which has the same
physical origin as the repulsive interaction. Therefore
both contributions should be determined together in a
coherent fashion by solving Schrédinger’s equation. This
point has already been emphasized in the literature.!”— 1

Recently, Annett and Haydock?® pointed out that the
hybridization of the 1s orbital with the unoccupied metal
states yields an important contribution to the attractive
interaction energy, which has been neglected in the
above-mentioned approaches.

The local-density formalism provides an adequate ap-
proach for s-band metals.'® Treatment of the corrugation
on transition-metal surface due to interaction with the d
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electrons is much more difficult in this formalism and no
calculations are available yet. A remedy is commonly
sought by applying the Esbjerg-Ngrskov assumption,?!
which states the proportionality between surface charge
density and helium potential energy. The validity of this
assumption is presently under controversial discus-
sion.!19

Employing the Esbjerg-Ngrskov assumption together
with the proportionality factors calculated by Puska,
Nieminen, and Maninnen?? leads to the conclusion that
the corrugation determined from neon scattering should
be smaller than that determined from helium scattering.
The experimental results obtained by Rieder and Stocker®
and Salanon?® demonstrate the opposite behavior.

The present paper calculates helium and neon interac-
tion potentials by obtaining the Hartree-Fock solution of a
model Hamiltonian, which has already been applied suc-
cessfully to reactive chemisorption systems (H,0, CO, and
NO on the same transition metals as investigated here).?*

The structure of the paper is as follows. Section II de-
scribes the model Hamiltonian. Only those terms which

J

H=Ho+H+H,+H;+ - ,
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are relevant for the rather weak rare-gas—metal interac-
tion are discussed. Section III explains the parametriza-
tion and Sec. IV comments briefly on technical details of
the numerical procedure. The calculated potential-energy
surfaces are presented in Sec. V. Section VI contains the
physical discussion of the results.

II. THE MODEL

The model has been described previously.?’ It has been
used successfully to explain and correlate experimental
data over a wide class of chemisorption systems.?* The
same computer program is used here to calculate the phy-
sisorption of rare-gas atoms. Because of the repulsive
character of the interaction, the classical turning point for
thermal Kkinetic energies is at large distances, where the
overlap is rather small. Interaction terms which are of
higher than second order in the overlap are therefore of
little importance and need not be considered in order to
elucidate the physical picture. The relevant terms in the
Hamiltonian are then

(1a)

Ho= 3 EG(fg+7a)+ 3 &lfir+7i,)+ D (A4 | BB) gy ip, +74,75,)
A k

A,B
+ 3 [(A4 | BB)—(AB | BA)7i 4 fig,+7i4,7ig,) , (1b)
A,B
A+#B
occupied
Hi=— 3 Y I[2BB|AA)—(AB |BA)A |1){k | A)a},a,+a},a,)
A,B k]l
+3 3 { Ej+ec+ 3 (BB |Ad)ip_;+ 3 [(BB|AA)—(AB[AB)]7’1‘BS]
Ak B B (£4)
s=11
X (A KTl + e | AT Ly,
+ > D (BB |AA)iy_+ 3 [(BB|AA)—(AB | BA)]fip (Afl)(k]A)EL&”,SJ, (1c)
Akl B B (#£4) .
s=1,!
occupied
Hy=2 3 [2BB|AA)—(AB |BA)][{A k) |*+ Vapore(ro) , (1d)
A,B,k )
H3=_Q2Vim(2) ’ (1e)

where the ellipsis represents unspecified terms of higher
order in the overlap.

The indices 4 and B refer to the rare-gas-atom basis or-
bitals; the indices k and / label unperturbed transition-
metal states; @;, @ :-', and 7; are the electron destruction,
creation, and number operators, respectively. The tilde on
these operators indicates that the wave functions are not
mutually orthogonal. (A4 | k) is the common Dirac nota-
tion for the overlap, which in the notation of Eq. (1) is as-
sumed to be independent of the spin orientation. EY is an
“effective” core attraction integral on the gas atom;
(A4 | BB) and (AB | BA) are effective gas-atom Coulomb

T
and exchange integrals, respectively. The meaning and
parametrization of these quantities is discussed in Sec. IIL.
The physically interesting aspect of the Hamiltonian is
that electron-electron repulsion is included explicitly and
consistently in the local region overlapped by the gas-
atom wave functions. This leads to a “dynamic” (i.e., oc-
cupancy dependent) electron hopping between the metal
surface and the gas atom (second term of H; of the Ham-
iltonian).

Hy describes the separated system, i.e., the gas atom
and metal surface without interaction H, contains the
electronic interaction. Hj represents the attractive image



potential of the gas-atom core of charge Q. The higher-
order terms not written down in Eq. (1) are retained in the
numerical calculations but are not discussed here. H, de-
scribes the repulsion between the positive-ion cores. This
term has not been included in the earlier calculations,?*
J

occupied

2”3

Ak

The sums run only over occupied electron states. The
factor 2 accounts for spin degeneracy, assuming a closed-
shell system. Of the total electron-electron repulsion be-
tween the gas atom and the metal only the right-hand side
of Eq. (2) is retained in the Hamiltonian (cf. H,), i.e.,
only that part of the repulsion which is not canceled by a

(A | V(D) | 4)+2 " (2044 | ko) — (A | k)] =2

occupied t occupied | occupied
2 (A lectal(r)[A)z-U=
A A,k B

Perfect cancellation is also assumed between the attrac-
tion of the metal electrons by the gas-atom core and the
discussed gas-atom—metal electron—electron repulsion
(cf. Ref. 25):

occupied
2 > (k|(=Q/|r—xo|) | k)
k
occupied
+2 3> [2(44 |kk)—(Ak |kA)]=0, (4)
Ak

where 1, is the position of the gas-atom core. The left-
hand side of this equation is called penetration integral.
Using this relationship as an approximation for the
metal-electron—gas-atom core attraction means introduc-
ing a Goeppert-Mayer—Sklar potential (GMS) (first term

in Hy).
- If we consider the positive charge Q of the gas-atom

core in the field of the unperturbed metal surface, we have
the following exact relationship:

occupied

. P!
20/|n—1y|+2 > (k|—-Q/|r—1o| | k)
k
M =Vdipole(1'0) N (5)

where 1), denotes the position of a metal-ion core. Using
Egs. (3) and (4) and defining :

30/ to—ty | =2U +E*,
M

we obtain the following expression for the effective repul-
sion;

occupied
E™P=Vg40e(t)+2 3 [2(BB|AA)—(AB |BA)]
k,A,B
X <4 |k)|?. (6)

This core-core repulsion is contained in H,. It had not
been included in previous calculations based on the same
electronic model Hamiltonian, but it has been demonstrat-
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and therefore we present a detailed motivation for it in the

following.

The Hamiltonian assumes partial cancellation of large
electrostatic terms:

occupied occupied
> > [2(BB|AA)—(AB |BA)]|{A4 |k)|?.
4,k B

()

I
corresponding attraction Vl,em] of the metal-ion cores.

A detailed discussion of the motivation for Eq. (2) can
be found in Ref. 25 and is not repeated here. The
described choice of the electron-electron repulsion implies
that the adelectron—metal-ion attraction is completely
compensated by a part of the electron-electron repulsion:

S [2(BB | AA)—(AB |BA)] | {A |k) |*—2[(AA | kk)—(Ak | kA)]

(3)

T
ed here that this form of the core-core repulsion follows
in a logical way from the structure of the electronic Ham-
iltonian. The handling of the electrostatic interaction be-
tween adsorbate and metal can hence be summarized as
follows. There are four electrostatic terms:

W (adsorbate electrons—metal cores)=—2U ,

W (adsorbate core—metél electrons)= —2U —2AU ,
W (adsorbate core—metal cores)=Vyipoe +2U +2AU ,
W (adsorbate electrons—metal electrons)=2U +2AU .

Here AU and U are defined by Eqgs. (2) and (3)
ly. The factor 2 arises from spin degeneracy.

All four terms contain the quantity 2U. In the model
Hamiltonian the electrostatic terms are therefore “renor-
malized” by reducing the absolute magnitude of all four
terms by 2U. In this way the electrostatic balance is
preserved.

, respective-

III. PARAMETRIZATION

The parametrization consists of choosing the wave
functions and the one- and two-electron integrals in such
a way that the description of the separated system (no in-
teraction between gas atom and metal surface) agrees with
available experimental data. An effective one-electron
description is used, which for the gas atom contains
electron-electron integrals explicitly, whereas for the met-
al an independent-particle model is the starting point.
Fitting a one-electron picture to experimental data means
including correlation effects implicitly. This is essential,
because a Hartree-Fock (HF) description of the separated
system is inadequate. A HF treatment of the metal
would, e.g., lead to a spurious density of states at the Fer-
mi level.2®
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TABLE 1. Core energy E;; and Coulomb integral
(1s1s | 1s 1s) of the helium 1s function. Correction zI¢ to the
position of the image plane for the helium calculations.

Ei—=—54.44 eV
(1s1s | 1s 15)=29.88 eV
zi=1.36 a.u.

A. Rare-gas-atom description

The gas-atom orbitals are Slater-type orbitals (STO’s)
with the exponents taken from Clementi’s tables.?’ The
orbitals are identical for different spin orientations. For
helium only the 1s orbital is included. For neon the 1s
orbital is considered to be nonpolarizable and therefore
forms a part of the effective core of charge + 8e. The 2s
and 2p orbitals are explicitly treated in the calculations.
The core energies E§ and the Coulomb and exchange in-
tegrals (A4 | BB) and ( AB | BA) are reproduced in Tables
I and II. They are not evaluated by direct integration but
are chosen in such a way that the experimental spectro-
scopic data are reproduced. For helium, e.g., this war-
rants that the total energies of the (1s?) (ls,2s), and
(1s,2s) configurations and their ionization energies agree
with experiment.

B. Description of the metal surface

The inner potential of the delocalized electrons of the
sp band is approximated by a step function (Sommerfeld
model). Inside the metal the electrons are attracted by a
potential ¥, which is given by the sum of the work func-
tion ¢ and the energetic width Ep of the filled sp band.
Outside the metal the potential is zero. With z defined as
the perpendicular distance from the step the potential is
given by Eq. (7):

Vo, z' <0 with V0:~‘¢——EF s
0, z'>0.

Viz')= @)

The eigenfunctions of this potential are sines, which decay
exponentially in front of the surface:

Asin[(k,z'+a)], z'<0 .
(Ak, /K)exp[ —(K2—k2)~'%z'], z'>0
A=2/L)"? K?/2=Ep+¢, (8)

a=arctan[ —k,(K>—k2)~1/?] .

14051: band(z') =

TABLE II. Core energies E,, Coulomb integrals (A4 | BB),
and exchange integrals (AB | BA) for the neon 2s and 2p func-
tions ( A,B =25,2p; a,b =x,y,z). Correction z5g to the position
of the image plane.

E)y=—112.47 eV

Ej,=—87.56 eV

(2525 |2525)=(252s | 2p2p)=(2p2p | 2p2p)=10.00 eV
(252p | 2p25)=2.00 eV

(2pa2pp | 2Pp2p,)=1.00 eV

z}§=0.68 a.u.
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The normalization length L is assumed to be so large that
for normalizing the wave function the exponential decay-
ing parts can be neglected. Parallel to the surface (x,y
coordinates) periodic boundary conditions are used:

\I”sp band=L -l/zlpsp vand(2")exp[i (kyx +kyy)] » (9)

where k, and k, are the wave vectors in x and y direc-
tion, respectively. The density of states in k space is
L*/4x,

The d orbitals. are approximated by double-§ functions
centered at the different lattice sites. As the sp electrons
are delocalized throughout the crystal, the atomic wave
functions of the corresponding positive ions (with the
same d configuration as in the metal) are used. The ex-
ponents and coefficients are shown in Table III. As the
metals under consideration have narrow d bands the ef-
fective density of d states is approximated by a 8 function
in energy. In order to determine the dipole potential of
the unperturbed metal surface, the total electronic charge
has to be calculated. The d states are strongly localized,
however, and do not contribute significantly to the “spill-
over” of the metal electrons, and hence can be neglected
for the dipole potential. The effective part n_(z’) of the
electronic charge is given by the integral over the absolute
squares of the sp wave functions [Eq. (9)] up to the Fermi
level. In order to obtain charge neutrality a positive uni-
form jellium of density n , is introduced. Inside the met-
al (z'— — oo ) both charge densities cancel each other:

Jdim n,(z)=— lim n_(z')=n, .

Z—>—o0 Z'—>—c

The positive charge density n_(z') of the jellium has a
step at the distance — Rjg relative to the Sommerfeld
edge:

n,(z) nor =< —Rus 1
z)=
+ 0, > —Ryg. (10)

The distance Rjg is determined by the overall charge neu-
trality of the metal:

[ n @) +n_(z)]dz'=0. (1

The dipole potential is given by

Vaporelz) =21 [ [n (@) 4n_2)]|z'—z |dz. (12)

The first layer of lattice sites is situated relative to the jel-
lium edge (— Rjs) at d/2, where d is the distance to the
next layer inside the metal. This choice is somewhat arbi-
trary, but it is the standard procedure in the literature.
All relevant distances are shown in Fig. 1.

Due to the interaction of the sp band with'd bands of
the same symmetry a hybridization gap is formed.?*—3!
In the model this behavior is introduced by omitting the
sp states of a certain energy interval (g,€,). These ener-
gies (with respect to the vacuum level) together with work
functions, Fermi energies, the distance Rjg as well as the
lattice constants are compiled for all relevant metals in
Table IV.
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TABLE III. Orbital exponents §; and coefficients ¢; used in the expansion of nd metal wave func-
tions ¥, in Slater basis wave functions ¥,,,. Only components with exponents §; <6 are displayed.
Components which larger exponents give negligible overlap with the adorbitals, but are essential for

normalization. The d wave functions have the form

Ya= 3 Cilum(r;Ci)y Ynm(r;E)=[26)" /(2N 2r" ~lexp(—£ir) Yim (6,0) .

Quantum
numbers
Metal n l &i Ci Ref.
Cu 3 2 2.30 0.5744 33(a)
3 2 5.95 0.5933
Ni 3 2 1.57027 0.21053 33(b)
3 2 2.78709 0.41773
3 2 4.75253 0.33129
Pd 4 2 2.398 0.6405 33(c)
4 2 5.542 0.5823
Ag 4 2 2.444 0.5809 33(d)
4 2 4.908 0.5833

C. Image potential

The model Hamiltonian as described in Sec. II contains
a correlated electron motion only in the region overlapped
by the adorbitals. In the presence of a metal surface the
image force is an important nonlocal correlation effect
which even for rare-gas atoms leads to relatively large
shifts of the ionization energies (of the order of several
€V). This has been experimentally confirmed by means of
the ion neutralization spectroscopy.** In the present ver-
sion of our model image-force effects are included in a
static way as renormalizing the core and Coulomb in-
tegrals.

ng, tv
n,(z')
______________ ~
I
~d
‘ 2 | 0 4
é N
| s Vo
o 4
, V(z) §
TR
H——d—+

FIG. 1. Definition of various surface planes (plane of lattice
sites, jellium edge, Sommerfeld edge) and their relative dis-
tances. Perpendicular distances z are given in this paper relative
to the first plane of lattice sites, positive distances correspond to
the vacuum side (z =Z+d /2=z'+Rjys+d /2).

Consider the effect of all image charges of the rare-gas
charge distribution on one particular rare-gas electron.
The interaction of the electron with its. own image leads to
an attractive potential — Vi, =—1/(4|2"'—zi, | ). zjp is
the position of the image plane, which will be discussed
later. z' is the (averaged) position of the considered elec-
tron. The interaction energy of the electron with the im-
age of the core of charge Qis Q/(2|z'—z;, | ). Here we
have assumed that the averaged position of the rare-gas
electron is right at the position of the core. This interac-
tion energy is different in magnitude from V;,, because
the image of the core does not move, if the considered
electron moves. The same is true for the images of the
(Q —1) other electrons on the rare-gas atom. Hence the
total interaction energy of all images with the considered
electron is

—1/(4]2' —ziny | )+ Q /(2| 2" —2jpy | )
—(Q=D/2| 2 —zy | )=1/(4| 2" =21y | )= Vign(2") .

We want to describe this by a renormalization of the gas-
atom parameters:

EJ(2)=EJ(c0)+AE,(z"),
(AA |BB)|,=(AA |BB) | ,_,—AW(Z), (13)
(AB | BA)| ;=(AB |BA) | ;—,, .
This leads to
Vim(z')=AE 4(z")—(Q —1)AW(z’) .

On the other hand, the total gas-atom energy has to
remain unchanged, because a neutral gas atom experiences
no net image force:

QAE (z')—3Q(Q — 1AW (z')— QW (z')=0 . (14)

The last two equations can be solved for AE ,(z) and
AW(z):
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TABLE 1IV. Parametrization of the metal surface: ¢, work function (eV); Er, Fermi energy (eV); €, upper edge of hybridization
gap relative to Fermi level (eV); ¢€,, lower edge of hybridization gap relative to Fermi level (eV); a, lattice constant (a.u.); d, distance
between (110) metal layers in the z direction (a.u.); Rjs, separation between jellium edge and Sommerfeld edge (a.u.); B, constant for

the T — B method (see text).

¢ Ep g € a d Rys
Metal (eV) Ref. eV) (eV) (eV) Ref. (a.u.) (a.u.) (a.u.) B
Cu 4.50 28 9.35 —7.38 —9.43 29 6.8340 2.4162 0.3404 0.85
Ni 5.04 28 9.00 —6.76 —9.62 29 6.6636 2.3560 0.3799 0.70
Pd 5.40 28 7.00 —7.44 —9.92 30 7.3528 2.5996 0.5232 0.88
Ag 4.52 28 8.89 —10.07 —12.07 31 7.7244 2.7310 0.3614 0.91

E (2)=Vin(z')2Q —-1),
(15)
AW (2 )=2V,(2') .

If the Q values for helium (Q =2) and neon (Q =8) are
inserted, one finds

AER(z) =3V, (z"), AEN(z")=15V;,(2") . (16)

This parametrization has the property that it yields the
right image interaction also for the ionized configurations.
Assume there is the charge ¢ on the gas atom. The
change of the total energy due to image-force effects is
then

(Q+@AE, —(Q +q)(Q +qg— VAW /2—Q%V;y,
=[(Q+q)2Q0 —1)—(Q +g)(Q +q —1)—Q*Vin

:—qZVim .

The gas-atom parameters E and (AA |BB) of the
Hamiltonian [Eq. (1)] are the distance dependent quanti-
ties defined in Eq. (13). This distance dependence de-
creases the total energy of the system as the gas atom ap-I

11.36—0.18r;, Z> A(ry)
rim(f):

proaches the surface. But according to Eq. (14) this de-
crease is canceled exactly by the gain in energy due to the
interaction of the gas core with its image. Because the re-
normalized quantities Ej and (A4 | BB) enter in the in-
teraction terms H; of the Hamiltonian [Eq. (1)], the im-
age force influences also the hybridization of wave func-
tions.

Appelbaum and Hamann>® calculated the image poten-
tial V;,(2) of a static point charge Q near a metal surface.
The surface was treated in the jellium approximation and
the response of the semi-infinite electron gas was calculat-
ed self-consistently in the local-density formalism. For
not too small distance Z of the charge from the jellium
edge the image potential could be approximated by

Vin=0%/[4|Z—rin(®) |1, 17

where 7;;, depends on the distance Z as well. In Fig. 2 this
dependence is shown for different electron densities — n,,
given by the Wigner-Seitz radius 7:

no=3/4mr . (18)

The functions r;,(Z) are approximated by two linear
functions in this work (dashed lines in Fig. 2):

[(1.76—0.18r,)/(1.404-0.30r,)]2—0.40, Z < A(r,)

A(r,)=1.40+0.30r, ,

Zim ='im '_RJS .

The arguments given up to now are valid for point
charges, whereas in reality we have smeared out electron
charge distributions. If the image force is averaged prop-
erly over these distributions, the effective electron position
would not coincide with the position of the core. To ac-
count for this we make a correction to zj,:

2 =zim+r4o - (20)

The values used in the calculations are
ri—=1.36 a.u., r}5=0.68 a.u., r,=2.2 a.u. .

The corrected z;,, value is used for both, the images of the
electrons and the image of the core. If one would apply it
only to the electrons, a long-range attractive potential for
the neutral gas atoms would result. This long-range at-

(19)

rs:2

g =3

r5=5
TN NN T TN NN TN U SN NS NN S |
o] 8 16 24
Z(a.u)

FIG. 2. Position of the image plane according to Appelbaum
and Hamann (Ref. 35). The dashed curves are the values used
in the present work. The ordinate gives the position relative to
the jellium edge.
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traction would, however, not be a correct representation of
the van der Waals potential. The described procedure of
estimating image effects is in the case of helium used for
all distances. In the case of neon some care is needed,
however. If Egs. (15), (17), and (19) are applied at close
distances or inside the positive jellium, it might happen
that the two-electron integrals Eq. (13) will become very
small or even negative. This happens, in fact, for neon,
because the asymptotic electron-electron integrals are sig-
nificantly smaller than for helium (~ 10 eV compared to
30 eV). We therefore stop varying V,, once
(AA | BB)—(AB | AB) becomes smaller than ~2.5 eV.
For neon this occurs roughly 4 a.u. in front of the first
atomic layer.

IV. DISCRETIZATION
AND OVERLAP INTEGRALS

The Hamiltonian is diagonalized numerically on a com-
puter. This is possible if the continuous metal spectrum is
discretized. The method has been described in detail.>
Essentially the same discretization is used as in previous
calculations. The d band is represented by a single discre-
tized band, which is considered to be occupied for all four
metals. The sp band is split up into six discretized sub-
bands. For the Pd calculations one subband is intersected
by the Fermi level although it is considered to be fully oc-
cupied. This introduced a certain error. Some test calcu-
lations lead to the conclusion that the error introduced by
the rather coarse discretization on, e.g., the corrugation is
~20%. This error can be reduced considerably by using
a much finer discretization. The numerical expense, how-
ever, does not appear to be justified in view of other un-
certainties in the model. The data characterizing the em-
ployed discretization is summarized in Fig. 3.

The overlap integrals are evaluated by explicitly con-
structing the “adsorbate-projected metal states” | kA4 )
(k symbolizes the metal character and A labels the sub-
band):

1
WI%(HA)II). (21)

| kAA )=
For the sp band | /) represents a Sommerfeld wave func-
tion as described in Sec. III. For the d band the situation
is more complicated and the reader is referred to the dis-
cussion in Ref. 36. The “T — B method” described there
has been used in the present work. The values of the pa-
rameter B are listed in Table IV. They have been ob-
tained by fitting the 7T —B method for an on-top
potential-energy curve to the “first principles” results ob-
tained with the assumption that the atomic d orbitals on
different centers are mutually orthogonal. This first prin-
ciples method has been found to overestimate corruga-
tion,?> and therefore the T'— B method is to be preferred.
In contrast to earlier chemisorption calculations,?* B is
not obtained by a fit to experiment. Instead it is calculat-
ed within the framework of the theory based on the idea
that the assumption of mutual orthogonal d orbitals can-
not lead to a large error, if the adsorbate overlap with a
single particular center dominates. This is the case for the
on-top position.

Fermi

T T

T T T T T T T : T 1
€ eV) 0

T {
-10 -5

FIG. 3. Density of states, hybridization gap, and discretiza-
tion used for the numerical calculations. The solid vertical bars
correspond to the discretized subbands, the dashed lines indicate
the energy intervals which they represent. Energy zero corre-
sponds to the vacuum level. For the neon calculations each sub-
band is fourfold degenerate, i.e., there are four different adsor-
bate projected metal states per discretized level.

The B values obtained in this way are. considerably
larger than those obtained previously by a fit to experi-
ment.?* The reason is that in the older calculations the
core repulsion energy E™P (cf. Sec. II) has not been in-
cluded. The smaller B values accounted for this by reduc-
ing the gain in electronic energy. Including E™P explicit-
ly, the “theoretically” determined B values lead to reason-
able agreement with experiment, as will be demonstrated
in the following sections.

The overlap integrals are evaluated numerically on a
computer. For the d overlap three layers are included.
Overall, 300 lattice sites are summed, assuring complete
convergence of the overlaps.

V. RESULTS
A. Potential-energy curves for special lateral geometries
Figures 5—9 show the calculated potential-energy

curves perpendicular to the surface for the four high-
symmetry geometries (cf. Fig. 4): (i) in the center between
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FIG. 4. High-symmetry geometries for the (110) fcc face:
SB, short-bridge position; LB, long-bridge position; C, position
in the center of the unit cell; and T, position on top of a metal
atom.

VimeY) He/Cu(110)

1l 30 5.0 I 70
z(a.u.)
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four metal atoms ( C); (ii) in the center of the short bridge
in the close-packed direction (SB); (iii) in the center of the
long bridge (LB); (iv) on top of a metal atom ( 7).

Harris and Liebsch!! fitted an analytically derived po-
tential shape to experimental He/Cu(110) diffraction data
by Perreau and Lapujoulade* and managed to get quanti-
tative agreement. (The “experimental” potential obtained
by Garcia, Barker, and Batra!? essentially agrees with that
of Harris and Liebsch.) This potential has only a one-
dimensional corrugation (in the less-close-packed [100]
direction). We recalculated the Harris-Liebsch potential
as a function of perpendicular distance for the points of
extremal corrugation and compare it in Fig. 6 to our
model Hamiltonian results for center and short bridge.
The absolute distance from the physical surface (plane of
metal ion cores) cannot be determined experimentally.
We therefore shifted the Harris-Liebsch distance scale. In
general the Harris-Liebsch fit compares reasonably to our
calculations. The main differences are the missing long-
range van der Waals tail in the model Hamiltonian ap-
proach (cf. Sec. VI) and a steeper increase of the repulsive
part of our potential.

A similar fit to He/Ag(110) selective adsorption reso-
nances and all available diffractive scattering data was
performed by Schinke and Luntz,” and a comparison with
the model Hamiltonian results is presented in Fig. 8. The
repulsive part of the theoretical potential turns out to be
steeper than the fitted curve from Schinke and Luntz.
Garcia, Barker, and Rieder®’ fitted a soft potential with
van der Waals minimum to the He/Ni(110) scattering
data. In Fig. 7 this potential is compared to our theoreti-
cal results.

V(meV) .
He/Ni(110)
LB SB
/ /7
| C\ /)T
200+
100
0 L LR S | S s
] 30 50 70
z(a.u)

FIG. 5. Calculated potential energy curves perpendicular to the (110) surfaces for adsorption of He above the four high-symmetry

positions indicated in Fig. 4.



potential-energy curves for He adsorption in the center and
short-bridge positions of Cu(110) with the “experimental”

potential-energy curves of Harris and Liebsch (Ref. 11).
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FIG. 5. (Continued).
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FIG. 6. Comparison between the model Hamiltonian za.u)

FIG. 7. Comparison of the potential fitted by Garcia, Barker,
and Rieder (Ref. 37) (dashed curve) to the He/Ni(110) scattering

data with the theoretical results (solid curve).
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FIG. 8. Comparison of the theoretical and ‘“‘experimental”

potential-energy curves for He adsorption in the center and .

short-bridge positions on Ag(110). The “experimental” curves
were derived by Schinke and Luntz (Ref. 7).
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B. The theoretically predicted trends
in comparison to the experimental evidence

The results of our calculations are summarized in
Tables V—IX and compared to the available experimental
data.

As far as qualitative trends are concerned the compar-
ison is quite favorable. The major trends are as follows.

(i) Increase of well depth in the order He/Ni, He/Cu,
He/Ag, and He/Pd and in the order Ne/Cu, Ne/Ni,
Ne/Ag, and Ne/Pd, confirmed by experiment for He/Ag
and He/Pd. The experimental value for He on copper is
for the more open (115) and (113) faces where the helium
atoms might possibly penetrate deeper into the surface
feeling stronger attraction.

(ii) For helium, the corrugation increases in the order
He/Ni, He/Cu (which is close to that of He/Ni), He/Ag,
and He/Pd. For neon, however, Ni has a distinctively
larger corrugation than Cu (increasing in the order
Ne/Cu, Ne/Ni, Ne/Ag, and Ne/Pd). For helium the ex-
perimentally observed corrugations are found to increase
in the order He/Cu, He/Ni (which is close to that of
He/Cu), [He/Pd], and He/Ag. With the exception of Pd
the trends are reproduced by the theory. However, Pd is
the only case where only a fit to a hard corrugated wall

(HCW) is available. If the scattering data would be fitted

to a soft potential, it is very much to be expected that the
corrugation will be found larger than for Ag. This expec-
tation rests on the experience with the system He/Cu(110)
(see below). For neon the corrugation on silver is not
known. For the other metals the corrugation deduced
from scattering data increases from Ni via Cu up to Pd

= )
Q
E LB SB Ne/Ni(110)
>
200
100+
O T T T T N : T T ’
1 30 50 70
z{au)

FIG. 9. Calculated potential-energy curves perpendicular to the (110) faces for adsorption of Ne above the four high-symmetry po-

sitions indicated in Fig. 4.
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FIG. 9. (Continued).

(i.e., the qualitative trends for copper and nickel are ap-
parently interchanged compared to the theory). Here,
however, only the copper value has been deduced by a fit
to a soft potential, the values for Ni and Pd apply to
HCW fits.

(iii) The theoretically predicted increase of well depth
from He to Ne is confirmed experimentally for the copper
surfaces.

(iv) Increase of corrugation from He to Ne. This is
confirmed by experiment for Cu(110), Ni(110), and
Pd(110). The corrugations predicted by our theory do not
appear to be quantitative. One has, however, to bear in
mind that the quoted “experimental” values for
Ne/Ni(110), Ne/Pd(110), and He/Pd(110) were derived by
fitting the diffraction data to a HCW model. That this is
a serious approximation can be appreciated, if in the case
of He/Cu(110) one compares the HCW corrugation value
of 0.09 bohr to the value derived from the Harris-Liebsch
potential at. Ey;,) =60 meV, which is 0.23 bohr. The
theoretically predicted corrugations are usually larger
than those derived from experiment. One exception is
He/Ag(110), where agreement is nearly perfect for small
kinetic energies ( <60 meV), but theory predicts too small
values for higher kinetic energies. The other exception is
Ne/Cu(110). Possible explanations for these deviations
are offered in Sec. VI.

(v) The softness parameters for He, defined as the loga-
rithmic derivatives of the potential, increase from Ag via
Ni and Cu to Pd for energies of incidence less than 120
meV. This is the tendency displayed by the experimental-

ly determined softness parameters, namely increasing in
the order He/Ag, He/Ni, and He/Cu,*>% though' the
model Hamiltonian potentials are generally less soft than
the experimental ones.

C. Corrugation functions and their energy dependence

Another point of concern are the deviating experimen-
tal results for He/Ni(110). This problem was already met
in the work by Garcia, Barker, and Batra,'? who found
that a fit to experiment requires a corrugation in the less-
closed-packed [100] direction, which is unusually small
(about 0.14 bohr) and independent of energy between 14
and 80 meV.

In this connection it it interesting that our calculations
indeed predict the corrugation for He/Ni(100) to be nearly
independent of energy between 20 and 200 meV although
the magnitude is more than 2 times larger than the experi-
mental value (cf. Fig. 10). For He/Cu(110) our theory
yields an energy-dependent corrugation, which increases
slightly between 20 and 200 meV (cf. Fig. 10).

The corrugations for He/Pd(110) and He/Ag(110) show
in our theory a slight increase from 20 to 200 meV (Fig.
11). For neon scattering our calculations predict qualita-
tively similar trends for the energy dependence of the cor-
rugation. Ne on Pd(110) and Ni(110) makes an exception
from this behavior. The corrugation amplitude in the
less-close-packed z(01) direction is predicted to decrease at
higher energies of incidence (cf. Fig. 11).

The calculation of whole potential-energy surfaces
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TABLE V. Equilibrium distances (R.q, a.u.) and potential
well depths (D, meV) for helium and neon adsorption above the
four high-symmetry points from Fig. 1 on Cu, Ag, Ni, and
Pd(110) surfaces. Experimental data for the potential well
depths are referred to for comparison with the numerical re-
sults.

R (a.u.)
Cu Ag Ni Pd
position
Helium
On top 6.0 6.5 6.5 6.0
Short bridge 6.0 6.3 6.5 6.0
Long bridge 5.5 6.0 6.0 5.5
Center 5.5 6.0 6.0 5.5
Neon
On top 6.0 6.5 6.5 6.0
Short bridge 6.0 6.5 6.5 5.5
Long bridge 6.0 6.0 6.0 5.0
Center 6.0 6.0 6.0 5.0
D (meV) )
Metal Cu Ag Ni Pd
Geometri
position -
Helium
On top 5.0 5.4 4.3 7.5
Short bridge 5.2 5.6 4.4 8.2
Long bridge 5.7 6.5 52 11.0
Center 5.8 6.6 52 11.4
Expt. 6.35% 6.0 8.05
Reference 4 38 8
Neon
On top 6.9 10.3 8.3 15.8
Short bridge 7.1 10.5 8.4 17.7
Long bridge 7.4 11.4 10.3 239
Center 7.4 11.5 10.4 25.7
Expt. 12.1
Reference 23

2Heat of helium adsorption on Cu(113) and Cu(115).
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represents no special difficulty for the model-Hamiltonian
approach, the high symmetry of the studied system being
no restriction at all. Cross sections of such potential-
energy surfaces at different energies along the [10] and
[01] directions of the (110) face of Pd are displayed in
Figs. 12 and 13 for He and Ne, respectively. These equi-
potential curves allow to trace the energy dependence of
the corrugation amplitudes. They are separately plotted
in Fig. 10 and 11 as a function of energy.

The major trends are as follows.

(1) A slight increase of corrugation amplitudes of He on
Pd(110) with energy for paths through the center of the
unit cell.

(2) A slight increase of z(10) and a decrease of z(01) for
Ne/Pd(110). Such a decrease is also observed for Ne on
Ni(110) and could be ascribed to the strong increase in
repulsion due to the extended d wave functions. As far as
the corrugation functions are concerned the usual practice
is to write them as Fourier series over the reciprocal-
lattice vectors and then to keep only the first terms in the
expansion. This approximation was tested by plotting the
functions

&(x,0)=52z(10)cos —zix

>

£(0,y)=+2z(01)cos

2m
by

as dashed lines in Figs. 12 and 13. Obviously, keeping
only the first terms in the Fourier expansion of the corru-

" gation function is a reasonable approximation for the

less-corrugated crystal direction [10]. However, for the
strongly corrugated [01] direction higher Fourier com-
ponents are important.

TABLE VI. Classical turning points (Rcr, a.u.) and corrugation amplitudes z (a.u.) for helium and neon above Cu(110) in the
close-packed [10] and less close-packed [01] directions compared with experimental data, where available, for perpendicular kinetic

energies 60 and 240 meV.

60 meV 240 meV
Geometric Rer z(10) (a.u.) z(01) (a.u.) Rer z(10) (a.u.) z(01) (a.u.)
position (a.u.) Theory Expt., Ref. Theory Expt., Ref. (a.u.) Theory Expt., Ref. Theory Expt., Ref.

He/Cu(110)
On top 4.25 3.68
Short bridge 4.12 0.13% 0.32 0.26 3.49 0.19 0.35

~=0.0 4 0.38

Long bridge 3.82 0.02 31 0.43 3.21 0.07 0.47 4
Center 3.80 3.14

Ne/Cu(110)
On top 4.45 3.92
Short bridge 4.27 0.18 0.32 0.43 3.75 0.17 0.34
Long bridge 3.98 0.03 0.47 23 3.44 0.03 0.48
Center 3.95 341

2The two theoretical values are for trajectories of the noble-gas atom above the rows of metal atoms (larger corrugation amplitude)

and in between the rows (smaller z values).
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TABLE VII. Classical turning points ( Rcr, a.u.) and corrugation amplitudes z (a.u.) for helium and neon above Ag(110) in the
close-packed [10] and less-close-packed [01] directions compared with experimental data, where available, for perpendicular kinetic
energies 60 and 180 meV. i

60 meV 180 meV
Geometric Rer 2(10) (a.u.) z(01) (a.u.) Rer z(10) (a.u.) z(01) (a.u.)
position (a.u) Theory Expt., Ref. Theory Expt., Ref. (a.u) Theory Expt., Ref. Theory Expt., Ref.
He/Ag(110)
On top 4.65 : ) 4.18
Short bridge 4.43 0.22 ~0.0 0.44 0.51 3.95 0.23 0.49 0.85
Long bridge  4.05 0.06 7, 38 0.60 38 3.52 0.06 0.66 7
Center 3.99 3.46
. Ne/Ag(110)
On top 4.79 441
Short bridge  4.53 0.26 0.46 4.02 0.39 0.46
Long bridge  4.12 0.05 0.67 3.62 0.06 0.79
Center 4.07 3.56

TABLE VIII. Classical turning points ( Rcr, a.u.) and corrugation amplitudes z (a.u.) for helium and neon above Ni(110) in the
close-packed [10] and less-close-packed [01] directions compared with experimental data, where available, for perpendicular kinetic
energies 60 and 180 meV.

60 meV 180 meV
Geometric Rey z(10) (a.u.) z(01) (a.u.) Rer 2(10) (a.u.) z(01) (a.u.)
position (a.w.) Theory Expt., Ref. Theory Expt., Ref. (a.u) Theory Expt, Ref. Theory Expt., Ref.
He/Ni(110)
On top 4.52 3.96
Short bridge 4.44 0.08 0.06 0.37 0.14 3.88 0.08 0.08 0.39 0.12
Long bridge 4.13 0.05 5 0.39 5 3.54 0.05 12 0.42 12
Center 4.07 3.49
Ne/Ni(110)
On top 4.63 4.08
Short bridge  4.53 0.10 0.06—0.08 0.51 0.29 3.94 0.14 0.41
Long bridge  4.08 0.06 8 0.55 8 3.57 0.04 0.51
Center 4.02 3.53

TABLE IX. Classical turning points (Rct, a.u.) and corrugation amplitudes z (a.u.) for helium and neon above Pd(110) in the
close-packed [10] and less-close-packed [01] directions compared with experimental data, where available, for perpendicular kinetic
energies 60 and 180 meV.

60 meV 180 meV
Geometric Rer 2(10) (a.u.) z(01) (a.u.) Rer z(10) (a.u.) z(01) (a.u.)
position (a.u) Theory Expt., Ref. Theory Expt., Ref. (a.u) Theory Expt., Ref. Theory Expt., Ref.
He/Pd(110)
On top 4.65 . 4.27
Short bridge 4.45 0.20 0.04 0.68 0.40 4.01 0.26 0.69
Long bridge  3.88 0.11 8 0.77 8 3.43 0.11 0.84
Center 3.77 3.32
Ne/Pd(110)
On top 4.72 4.41
Short bridge 4.44 0.28 0.08 0.90 0.60 4.02 0.39 0.75
Long bridge  3.67 0.13 82 1.05 - 82 3.42 0.15 0.99
Center 3.54 3.27

2For Eyj,, =63 meV (HCW).
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FIG. 10. Energy dependence of the corrugation amplitudes 0 .

for helium. z(01) and 2(10) are the corrugations in the less-
close-packed and the close-packed direction, respectively. The
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upper curve of each pair corresponds to a path through the FIG. 11. Energy dependence of the corrugation amplitudes

center of the unit cell, the lower curve applies for paths passing for neon. See legend to Fig. 10 for explanation of different
on top of metal atoms in the first layer. curves.
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FIG. 12. Equipotential curves for He/Pd(110) concerning the
movement of the He atom along the close-packed [100] (short
bridge to on top), and less-close-packed [010] direction (long
bridge to on top), respectively. The first Fourier components of
the corrugation functions &(x,0) and §(0,y) are plotted as
dashed curves.

VI. DISCUSSION

The discussion serves several purposes. It enables us to
(1) explain theoretically predicted trends physically, (2)
point out possible deficiencies of our theory and connect
these tentatively to discrepancies with experimental data,
(3) check our predictions against reasonable variations of
the properties and parameters assumed for the asymptoti-
cally separated gas-atom—metal system, and (4) derive an
approximate analytic formula for the He-metal potential,
which elucidates the physics. We start with the last point
in order to reveal the physical picture behind the model
Hamiltonian and the numerical calculations.

A. An approximate analytical formula
for the He—transition-metal potential

1. Contributions due to the electronic interaction
with the occupied metal states

The discussion is facilitated if a discretization into only
two adsorbate-projected metal states—one occupied, the

6413
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FIG. 13. Equipotential curves as described in the legend to
Fig. 12 for Ne/Pd(110).

other empty—is considered. First consider only the cou-
pling of gas-atom orbitals to the occupied metal state.
According to Ref. 25 this gives no net change of the elec-
tronic energy. That it is not repulsive is a consequence of
the exchange hole formed in the metal. Up to second or-
der in the overlap the exchange energy for helium is
—3/283U(z), where S, is the overlap of the 1s orbital
with the occupied metal state and U(z) is the image-
force-renormalized Coulomb integral. Near the classical
turning point for He/Pd (z=4 a.u.) the exchange energy
is —253 meV, near the minimum it is ~ —3 meV.

~ Another attractive contribution is the GMS potential
felt by the metal electrons. It is of the order —2S5U(z)
for helium. The helium 1s orbital contracts due to mixing
with the occupied metal states. This increases the
electron-electron repulsion on the helium by

AEY? ,=38S3U(2) .

The gross repulsion between adelectrons and metal elec-
trons neglecting exchange is 383U (z). If we add the four
previously-discussed contributions, we get
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FIG. 14. (a) Contributions to the electronic interaction energy for He/Cu(110). Compare text for explanation of plotted quantities:
®, E [cf. Eq. B36)]; X, AGoc; A, AGq(2) +AG o =EX +E+ AG,; 0, ETF [cf. Eq. (33)]. (b) Repulsive part of the He/Cu(110)
potential and its components: ®, E¥s=2S3U (2) [cf. Eq. 37)]; X, Viipole; &, E*P=EGks + Vaipore [cf. Eq. (6)].

AGooe=AEF? 4 +E, +E5P p+E2s
=(+—3—-2+43)S3UG=)=0. (22

The cancellation of these terms is not fortuitous. It de-
pends, of course, on the parametrization of the model
Hamiltonian and takes its justification from the success of
the model to describe qualitatively correctly the gas-metal
interaction. The cancellation occurs only.up to second or-
der in the overlap S3. Higher orders lead to a net change
of energy. The true quantity AG . including all orders of
the overlap is plotted in Fig. 14 for He/Cu. The deviation
of this quantity from zero is a measure of the importance
of higher- (than second-) order terms.

2. Contributions due to the electronic interaction
with the unoccupied metal states

The rare-gas orbitals are then coupled with renormal-
ized core energy

ES(2)—>ES(2)+(E§ —Ey)Si/4+2S2U(2)
=ES[14+(1—Ey/E%)S%/41+ 283U (2), (23)

and renormalized Coulomb integral
U(z)—U(2)(1+S55/2) (24)

to the unoccupied part of the metal states. The coupling
is renormalized as well, e.g.,

ala,,—a a1+ 353 . 25)

All these renormalizations, however, affect the total ener-
gy at most in order S3S7 and therefore are negligible.

The net gain in electronic energy comes now from the
mixing with empty metal states and is equal to the change
of the sum of 1s orbital energies:

AGy(z)=2[E{+U(z)—E,]S2/4 . (26)

This quantity is displayed in Fig. 14 as well. It consists of
two repulsive and one attractive contributions. — E,S?2/2
stems from the polarization of the 1s orbital towards the
metal; charge is removed from the center of the helium
core and thereby core-attraction energy is lost. The polar-
ization is connected with a contraction (often called pro-
motion) of the remaining part of the 1s charge density
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around the helium core. This contraction implies an in-
crease of the electron-electron repulsion by U(z)S2/2.
These repulsive contributions are, however, overcompen-
sated by the gain in interference energy E 952 /2 due to
the formation of the “adsorption orbitals.”

The terms E ASZ and —E, S2/2 contain, of course,
both the change in kinetic and in potential energy; the
separation is, however, not exhibited in the notation of
second quantization: The presented physical picture of

the mechanism gaining electronic energy is very similar to
Ruedenberg’s interpretation of the chemical bond.*

3. The core repulsion

This contribution E™P=E §{s + Vipole is given exactly
by the term of H, of the Hamiltonian [Eq. (1)]. Together
with its components it is plotted in Fig. 14 for He/Cu. It
should be remembered that the terms EGRs have been
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constructed in such a way that classically (i =1; Fijy =1
for | ks) occupied), they would cancel exactly with the
corresponding attractive terms, i.e., with the GMS attrac-
tion (the first term of H; of the Hamiltonian) and the
electrostatic attraction of the adelectrons by the dipole po-
tential. The latter is implicitly taken into account by
making use of Eq. (6).

In the remainder of this paper the core repulsion will be
made responsible for giving rise to the repulsive branch of
the potential-energy curve. This interpretation is based on
the cancellations leading to AG .. =0 [cf. Eq. (22)].

Obviously this is not the only possible interpretation.

"For example, one could instead balance the core repulsion

against the corresponding electrostatic attractive terms
I

occupied

(s [k) 2= X

occupied

Si= 3
k

fd3r(1s [r)(r|k)‘

occupxed

It

where 2p(r’,r) is the Fock-Dirac density matrix of the un-
perturbed metal surface. For calculating S3 summation is
only over one spin orientation. With use of the mean-
value theorem, S can be approximated by

S§=((1s [r'){(r|1s) )y fV1 d’r fVl d*rp(r',r)
:<(ls |rl><r| 1s>>avﬁo(rHe)V%s ’ (28)

where pj is the occupied metal charge density only, if the
He 1s orbital can be considered extremely localized com-
pared to the metal lattice constant, ie, if
(r] ls) S(r—rye).

S3 is then approximately proportional to the unper-

turbed metal electron charge density averaged over the

volume occupied by the helium 1s charge density. Simi-
larly one writes for S2,

2= ((1s |U')(r|1s) ) o Fo(rg) V3, . (29)
Here

unoccupied

ﬁo(")z 2
k

is the local charge density of unoccupied states at the
point r. 7, approximates this quantity under the same
conditions as mentioned above for p,. 7, is the energy in-
tegrated local density of states of the empty metal states
between Fermi level and vacuum level. Note that the nu-
merical calculations evaluate S, and S, exactly and do
not involve any ‘“charge-density approximations.” The
discussion given here is for interpretational purposes only.
If the proposed interpretations for py and 7 is valid, we
recognize that each of the energy contributions we have
been discussing is either proportional to the occupied or to
the empty local metal density.

| (k|r)|? (30)
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(Egms and EY 4) and then discuss the repulsive part
of the total energy as arising from AES? , +EXP , +E,.
This would lead to the interpretation that in order to obey
Pauli’s exclusion principle the electron wave functions
have to rearrange in such a way that the electron-electron
repulsion becomes larger (exchange repulsion). This inter-
pretation is physically as correct as the one we are pursu-
ing in the following.

4. Summary of energy contributions

The weak rare-gas—metal—interaction energy can be
discussed in terms of the squared overlaps S3 and S?:

[ [a [a*s |0 | 1s)(k |r)(r|k)~

Jair [aris o 1) S 1 [ lk) [ = [ ¥ [ a(is e | 15)ptr,0),
k

27

We then produce the following summarizations. First-
ly, the attractive energy contributions: (i) exchange energy

Ey=—3S}U(2) < polrye) 31)
(ii) GMS potential

Eoms = —2S3U (2) < po(rye) (32)
(iii) 1s interference energy,

Ef=(S2/2)[E{(2)+ U(2)—E,(2)]

+(S5/2)ES(2)+ U(z)—Ey(2)]

ICOﬁo(rHe)‘f‘Cuﬁo(rHe)9650(1'}.{3) , (33)

and (iv) image potential of He core, —4/|z—z;, |.
Secondly, the repulsive energy contributions: (i) Change
of electron-electron repulsion on the helium atom,

AES? ,=+S3U(z) « PolThHe) » (34)
(ii) adelectron-metal electron repulsion,

ESFP 0 =3S3U (2) « po(rie) , (35)
(iii) metal interference energy,

Ejf=+5S[Eo(z2)—E$(2)—U(2)] «po(rye) (36)
(iv) GMS repulsion,
B =252U(2) < o) (37)
(v) core repulsion from the dipole layer,

E §ipole = Vaipole < Po(THe)

and (vi) change of electronic energy due to image force,
4/ |z —z; | . Utilizing Eqgs. (26) and (37), one obtains the
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FIG. 15. Components of the total energy as described in the legend to Fig. 14 for Ne/Cu(110).

following simple expression for the potential-energy sur-
face, which is correct to second order in the overlap:

V(rg)=+SE(2)+U(z)—E,] +283U (2)+ E 5Ly -
(38)

In Fig. 16 this approximate analytical expression is
compared against the numerical result for the example of
the He/Cu(110) on-top potential-energy curve. The excel-
lent agreement demonstrates that the analytic formula
may be used for interpretational purposes. The various
contributions to the electronic energy are displayed in

Figs. 14(a) and 15(a); the repulsive parts are plotted in
Figs. 14(b) and 15(b).

From experiment only the total potential can be de-
duced. The same total potential can be decomposed into
different attractive and repulsive parts. This has been
demonstrated in the case of He/Cu(110),'° where the
Harris-Liebsch (HL) fit!! and the Garcia, Barker, and Ba-
tra (GBB) fit!? lead to essentially the same fotal potential,
but both the repulsive and the attractive components con-
sidered alone are different. Up to ~40 meV the experi-
mental potential agrees reasonably well with our theoreti-
cal one. It is now interesting to observe that in our theory
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both components (repulsive and attractive) vary signifi-
cantly more rapidly than in both experimental fits.
At 40 meV, for example, we calculated

G (center)= —75 meV (HL, —68.6; GBB, —53.0),
G4(SB)=—40 meV (HL, —54.0; GBB, —46.0),

V=30 meV (HL, 14.6; GBB, 7) .

(The values for the experimental potentials are from Ref.
19 and correspond to E, =46 meV.) We have

corrugation of total potential, 0.35 a.u.
(HL, 0.25; GBB, 0.26) ,
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FIG. 16. Comparison between the results of a self-consistent
calculation for helium on-top adsorption above €Cu(110) di-
agonalizing the complete Hamiltonian (solid curve) and using
the approximation Eq. (38) (dashed curve).

corrugation of repulsive potential, 0.27 a.u.
(HL, 0.1; GBB, 0.21) .

This means that for the Harris-Liebsch fit the repulsive
part alone yields only 40% of the total corrugation,
whereas for the GBB fit and in our theory it yields 80%
of the total corrugation. In qualitative agreement with
the discussion of Barker et al.'” we also find that the cor-
rugation is approximately proportional to the corrugation
of the (occupied) metal charge density.

For neon the absolute magnitude and the variation of
both components are calculated to be roughly twice as
large as for helium. For the total corrugation the attrac-
tive part is of much higher importance than in the case of
helium. For Ne/Cu(110) at 40 meV we find for the corru-
gation of the repulsive part alone 0.15 a.u., whereas the
total corrugation is (center to short bridge) 0.30 a.u., i.e.,
the repulsive part along yields only 50% of the total cor-
rugation. Note that the corrugation of the repulsive part
alone is only half the value for helium. This appears
plausible, if the Esbjerg-Ngrskov density-potential propor-
tionality is applied only to the repulsive part. The propor-
tionality factors calculated by Puska, Nieminen, and Man-
ninen?? would then predict a much smaller corrugation
for neon than for helium. The much larger interference
energy for neon, however, changes the situation.
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Compared to Salanon’s experimental results,”> our
theory underestimates this effect. A possible explanation
of this underestimation is the approximate and rather ad
hoc treatment of the image force (see the discussion of
“deficiencies” later on). The picture is the same for all
metal surfaces. For neon the corrugation of the total po-
tential is always roughly twice as large as that of the
repulsive part only.

B. Physical explanation of the theoretically
predicted trends

The discussion in the preceding section was restricted to

- the He-metal interaction. The physics is, however, com-

pletely analogous for neon. One only has to be careful
with respect to the larger number of adsorbate orbitals in-
volved. When this is important, it will be explicitly point-
ed out in the following.

All calculated trends can theoretically be explained by
the competing interplay of the repulsion energ}' E™P and
the attractive interference energy EF=E F+ET. For He
both contributions increase in absolute magnitude in the
order He/Cu, He/Ni, He/Ag, and He/Pd. Generally the
magnitudes of E'F and E™P are larger for Ne than for He.
For neon the attraction | E™F| increases in the order
Ne/Cu, Ne/Ni, Ne/Ag, and Ne/Pd whereas the repulsive
term | E™P| increases (for center position) in the order
Ne/Cu, Ne/Pd, Ne/Ni, and Ne/Ag. As demonstrated in
the preceding section one can write approximately [cf. Eq.
(38)]

V(r)=E™(r)+E%(r),
E™(r)~apy(r), EF(r)~pry(r),

where p, is the occupied charge density at the metal sur-
face and 7, is the empty charge density [cf. Egs. (28),
(29), and (30)]. a and B might be calculated from Eqgs.
(28) and (29). However, we did not calculate a and 3 ex-
plicitly, but it is obvious from Figs. 14 and 15 that they
increase from He to Ne.

For the center position, neon penetrates deeper into the
metal, because the attractive interference energy is larger
for neon and the repulsive interaction with the d orbital
sets in only at close distances. For the top position the
repulsion is felt much earlier and the larger ae value
shifts the turning point for neon further out than for heli-
um.

This explains the large corrugation of the neon poten-
tial for Ni and Pd. For copper and silver the interference
energy has a smaller influence (because of the low copper
and silver work functions) and the increased neon repul-
sion plays the dominant role. Therefore on copper and
silver the neon turns round further out than helium for all
geometries and the corrugations are approximately the
same.

The reader should observe the important role played by
the attractive interference energy. If it would be negligi-
ble, then neon would always penetrate less into the surface
than helium (because a™°> a'’) and corrugation would be
smaller for neon for all metal surfaces, as has been pro-
posed before the experiments were performed.?

The gradient of the attractive interference energy in-
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creases in the order Cu, Ni, Ag, and Pd. The same is true
for the repulsive part, because the contraction of the d or-
bitals decreases in the indicated order so that the overlap
S?2 becomes larger. Hence the predicted corrugation in-
creases for helium from He/Ni and He/Cu via He/Ag to
He/Pd and for Ne in the order Ne/Cu, Ne/Ni, Ne/Ag,
and Ne/Pd.

C. Comparison of different metal surfaces

The quantities which vary significantly with the nature
of the surface are the following.

(i) The GMS core repulsion; it increases from Cu via Ni
and Ag to Pd. This is mainly due to the overlap with the
d orbitals; the contraction increases in the order Pd, Ag,
Ni, and Cu so that the repulsion is felt earlier for Pd than

for Cu. There is also a small counterbalancing contribu-
" tion from the hybridization gap, which is larger and at
higher energies for Ni and Pd than for Cu and Ag; the hy-
bridization gap decreases the core repulsion.

(ii) The interference energy E IF which increases from
Cu via Ni and Ag to Pd. The increase runs parallel to the
trend of the overlap with the unoccupied metal wave
functions which is largest for Pd. A larger overlap S2
means more empty metal wave functions to couple to or a
better possibility for the noble-gas electrons to polarize to-
wards the metal surface. Polarization comes about by vir-
tual excitations into unoccupied states. This comes into
effect only at closer distances to the surface, as a conse-
quence of which the equilibrium distances are closer for
Pd than for Ni, Ag, and Cu. The increased interference
energy is responsible for the deeper potential minimum.
The simultaneously increased core repulsion is not able to
counterbalance this completely.

According to Eq. (38) the form of the potential-energy
curve can roughly be understood as the superposition of
two contributions: the attractive interference energy due
to coupling to the empty metal density of states and the
repulsive energy due to coupling to the occupied metal
density of states.

The empty states reach out far from the surface. They
have a small exponent for decay into the vacuum. The
occupied states decay, however, much faster with a larger
exponent. Therefore the attractive interference energy is
felt at larger distances from the surface. It sets in first,
but then increases only relatively slowly. The repulsive
energy becomes important at closer distance, but then in-
creases fast (due to the larger exponent of decay) and fi-
nally overcompensates the attractive interference energy,
giving rise to the repulsive branch of the potential-energy
curve.

D. Comparison of helium and neon

For neon, eight electrons (2522p°) are included explicit-
ly in the calculation. The 1s electrons are considered non-
polarizable so that the neon-ion core has an effective
charge of + 8e. It turns out that for a qualitative discus-
sion only the 2s and 2p, electrons have to be considered
(the z direction is perpendicular to the surface). The con-
tribution of the 2p, , electrons is negligible. The 25 orbi-
tal is the only one which has a significant overlap with the
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empty metal states, this overlap always being very similar
to the overlap of the helium 1s orbital at the same dis-
tance. The unoccupied metal states have a rather slow ex-
ponential decay into the vacuum. The adorbitals only
probe the exponential tail of the sp wave functions be-
cause of the large equilibrium distance from the surface.
Due to the odd parity of the 2p, orbital its overlap with
the unoccupied part is considerably smaller than that of
the 2s orbital.

Therefore, the attractive interference energy for neon
arises nearly exclusively from the 2s empty-metal-states
interaction. The observation, that despite the similar
overlap the interference energy is much larger (roughly a
factor of 2) for neon than for helium, is an interesting
quantum-mechanical effect involving the nonorthogonali-
ty and the different effective electron potentials for neon
and helium. It can be understood, if perturbation theory
is applied to estimate the interference energies after the
charge-density—bond-order matrix has been iterated to
self-consistency.

The coefficient with which the empty metal state | k)
is mixed into the adorbital | 4 ) is in first order given by

| Va—Ea{A k)
Ak — EA—Ek ’

(39)

where E,,E; are here the self-consistently calculated
one-electron energies. ¥V is the effective self-consistent
one-electron hopping matrix element:
E +Ex
VAkE——2—<A|k>. (40)

This yields for the coefficient
Cu=—(4|k)/2, 41)

which in first order is independent of the one-electron en-
ergies. The corresponding contribution to the interference
energy is in first order given by

EIFz IVAk_EA<A |k>|2
Ak = EA—Ek

= |4 |k)|HE —E)/4,

(42)

which becomes more attractive for more tightly bound
adorbitals (more negative E ).

E 4(Ne 2s)/E 4(He 1s)=2 ,

which explains the increased interference energy for neon.
Despite the larger core attraction felt by the Ne 2s, it is

" spacially as extended as the He 1s, and therefore can mix

as effectively as the He 1s, gaining at the same time much
more interference energy. The neon 2p, overlaps signifi-
cantly only with the d orbitals. This increases the GMS
core repulsion considerably for neon. Also the core repul-
sion from the dipole potential is enhanced due to the
larger core charge. These effects tend to compensate the
larger interference energy at closer distances to the sur-
face. The net outcome is, however, a deeper potential
minimum for neon.
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E. Possible deficiencies of the theory

If one wants to speculate on the reason for the too large
He/Ni(110) corrugation as compared to experiment, one
could mention several points.

(i) Our theory assumes the whole d-electron density of
states (DOS) to be occupied. For Ni and Pd, ~5% of the
DOS is empty. This error should lead to an overestimated
corrugation. It would, however, apply to Pd as well,
where agreement between theory and experiment appears
to be better.

(ii) Existence of occupied surface states for Ni(110) of
predominantly sp character, which reach out far from the

surface. This would reduce corrugation considerably. A

surface state of this kind is, however, known to exist on
Cu(110) (Ref. 40) and it would again be difficult to ex-
plain the difference between Ni and Cu.

(iii) The spillover of electronic charge from the surface
into the vacuum is of shorter range for the Sommerfeld
model than it is for the jellium model. If this were a true
deviation as compared to reality, then the He atom might
in our model experience a too strong interaction with the
d electrons giving rise to too large corrugation. This,
however, should apply for the other metals as well. One
has also to bear in mind that the jellium model will defin-
itely overestimate the range of the spillover, because the
positive charge is smeared out into the vacuum. Another
question is, whether the position of the jellium edge at
d/2 in front of the first atomic layer is the optimal choice
for modeling a realistic surface. Relative small changes in
the position of the jellium edge might affect the predicted
corrugations significantly. However, no better nonbiased
choice is known at present.

(iv) The inward relaxation of the first layer of metal
atoms has been neglected in our calculations. This has,
however, been estimated by Barker et al.!® to be a small
effect having little influence on the corrugation.

(v) Neglect of the corrugation of the sp band. Annett
and Haydock?® propose that this might lead to “anticorru-
gation” effects. This again should apply to all the metals
treated and does not lead to an exceptional result for
He/Ni.

As stated before, for He/Ag the repulsive part of the
theoretically obtained potential is too steep in comparison
to the potential of Schinke and Luntz.” This deviation
might be attributed to an unrealistic modeling of the
silver surface or to the choice of the basis d wave func-
tions.

To check the influence of the d wave functions we
compared the He/Ag(110) potentials for adsorption on
top of a silver atom using the basis d wave functions
described in Table X. These wave functions are usually
optimized with the total or orbital energies as criteria or
aiming at maximum overlap with Herman-Skillman d
wave functions so that they are expected to differ in their
degree of accuracy, especially in regions far outside the
metal atom, which are in fact important for adsorption of
noble-gas atoms. The potential-energy curves for
He/Ag(110) using the four different sets of Ag d wave
functions are compared in Fig. 17. Obviously the differ-
ence in the basis wave functions do not significantly affect

TABLE X. Orbital exponents (orb. exp.) and coefficients
(coeff.) of Slater-type 4d wave functions for different valence
states and electron configurations of a silver atom used to calcu-
late the potential-energy curves for He adsorption above Ag(110)
in Fig. 17.

Electron
Orb. exp. Coeff. configuration Ref.
A 6.07 0.5889 Ag*t(d') 33(c)
2.663 0.637
B 4.988 96 0.5798 Agl(d®s?) 33(b)
2.58374 0.5756
C 4.908 14 0.58330 Ag*(d"®) 33(d)
2.444 36 0.58092
D 5.704 37 0.32139 Agt(d'%) 33(b)
3.528 68 0.54478
2.090 46 0.31797

the gradient of the repulsive part of the potential. The
reasons for the steeper repulsion in the model Hamiltoni-
an results for He/Ag(110) could, however, be tentatively
attributed to the following.

In contrast to Ni and Cu the Ag(110) surface does not
have an occupied surface state of sp character. This state
is shifted above the Fermi level, as has been measured us-
ing the method of inverse photoemission.*! The attractive
energy E'F might then be enhanced due to the increased
empty charge density. In this case the repulsive part of

V(meV)
He/Ag(110)
2004
100:
J
0 - r
i} 40 6.0 z(a.u))

FIG. 17. Potential-energy curves for helium on-top adsorp-
tion above Ag(110) using the different basis d wave functions
described in Table X.
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the potential would be less steep. In a refined treatment
surface states obviously have to be considered.

Another possible deficiency of the model—which only
becomes important for neon—is the handling of the image
potential. As the neon approaches the surface the image
corrections to the effective electron-electron repulsion be-
come so large that the two-electron integrals to be used in
the Hamiltonian become negative. In the numerical cal-
culations this is prevented by keeping the image-force
correction constant from a certain distance, which for
neon happens to be near the classical turning points for
thermal kinetic energies. Variations of the image correc-
tion in the physically reasonable range can therefore easily
increase the corrugation by a factor of 1.5. (A decrease is
even more unlikely, because our procedure probably un-
derestimates image-force effects.) On the helium atom
the electron-electron repulsion is so large that a variation
of the image correction within the physical range has
practically no effect. This was also checked numerically.

VII. CONCLUSIONS

We have presented potential-energy surfaces for helium
and neon interacting with transition metals, obtained by a
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self-consistent solution of a model Hamiltonian. An im-
provement about other published approaches is that the d
electrons are included consistently and nonperturbatively.
Interference effects between rare-gas orbitals and metal
wave functions as well as image-force effects have been
found to be important. The model needs as input a
description of the metal surface in the form of one-
electron wave functions and their energies. Complete reli-
able information about clean transition-metal surfaces (in-
cluding surface states and their wave functions) is not yet
available. These uncertainties as well as the rough
description of the image force are likely to be responsible
for deviations from the experimental data.
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