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A multiple-scattering calculation of the neutron refractive index is performed by an extension of
the Fermi-Huygens technique. The extension involves projecting the problem into a one-
dimensional walk by integrating out the transverse coordinate in a semi-infinite medium and then
partially summing parts of the walk to infinite order. The square of the refractive index is given by

n 1= (4—mp—b/ko)/[1+(4trpb /nko) f da e 0 sin(nkoa)h (a)], where ko is the incident wave

propagation vector, b the nuclear scattering length, p the number density of nuclei (p—:1/ao, say),
and h (a}=g (a) —1, where g (a) is the pair distribution function. The results parallel those obtained

by constitutive equation methods, and offer a physical picture of local-field effects. When the mean
scattering length vanishes (total incoherence), correlated multiple scattering yields

n 1-(—b/ao) (koao) ln[(koao) ']. Thus, the refractive index is exceedingly close to unity un-

less b is large (a resonance} or ko~0 (ultracold neutrons). The presence of the logarithmic term in-

dicates that randomness in the scattering field apparently reduces the effective dimension.

I. INTRODUCTION

n =1 2trpb/ko, —
where p is the number of scattering nuclei per unit volume
and ko the propagation constant in free space. Relation
(1.1) depends on many approximations including the
neglect of multiple scattering. A more rigorous analysis
finds

n 1= —4mpb/ko . — (1.2)

To go beyond this relation, correlations between nuclei
must be taken into account.

There are essentially two ways to proceed. The first, re-
viewed by Sears, is what Lloyd and Berry classify as the
"hierarchy" method where the ensemble averaged
(coherent) wave function with N atoms fixed is calculated
in terms of that with %+1,and so on. The names of Fol-
dy and Lax are most often associated with these
methods. The second method, called by Lloyd and Berry
the "resummation" or Green's function method, was first
applied to particles or waves in random potentials by Ed-
wards. Here, the scattering series is averaged term by
term and resummed in a Dyson-type of analysis. A simi-
lar Dyson equation with the same diagrammatic structure
was exploited in an n-component field theory with ran-
dom potentials by Edwards and Warner. In the calcula-

Neutron-optical techniques now yield measurements of
very high accuracy' for the neutron refractive index n
The accuracy of calculations of the neutron scattering
length b using these measurements is, however, limited by
the accuracy of available approximations relating n and b
The best known of these approximations is the Fermi
thin-slab formula

tion of the refractive index presented below we follow this
second method. Its.advantages are a clear interpretation
of the multiple-scattering events and a transparency of ap-
proximation level.

In Sec. II we outline how n is defined in an infinite
medium and then proceed to the case of a plane wave in-
cident on a semi-infinite slab. We treat this special
geometry for several reasons: The errors inherent in (1.1),
namely excluding multiple scattering in the reverse direc-
tion, are also those which prevent a calculation of reflec-
tivity of a neutron plane wave from a slab. Our treatment
of multiple scattering naturally yields reflection (Appen-
dix B). Additionally, the explicit resummation of the
multiple scattering series illustrates how to handle the
problem of the last scattering center in slab geometry
when ensemble averaging the multiple scattering. (Lloyd
and Berry discuss this point in comparing different
theories of multiple scattering. ) Our result in Sec. III for
the refractive index is an explicit example of a resumma-
tion and reduces to the result of Sears obtained by the
hierarchy method when n —1 is very small and when the
neutron wavelength is very long. It is

4mpb lko
n —1=+ 00

1+(4~pb/nko) f dy e'"sin(ny)[g(y/ko) —1]

(1.3)

and shows the effect of correlations through the pair dis-
tribution function g. Besides being tnore accurate, our re-
sult is also of methodological interest, as it makes contact
with multiple-scattering treatments of other subjects, for
instance electrons in random potentials, and has the ad-
vantage of giving a clear picture of the level of approxi-
mation involved.
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II. PREI,IMINARIES

In this section we review the neutron-nucleus scattering
properties, reproduce the refractive indices (1.1) and (1.2),
and discuss the Huygens method used in subsequent sec-
tions. When a neutron wave go(r) is incident at a scatter-
ing center at r=0 the resultant wave g(r) is

1((r)=go(r)+go(0)e' '"f(8)/r

with

(2.1)

f (8)= . Q(2n + 1)(e '"'"'—1)P„(cosB),
2iko

(2.2)

where 0 is the angle between the incident and the final
directions, P„ is the nth-order Legendre polynomial, and
g(n) is the phase shift of the nth partial wave. In thermal
neutron scattering, because the neutron wavelength is very
large compared to nuclear distances, the scattering is iso-
tropic, that is, S wave. Accordingly, only one partial
wave ( n =0) enters into (2.2), and the scattering is
described by a single (nuclear) length b defined by

b = lim f(B)= +g(0) ill (0)
(2.3)

kp~o kQ kQ

Qur Huygens technique of following definite sequences
of wave scattering shows its greatest power when consid-
ering situations where the mean scattering length b is
zero. In Sec. IV we show that more complicated trajec-
tories and correlations can yield a phase shifted coherent
wave, i.e., an n&l, even when b =0, a result difficult to
obtain by other methods. Repeated scatterings under
these conditions yield a dimensional reduction characteris-
tic of many random field problems. In Sec. IV we also
treat the related problem of evanescence.

p'"(r') =6'(r', r, )( —b, )G (r, ,r, )( —b) X X( b—&)

XG (r),r)( —b)g;(r) . (2.8)

This situation is represented diagrammatically in Fig. 1.
There are i + 1 6 factors and l + 1 factors of —b in
(2.8). The total amplitude for going from r to r' is

g(r') =g 1i("(r')
I

(2.9)

P("(r')= bP;(r)( —pb)'—
e

—ik (r' —r)[GO(H )I]
~

~

(2m. )
~2 (2.10)

with Hk arising from the propagation between intermedi-
ate scatterings

dr cia rGO r g r —1+1(2~)'"

with a sum over all possible i scattering paths in P(". Ig-
noring for the moment spin and isotopic variations, we re-
place the summation in (2.9) by

p r) r2 ' ' I)g r), r2

Xg(r2, r3) X Xg(r), r),
where p is the number density of nuclei and g(r;, r;+, ) is
the pair distribution function describing the probability of
finding a nucleus at r; given that there is one at r;+i. In
replacing the set of actual sites by probabilities of finding
them, we are ensemble averaging, discussed more fully in
Sec. III. By taking pair correlations we are breaking the
hierarchy alluded to before. Averaging restores transla-
tional invariance. We appea1 to the convolution theorem
and get for l scatterings

P=——b+ikpb (2.4) =Gk+ J(k) (2.1 1)

gf(r') — bG (r', r)g;(r)—, (2.5)

where G (r', r) is the propagator or Careen's function satis-
fying outgoing wave boundary conditions and

'where the phase shift g(0) is small and in the absence of
absorption is also real. The imaginary part ik()b of (2.4)
ensures the satisfaction of the optical theorem. ' The
minus sign in the definition of b is the Fermi convention.
For most materials n —1 is less than zero.

Thus the scattered wave at r' originating from r is

with

J(k)= f e'"'G (r)[g(r) 1] . —

Inserting (2.10) into (2.9), we find

Goe —ik (r' —r)
(r') = b;(r) — dk(1+,beak)(2~)"2

(2.12)

(2.13)

(V,'+k())G (r', r)=4m.5(r—r') (2.6)

or
ikp jr—r'

~

G (r', r) =
/

r r'/—
We also have the Fourier transform of (2.6)

Gk ——4n./(k —k() ), (2.7)

which shows the simple pole character of G (k). With
many scatterers the wave g; incident at r may propagate
to r' by undergoing I scatterings to become

FIG. 1. A schematic of paths between r and r' showing no
scatterings and a path involving l scatterings.
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and after identifying this result with (2.5), we find that
the effective propagator Gk for the medium is

Gk =Gk/(1 pbH—k)

4m

k' ko—+4~pb +pbJ(k)(k' —ko)
(2.14)

P( dz) =gp(dz) —g exp
ikp[o;+(dz) ]'/

2 &/22+(d )2
~

i/2

(2.15)

Again we convert the sum over scattering sites i into an
integral over the s1ab,

ik Io +(dz) ]e '
g(dz)=it/o(dz) bpdz J do —

2 2, /2 (2.16)2+ (d )2]1/

and by changing the integration variable o +(dz) to y,
we obtain to order ( dz)

2nipb dz ikpdz

kp

—:exp[ikp(1 2npb/k p)dz] —. . (2.17)

When g (r) =1 (random distribution of scattering centers),
J =0. Hence, the poles of Gk are displaced from kp to
k p —4mpb which implies the propagation constant kp has
been altered to ko(1 4m—pb/kp), This is the refractive
index result (1.2) expected from a change in the mean po-
tential experienced by the neutron. Correlations are rnea-
sured by J, motivating the separation in (2.11), and indi-
cate a further shift in the pole, that is, further changes in
the propagation constant.

We emphasize that the above has not been for plane
waves for which a refractive index is appropriate and that
we have exploited translational symmetry, which is absent
in the case of a plane wave incident on a slab. We have
also ignored the complex character of b whereupon the
wave intensity is not decreasing, in violation of the optical
theorem. Additionally, correlations and fluctuations are
dealt with at the level of the pair distribution g (r).

We now will contrast this derivation of n with the
Fermi-Huygens method. Here a plane wave incident on a
sufficiently thin slab emerges as a plane wave with a
phase shift proportional to the slab thickness. If we take
the z axis perpendicular to the slab and let cr be a vector
in the plane (see Fig. 2), then in the presence of multiple
scattering the total wave amplitude at (0, dz) becomes

(b)

FIG. 2. Two configurations are shown: (a} A differential
slab of thickness dz with one scattering event at coordinate
{o,0) and Pf(dz) at the final point (0, dz). The two-dimensional
vector o. denotes position in the plane. (b} A semi-infinite slab
with, in general, a path involving l scatterings, and ff(zo)
evaluated at the final point (0,zo}.

Thus expression (1.1) is recovered. By repeating such
slabs and allowing scattering in each slab only to be for-
ward into the next, we can reduce Eq. (2.17) to the dif-
ferential equation

df(z)/dz =(1 2~pb/—kp)ikon(z), (2.18)

which yields g-e ' with (1.1) for n. This pasting to-
gether of the thin slab results is quite approximate. The
essence of the method though is already clear; for s-wave
scattering one can convert the problem [(2.17) and (2.18)]
into an effectively one-dimensional calculation. Under
similar conditions other quasi-s-wave problems can also
be reduced to a one-dimensional calculation. We now
proceed to perform such a reduction for the multiple
scattering treatment of the slab including correlations.

III. RESUMMATION FOR THE SEMI-INFINITE SLAB

A. Uncorrelated sites

We now consider case (b) of Fig. 2 where a plane wave
Pp(z) is incident at z =0 and a path of l scatterings is
needed to get to the point of observation at z =zo. The
l =0 result is the straight-through beam that interferes
with the scattered waves to yield a plane wave with a
modified propagation constant kpn. Considering the path
rh~rI &~ ~ —+r&~rp with l intermediate sites, we
have

p Iro~ I 1ko I &I—2 I —& I iko I rI —j, I I

l('"(zo) =(—b)'g X . X g g pp(zi),
lroi I .. . Iri 2i i I,, lri —i i /—

where the internuclear distances are denoted by
r;; ~

——r; —r; &
and the plane-wave amplitude inci-

dent on the first scattering site, ri, is Pp(zi) =e
At this point we pause to establish exactly what is cal-

culated when we reconstruct a phase-shifted plane wave
from all the scattered waves. By averaging over scattering
sites we are in effect averaging the wave amplitude. This
wave, li~, is known as the coherent wave. A test for
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coherent contributions is whether in forming
I fI the

contribution survives averaging (quantum mechanical or
statistical). Examples of incoherent contributions includ-
ing neutron spin flip and are given in Sec. IV. For the

I

moment we restrict discussion to the coherent wave.
To evaluate (3.1), we start by turning the summations

into integrals over the slab. The average of P (zo) is there-
by effected:

;k,, expIikp[o;; I+(z; —z;, ) ]' I

[oI; I+(z; —z; I) ]
(3.2)

In doing this we neglect correlations between the scattering centers. However, multiple scattering from correlated sites
can produce important effects, and in Appendix A we present the treatment of pairwise correlations of scattering sites,
and at the end of this section we discuss their consequences.

Changing to the variable y as discussed in Appendix A, we find that the integral in the plane of the slab at constant z;
gives

OO, OO 2' p2~p gdzi, , dy exp(I'koy)= dz; exp(iko Iz; —z; I ) .
P '

]Z, )—Zj kp

The wave scattered I times is then

(3.3)

0'«o) = 21TIPb f ~
0 1

L

exp iko
j=1

@o«i) . (3.4)

It is illustrative to recover previous results of pasting thin
slabs together. To do this we simply restrict successive
scattering events to be to the right, that is, zj &zj
whereupon the exponent in (3.4) simplifies to exp(ikozp)
The integrals over z; with the restricted limits yield zp/I.
and the total wave becomes

tories with backscattered portions like those in Fig. 2(b).
Equally, such possibilities are needed to calculate refiec-
tion and transinission coefficients for the beam impinging
on the slab and underline the- need to go beyond the multi-
ple thin-slab treatment.

Returning to (3.4) we make another change of variables

1=1' 0

2mpb=exp Ekpzp — zp
kp

=exp(ikonzp),

(3.5a)

(3.5b)

ai —zi ) —zi, l —1,2, . . . , l

aI+ ~ =ZI

to convert the z integrals to

l+1
a~ a2 . aI+~ a; —Zp

i=1

(3.6)

whereupon the refractive index, n, is 1 2mpb/k p. Cl—ear-
ly, in order to get the correct answer for the refractive in-
dex under multiple scatterings we must allow for trajec-

where the 5 function restricts the trajectory of scattering
events to end at the point of observation zp. Using
5(x)=f (dA. /2m)e', we next write f'"(zo) as

&I(zo) =— zo I dg I+1 I+If daI+I f dai f ff da; f exp iko g Ia I
+iA g a; iAzo-

kp 0 OO 2s (3.7)

In this expression the a; integrals yield

f(A, )=f da exp(iko
I
a

I
+isa),

=2ikp/(kp+A, )(kp —A, ) .

1 1 izo(k+ko),+ 1 —e '
kp —A, kp+A,

For the case of transmission (zp & 0) the coherent l-scattered field (3.7) reduces to

f" " [f(&)]'-"'
kp —oo 2m kp+k

(3.8)

(3.9)

with the additional factors arising from the ai+I and ai integrals, respectively. We now perform the integral over A, by
first noting that kp was assumed to have a small positive imaginary part e so the poles in the complex A, plane are at
A, =kp+ie and A, = —ko ie In vi—ew o.f the e factor in (3.11) we take the pole in the lower half plane and find that
the l = 1 (the Born term) is
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2m ipb ikozo 1

2ik, (3.10)

1

1+ f (A)
0

The first term recovers the thin-slab result. Higher order processes, I )2, give Ith order poles at A, = —ko i—e, and have
as their leading contribution each of the terms in (3.5a). Since we argue that by allowing for the full range of scattering
at each step takes us beyond (3.5a) and its implications, we must take the extra backscattering terms [the —1/2iko in the
I = 1 expression (3.10) for instance]. To do this, we insert (3.9) into the geometrical series (2.9) and discover that

(3.11)
ko 2m. kp+ A, ko —A, kp+ A,

Thus the effect of summing the infinity of terms g' is to
move the pole at R, = ko —Ie —to the zero of
1+2~ipbf (A, )/ko, that is, to a A, such that

A, =+ko(1 —2p/ko)'i (3.12)

Pe' o*o [1+(1—2P/k, )'~']

2ko(1 —2P/ko)' [1—(1—2P/ko)' ]
(3.14)

The first term is a plane wave, with a phase evolution
modified from that of the incident wave, from which we
deduce a refractive index

with p defined as 2mpb/ko Nex.t doing the integral in
(3.11) by the method of residues, we get two terms, name-
ly

p/kO iko{1—2plko)i~2zo

[1—(1—2P/kp)'i ][(1—2P/ko)'i ]
(3.13)

(1+n) ikozo

4n
(3.17)

From (3.11) we see that the unscattered wave italo(zo) is
cancelled to order p/ko, that is n —1, by (3.17).

In summary, the result of summing all trajectories
shown in Fig. 2(b) is to generate a phase-shifted plane
wave and a plane wave to cancel the incident wave in the
usual Huygens manner. We have considered subsequent
scatterings to be chosen successiveIy at random, except
that repeated scatterings between the same two sites have
been omitted. The trajectory in Fig. 3(a) is the simplest
with this complication —Inore than two passes between
pairs of sites could be imagined as well as more compli-
cated connections between various sites on the trajectory.
The current method of reducing the problem to a one-
dimensional walk can also handle this complexity; an ex-
ample is given in the next section. We would not expect
these additional scatterings to be important for liquids.
They are more important for perfect crystals where
dynamical (multiple scattering) effects can be subtle.

n =(1—2P/ko)'~ or n 1=—4—trpb/ko .

The modified wave is then

], +pg lkpNSO
e

271

(3.15)

(3.16)

B. Correlated sites

We now consider the effect of correlations between
pairs of sites. Here we replace the probability of finding
site i+1 being independent of site i, expressed by the
density p, by pair correlation functions

while the second wave has the same phase evolution and
opposite amplitude to the incident wave:

g(r;+i, r;)—=g(
~ r;+i —r;

~
) .

The analysis follows the above and is presented in Appen-
dix A. The principal result is obtaining an expression
similar to (3.11), but with a new denominator

4c (z) 1+ f (A, )~1+ G(iI.),
ko ko

where from (A10)

(3.18)

(c)
G(A, ) =f(A, )— f e sin(Aa)h (a)da (3.19)

FIG. 3. A plane wave $0 incident on a semi-infinite medium
z )0. Three trajectories are shown: (a) A double scattering off
one site i +1. (b) Four scatterings from sites i and i +1 allow-
ing the restoration of nuclear spin wave functions when spin flip
is present. The possibilities are tabulated in Table 1 and are the
simplest contributing scattering events when b =0. (c) The sim-
plest linking together of diagrams of the type (b) to give a new
restricted multiple-scattering summation.

and h (a) =g (a)—1 measures the deviations away from a
uniform system, the most appropriate scheme for correla-
tions. The poles in (3.11) with f replaced by G give the
new propagation vector A, =kon where I, is the root of
1+2nipbG(A. )/ko which, with (3.19), yields

2Pko
'

2Pko ~ g

ko —A,
e sin(Aa)h (a)da =0 .

(3.20)
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Writing the root A, as nko and with a variable change one
obtains for n

We can approximate the integral by assuming, as for a
liquid, that h(a) is significant only around a-ao, the
first neighbor shell. Then, if nkoao &&1, the sine can be
expanded in the region where h(a) contributes. The n

dependence of the integral vanishes, and we get

2P/ko
n —1=— 00

1+2pko f ah (a)da

where the exponential has been expanded to the same ac-
curacy and the fact that fda a h (a)=0 exploited.

It is useful to make contact with the local-field ap-
proach used by Sears. He defines the local field such
that the expression for n z —1 is

(3.22)

n 1=(2P—/ko )C, (3.23)

where C is the local-field enhancement. Our long wave-

length expression (3.22) is the same as his Eqs. (6.16) and
(6.23).

The full expression (3.20) for A, (and hence n) differs
from the result of Sears. His follows from ours by set-
ting A, =ko (or equivalently n =1) in the last term of
(3.21) which yields

2P/ko
n —1=-

1+2p f e sin(koa)h (a)da

that is, our full formula gives terms higher order in b
which Sears explicitly ignores (his Eq. 6.18 and comments
following).

Sears gives details on the magnitude of the correlation
effect on the refractive index. One sees immediately that
it is small by making the integrand in (3.24) dimensionless
so that

(3.24)

2P/ko
n —I=—

1+2(p/ko) f dx e'"sin(x)h'(x/aoko)

4npb/ko
n —1=—

1+(4mpb/nko) f dy e'~sin(ny)[g (y/ko) —1]

(3.21)

tal external reflection remain interesting since they may
represent an efficient way of monochromating epithermal
neutrons.

IV. BEAM ATTENUATION
AND INCOHERENT SCATTERING

The refractive indices calculated thus far have not led

to attenuating waves. To develop attenuation we include
the effects of scattering out of the beam and of incoher-
ence. The former is expressed by the optical theorem'
and follows naturally from a complex scattering length b,
even in the absence of absorption, which in turn yields
Sec. IVA, a phase shifted regenerated wave and, by in-
terference, evanescence. This is the physical mechanism

by which an imaginary part appearing in the partial wave
analysis, (2.3), ensures conservation of scattered and un-

scattered flux. The evanescence generally arises from a
randomness in scattering lengths because of an isotopic or
elemental variation in the scattering centers or because the
scattering nuclei and neutron can both have spin. In Sec.
IV 8 we find that certain scattering events generate spher-
ical waves which, because of their incoherence with the
primary beam or with other scattered waves, are not sus-
ceptible to being synthesized into a coherent plane wave
with a modified propagation constant kon This. too leads
to evanescence. In Sec. IVC we also find, even when

there is complete incoherence, that correlation in the
scattering can again lead to a phase-shifted plane wave,
n&l, in contrast with the results of Sec. IV B and with a
dimensional reduction characteristic of many random
field problems.

A. Complex b

The effect of complex b is most easily seen from the re-
sults of Sec. III. Where b appears it should, according to
(2.4), be replaced by b ikob S—ince b .only occurs in the
combination defined as P=2irpb/ko it is clearly P in

(3.12)—(3.15) that we must consider to be complex and we
must take care to ensure that the roots of 1+ipf(A, )

remain in the appropriate part of the complex plane. We
first look at the problem without correlations and see
from (3.12) that replacing p by p'+i p" where

(3.25) P' =2n pb /ko and P"= —2vrpb (4.1)

where h (a/ao) is the pair distribution of a dimensionless
variable. The length ao characterizes packing and corre-
lation in the fluid. For aoko —1 the integral will give
some characteristic number of order unity. In contrast
the prefactor p/ko of the integral in the denominator is
small. It is -2mb/aoko since p-1/ao for the liquid and
so within our assumptions the prefactor reduces to
-b/ao, that is, a nuclear length divided by an atomic
length. For the same reason the numerator 2p/ko is also
small. However, because of the extreme sensitivity of op-
tical methods, local-field effects (the corrections
represented by the denominator) should be observable. An
interesting case is near a resonance of a nucleus since
there b depends sharply on energy and can become very
large. Absorption also becomes large, but questions of to-

A, = —ko(1 —2p'/ko)'i (4.2)

where we ignore terms like (p") /ko and p'p" /ko. The
real part of the refractive index n' remains as before, but
now there is an imaginary part n"=p"/n'ko signaling

decay in amplitude

~
1t

~

-exp( —kon "z)=exp( 2npb z/n') . —(4.3)

If n'=1, the decay length of wave intensity is the conven-

tional result 4mpb . When correlations between scattering
centers are present, we find from (3.21) that the above re-

sult for n" simply gets altered to

generates an imaginary component to A, . Simple analysis-
shows that the root is
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r

n'ko 1+2P'ko I da ah (a), (4.4)

where the real part n' is given by (3.22). Hence as before
the relevant part of the refractive index, here n", shows
the effect of correlations only at higher order in b. In this
case n"-b with corrections at O(b ) due to h(a). A
more important influence on the beam evanescence than
correlation is the existence of incoherent scattering which
we now discuss.

n" =p"

1
'=—0

0
(l)=— (4.5)

From the Table we see that processes a and d represent
pure triplet states of total spin and spin flip is impossible.
Processes b and c involve the decomposition of the mixed
initial state into triplet and singlet states with the associat-
ed weights b, and b, in the final state. Reconstitution of
the final state shows flipped and nonflipped final states
with weights ( b, +b, )/2 and ( b, b, )/2, respec—tively.

Since an unpolarized neutron beam has up and down
components with equal weight and arbitrary relative
phase we could have assumed in Sec. III, without loss of
generality, that the incident neutron was spin up. Then
the b that enters is the mean value b=(3b, +b, )/4 be-
cause from an initial state. ( t„)a final state ( 1„)can be at-
tained either via scattering from (tz), process a, or from

TABLE I. Amplitudes of the incident and scattered waves
for different scattering processes. b, is the singlet state scatter-
ing length; b, is the triplet state scattering length. (t„t~) is the
neutron and nucleus both in spin-up states, etc.

Process Incident amplitude Scattered amplitude

(t tp)

(t.~, )

(~„t,)

(s„s,)

—b,(t. tp)
b, +b, —b, +b,

( t„s, ) — (s.t, )

—b, +b, b, +b,(t.~, )- ' (~.t, )

—b, (s„&,)

B. Spin incoherence

%'e limit our discussion to spin incoherent scattering
because it is particular to neutrons. Until now we have
not specified the spin state of the neutron n and have
treated the nuclei p as spinless. In reality, since neutrons
are spin —,, we need a spinor part in their wave function.
For concreteness we assume that the scattering nuclei are
also spin —, in which case their spin wave functions also
have a spinor part. The scattering length associated with
the pseudopotential between neutron and nucleus now de-
pends on whether the total spin (I=I„+I&) is 1 (triplet)
or 0 (singlet). We denote these lengths by b, and b„
respectively. Following Fermi, we then identify the fun-
damental scattering processes in Table I, in which the
correspondence between the notation ( & ) and the spinor X
is

The spatial part of the wave function (4.6) arises from
once scatte-red waves originating from the N scattering
centers at r i (j) that are initially spin down with probabili-
ty —,'. This is the same as before. The spinor results from
the spin-flipped process at site j, hence the amplitude
(b, b, )/2. —However, a spin-down coherent wave is not
really generated since when taking g", gI to get the total
intensity the nuclear spinors must be taken into account,
that is, for a particular j in the sum (4.6), the final target
spinor is

X; XJ(t), (4.7)

where the X; for i&j are unchanged and the spinor for
the site j, having been found down, has flipped up. The
spin part of typical element of g*g is then

N N

+ X,' X,'(t) g X, X,(t) (4.&)

and these N-particle wave functions are orthogonal unless
j'=j so only N and not N elements in f g are nonzero
and we are unable to construct a coherent wave from any
spin-flipped components of P. In turn, we therefore
deduce that the scattering length entering the coherent
wave is indeed b defined above according to the weights
of the two available processes. This is an explicit example
of a process not contributing to the mean wave amplitude.
A more subtle process overcoming this incoherence is
treated in Sec. IV C.

We also note the decay of the wave is described as be-
fore by the imaginary components of the b's, and per-
forming the same analysis as before for gi where the
imaginary parts enter as 2(b, +b, ), we find that the
second term enters as a result of the allowable part of pro-
cess b. It then follows that

n"=4' 3b +b
4

(4.9)

which is nonzero even when b =0.

(g~ ) without spin flip, the relevant part of process b, each
nuclear spin state occurring with probability —,.

For an 1th order process, (3.1) has a prefactor

I —,
'

b, + —,
'
[—,

'
(b, +b, )]I'

which when expanded gives all the possible intermediate
processes, appropriately weighted by the probabilities of
that succession of nuclear spins encountered and the ap-
propriate scattering lengths being used. Rewriting this as
b ' yields the appropriate definition of the mean scattering
length b. A totally incoherent scatterer is defined to have
b =0, that is b, = —3b, Evi.dently the spin flipped com-
ponent of process b does not contribute to the growth of a
down-spin coherent wave since when multiple scattering is
neglected

P b b z fkol'~0( j) 0
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C. Total incoherence

b~=sb~4 when b=O. (4.10)

The spatial part of the wave function can also be evaluat-
ed. The wave function incident on the first site has to be

It remains to ask whether there are processes that con-
tribute to the coherent wave when the mean scattering
length b is zero. Since we are considering multiple
scattering, it is possible that repeated scatterings could re-
store the nuclear spinors. The orthogonality argument for
the final states in (4.8) and the consequent incoherence is
thereby circumvented.

The argument against the creation of a down-spin
coherent wave is also valid when multiple scattering is
present, since a final neutron down-spin implies that a
minimum of one nucleus, and certainly an odd number of
nuclei, must be fli ped up. Hence restrictions on the con-
tributions to f,'g, are again involved when evaluating the
intensity of the resultant wave. %"e thus restrict ourselves
to up-spin resultant waves where, in the multiple scatter-
ings leading to the final wave, spin flips, if any, are such
that the nuclear states are restored to their initial configu-
ration. The simplest example is that of Fig. 3(b) where, if
spin flip takes place, there is the possibility for another to
restore the nuclei. Nonflip processes are also significant
since they do not yield b =0 as in the analogous case of
four independent sites used in our previous arguments

about f = and in defining b.
Instead, if we think of these processes involving four

sites, then there is a most definite correlation between sites
1+3 and 2+4. In Table II are the possible sequences cor-
responding to the four equiprobable initial spin states of
the two nuclei.

In Table II we have written out the factors in such a
way so the sequence of scattering events is apparent. We
call b the total scattering length factor, with the ap-
propriate factor of —, from equal a priori probability of
the nuclear spin states of the pair of centers,

TABLE II. Scattering weights for initial spin states of tvvo

nuclei when the incident neutron has spin-up.

Nuclear
configuration

(tp)1~2)

(lp)1~2)

( t~)4~2)

(~,&~,2)

Weight

b4

b+b, b+b,

b, +b, b, +b, b, —b, b, +b, b, —b,

b, +b, b, —b, b, —b, b, +b,
2

+
2

'
2 2

bt +bs bt bs : bt bs

2 2
'

2

multiplied by a phase and amplitude in respect of the four
scattering events and the three internal propagations.
This multiplicative factor is then

3iko
~ r;,

b~ e

I«, +il'
(4.11)

We can now extend the analysis of Sec. III to the case
where b =0. For I) 1, where I now counts the number of
pairs of points r;, r,', we can connect together diagrams of
the type Fig. 3(b) to form the equivalent of Fig. 2(b),
shown in Fig. 3(c). Of course, more complicated events
are possible while still fulfilling the conditions on the nu-
clear wave functions adhered to above. We shall neglect
these complications. What is not allowed are diagrams of
the form of Fig. 3(b) connected by simple scattered events
such as in Sec. III since each of these intermediate points
contribute a weight b =0.

Following the analysis of Sec. III for g' we convert the
sums over (4.11) into integrals. The trick, as before, is to
do fdoin the tran. sverse plane, that is

pb f dz; f doexpI3ik [(z;—z )2+(o; o') ]z'—~ 2/I[I( ;z—z )2+(o;— 'o) ]2'~
I
23 (4.12)

which on change of variables reduces to

p~b f dz, 2~ f" dye""~ g ~
~s; —s

I 3'

—=2irpb f dz;I( /z; —z
/

) . (4.13)

The other part of each element of the I-scattered wave is
the propagation from r,' to r; i and is precisely as before,
yielding as in (3.3)

2m'I, p dzi exp(iko
~

zr' —z; i ~
)

0
(4.14)

an expression leading to the f(A. ) term. Following the
previous derivation, we do the integral over z; and z by

changing to the a variables with the A, integration express-
ing the constraint that the trajectory must end at the point
of observation zo. The important part of this calculation
is the term equivalent f (A, ) of Sec. III which determines
where the poles in the A, integration are and therefore
what the new propagation constant and refractive index
are. We call this term E(A, ), and hence the geometric
term in the g&g is

F(A, )=b f(A, ) l2mp f dae' 'I( ~a
~

) . (4.15)
k0

The part is the large parentheses results from (4.14) as in
Sec. III; the last part results from (4.13). The last integral
we denote by f' and is
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f'(1, )=f da e' f e e(y —ap), (4.16)

where we neglect any correlations from g(y) except that
from a hard sphere repulsion with radius ap expressed by
the unit step function e. This is necessary since with
three, rather than one, internal propagations the y integral
over separations of sites would become divergent. Per-
forming the leading integral by parts we get

fl(g) da (eisa e
—isa)e 0

~0 az

whereupon F (A, ) becomes

F(~)
—(4np) b 1

d
1 . (~ )

3ikpazm

ko —A, ~ ~0 a

(4.17)

(4.18)

The geometrical series yields 1/[1 —F(A, )] which has a
pole located by

kp A, +(—4~p) b f —da sin(Aa)e ' =0.
az

(4.19)

'4 t 2
ap

H
ao ao

I

b ~n ~n
ln

ao Qp

(4.21)

where p-1/ap depends on the atomic length ap and
kp —=2m/A, „has been expressed in terms of the neutron's
wavelength, A,„. The ratio b/ap of a nuclear to atomic
length is small ( —10 ). The ratio A,„/ap can be large at
the long wavelengths of neutron optical experiments. The
integral, H(ap/A„), is evident, ly like in(A, „/ap)+const as
A,„/ap~ 00. The appearance of a logarithm in the refrac-
tive index, a result perhaps expected in two dimensions,
arises because we have a random field b with b=0.
Hence, the repeated propagations needed to get a finite re-
sult yield a dimensional reduction, characteristic of many
random field problems. In practice, of course, if the sys-
tem is not entirely incoherent, the conventional term will
probably dominate. When b =0 the criterion for whether
(4.20) is significant in practice is whether in a thickness L
there is significant phase shift relative to a wave in free
space, (n —1)kpL, compared with the loss of intensity due
to simple spin-flip scattering; that is, compared with an
exponent like 4~pb I.. We thus look at

Putting k=ko in the last term as Sears does, writing
A, =nkp, and taking only the real part, we find that

n =1+ 2 f dx [sin(4x) —sin(2x)] . (4.20)
(4mp) b ~ 1

2ko o o x

The second term on the right is small. The refractive in-
dex increment n —1-b must be very small since one can
write

Pb
1

1

ko koao

b ~n"ln
ao Qp Qo

(4.22)

This ratio is only —1 for long, probably unattainable,
neutron wavelengths. Although this result appears to
have little physical application, unless we are near a reso-
nance so that b is large, it illustrates how multiple scatter-
ing, combined with variations of scattering length, can
lead to subtle effects.

V. CONCLUSIONS
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APPENDIX A: MULTIPLE SCATTERING
TREATMENT OF REFRACTIVE INDEX

CONSIDERING CORRELATIONS

We used a multiple-scattering approach to calculate the
neutron refractive index, with and without the effect of
correlations in the position of scattering centers. This ap-
proach is an alternative to the constitutive relation ap-
proach reviewed and extended by Sears. The results for
the coherent wave depend on the level of complexity in
the diagrams summed. At the simplest level of successive
sites being distributed by pair distribution functions, the
results seem more general than those of Sears and reduce
to his by a simple approximation consistent with the order
of b to which the results are significant.

We find that the scattering method allows a clearer in-
sight into the refractive index, especially on how correla-
tions enter into local-field results, than do the constitutive
equations. Apart from deriving a general propagator in
an infinite medium, we derived the refractive index in a
semi-infinite medium by explicitly regenerating plane
waves in a Huygens treatment of all the spherical waves
in the problem. In essence the task is reduced to a one-
dimensional problem, an advantage which persists even
when more complicated scattering events dominate (in
Sec. IV where the mean scattering length is zero). Anoth-
er advantage of using a semi-infinite medium is that one
can explicitly demonstrate the possibility of reflection
which we treated in Appendix B.

We discussed incoherent scattering and demonstrated
that it is possible to generate a real part to the refractive
index, even when the mean scattering length is zero. Al-
though this is an interesting possibility we argue that it is
seldom likely to matter in practice. An exception may be
a slab of incoherently scattering resonant nuclei, a situa-
tion of some practical interest for monochromating epi-
thermal neutron beams.

or

1 (4nP)b
1

1
Returning to (3.1) for g, we replace the sums over in-

termediate points by integrals, but now put in the pairwise
probabilities
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g(I ri r—i i—I)g(Iri i
—ri 2-I)x xg(Ir2 riI) cT +(zi —zg i) =y ~dcT=dy=21Ty dy

(A 1) (A2) becomes

that the trajectory ri, ri i, . . . , ri occurs. An element of
the multiple sum then becomes

exp[iko[o.;;,+(z; —z; i) ]' jfp de did;
[ot, i i'+—(z; —;i) ]

Xg([a,'; i+(z; —z; i)']' ')

Because there is translational symmetry in the transverse
direction, described by o, we can use r; i as an origin for
cr and denote o;; i by a. After the variable change

2mp f dz; f dye g(y) . (A4)

To make contact with the analysis of Sec. III, we take out
a factor of i lkp to produce

'P f dz, G(Iz, —z, , I), (AS)

where G is defined by

G(z)= —ikp f dye g(y) . (A6)

Putting (AS) back into the multiple sum and changing
variables as before, we then obtain

1 1+1
ff G(

I aJ I
) exp iA—Q a; —zp +ikozo

J=2 &=1

The integrals over a; ( i =2, . . . , i) are normal Fourier transforms

G(A, )=f da G(
I
a

I

)e'

We proceed by expanding the problem about the uniform state g = 1 and write

g(y) =1+I:g(y) —1]—= 1+h (y)

(A7)

(A9)

G(A, ) =f(A, ) — f e'""sin(M)h (a)da .
0

(A10)

(Al 1)

The first term f(k) is as in Sec. III and is the result of the uniform part g = 1; the second comes from the correlations,
that is, from h (a). The lth wave is then

'I —l AZp
2m&pb f dA, [G(~)]i i i e 1 1

(1— o~i k
~)

kp 2m ko+X ko —X ko+X

where the other factors come from propagations to ri+,
and from ri to rp. The only difference with before is that
for g&1, h&0, and there is the term in (A10) additional
to f (A, ). The shift in the poles of the A, integrand, as a re-
sult of summing an infinite geometrical series with terms

P, yields the new expression for the refractive index dis-
cussed in the text.

APPENDIX 8: REFLECTION FROM
A SEMI-INFINITE MEDIUM

When scattering events produce fields only at a point
further in the direction of the propagation, one recovers
the thin slab or "pasted" thin-slab approximations, but is
unable to describe reflection. Reflection results from
Huygens reconstructions of (multiple) scattering events
over all possible distances into the medium. The calcula-
tion of Sec. III needs amendment when zo&0. In that
case we obtain for (3.9)

i(A, —kp)zp
ikp (a) ~

+isa)
dQ1 8

00 kp —A,p

The expression for g, the 1-scattered coherent wave is
then (3.11) with (81) substituted for the t J contribution
in (3.9). The sum of all the g yields the reflected wave6:

2mipb i. dA, . i e 1

k, ~ 2~ ko+X kp —X

1

1+(2n ip/kp )f (A, )

The differences from (3.13) are that gp(zp) does not ap-
pear and the wave is a plane wave traveling in the nega-
tive z direction. The poles, however, are again located by
the f (A, ) term from the infinite summation of waves, and—i Azp
the propagation constant is uneffected (since the e
term is absent) as it should be in free space. The A, in-
tegration simply determines the amplitude of the reflected
wave. The result is



32 NEUTRON REFRACTIVE INDEX: A FERMI-HUYGENS THEORY 6357

We note that the sum of the transmission and reflection
coefficients implied by this wave and the transmitted

wave (3.18) is

T+Z = "+",'",
(4n)

which is unity to within factors of (n —1 ), that is b .
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