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The spatial distribution of the current and electron density is calculated for an ideal two-
dimensional Hartree quantum Hall device in which the electron interactions are treated in the Har-
tree approximation. The calculations are based on an equilibrium-thermodynamics approach in
which a constant current is imposed as a constraint on the system. As, a consequence of the two-
dimensional nature of the Coulomb interactions, there are large inhomogeneities in the electron-
density and current distributions. The net current is found to be due principally to a redistribution
of charges at the edges of the sample, while currents flowing in the bulk of the sample play only a
minor role. The fact that a few inhomogeneously distributed states carry large currents gives a qual-
itative explanation for the spatial inhomogeneity and the low total current observed at the break-

down of the dissipationless quantum Hall effect.

I. INTRODUCTION

An unresolved question in the theory of the quantum
Hall effect (QHE) concerns the nature of the current dis-
tribution in the Hall device. In the usual geometry, the
flow of current in the y direction in a two-dimensional
(2D) electron system gives rise to a voltage in the x direc-
tion when a uniform magnetic field is applied in the z
direction, as depicted in Fig 1. In his theory, Laughlin!
uses gauge invariance to argue that the QHE current
arises as a response by the edge states of the system.
Stteda and Smicka® argue that the QHE results as the
response of edge diamagnetic currents to the applied elec-
tric field. Their theory is based on a thermodynamic
derivation by Widom® and has been connected to
Laughlin’s theory by MacDonald and Stfeda.* Some work
has focused on trying to clarify the role of the edge
currents and the current and voltage distributions near the
edges of the system.’~3 However, it remains unclear ex-
actly how much current is carried in the bulk and how
much by the edge states for an interacting system.

This question has relevance to the prediction of the
breakdown of the dissipationless QHE, which occurs
when the current in a particular device exceeds some criti-
cal value’~!' One proposed explanation of the break-
down phenomenon assumes a dramatic onset in phonon
emission by the electrons as their drift velocity exceeds a
threshold value. There are, however, still some difficulties
with this theory. On the one hand, one can consider
phonon-mediated electron transitions within the highest
occupied Landau level. It is then necessary to assume
that a slowly varying electrostatic potential causes varia-
tions in the electron occupation numbers, so that the elec-
tron system associated with this Landau level breaks up
into occupied and unoccupied regions. Transitions can
then occur between these regions.!> On the other hand,
one can consider phonon-mediated electron transitions be-
tween the highest occupied Landau level and the lowest
unoccupied one. For a pure, noninteracting system one
must then assume that a confining potential causes the
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Landau levels to bend up sharply at the edges. This will
then allow the breakdown to occur at the edges.!* The
magnitude of the breakdown current density and of the
resistivity will then depend on the specific form of the
confining potential. If transitions in the bulk of the sys-
tem are considered, the predicted current density for
breakdown to occur is higher than the experimentally ob-
served value!* by a factor of about 20.

In this paper, we examine a 2D Hartree jellium system
in a strong magnetic field. Because there is no dissipation
for small enough total current, we adopt the principles of
equilibrium statistical mechanics, and minimize the free
energy of the system, subject to the constraint that the to-
tal current be constant.® This allows us to calculate ex-
plicitly the distributions of charge and current in the sam-
ple in the presence of 2D Coulomb interactions. Because
of the nature of the 2D Coulomb interactions, there are
large and very inhomogeneous diamagnetic edge currents
and strong variations in the electron occupancies near the
edges. These inhomogeneities and variations are further
enhanced when a net current is forced through the system.
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FIG. 1. In the typical QHE geometry an applied constant
magnetic field Bz and a current I, in the y direction give rise to
a voltage across the device in the x direction.
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The results of these calculations are compared with those
of previous work, and the implications are discussed for
the theory of the breakdown of the dissipationless QHE.

It is not unreasonable to expect that the charge distribu-
tion in an infinitely long 2D conductor of finite width will
respond differently to an applied, constant electric field
across the conductor from the response to be expected for
a three-dimensional (3D) conductor (of infinite height).
In the 3D conductor, the equipotential surfaces are planes
of constant charge density, perpendicular to the applied
electric field, so that the potential resulting from the
redistribution of free charges is linear in the transverse
direction (the direction of the electric field). In the 2D
conductor, however, the equipotential points in the plane
of the conductor are straight lines of constant charge den-
sity. The electrostatic potential due to a line of charge at
the edge of the sample is thus logarithmic in the trans-
verse direction. One then concludes that the charge distri-
bution required to give rise to a field exactly canceling the
applied field will be radically different from that for the
3D conductor.

A 2D conductor will also behave differently from an in-
finitely high 3D conductor at the edges. A simple model
of the conductor-vacuum boundary for the 3D conductor
would be a dipole sheet, since the Fermi pressure will
cause the electron density to spill over the edge, thus leav-
ing a deficiency in negative charge density just inside the
conductor and a net negative charge density just outside.
The constant electrostatic potential in the bulk will then
be separated by a potential step from its constant value ¥,
in the vacuum. The work function @ is then well de-
fined as the difference between eV, and the Fermi energy
€r in the bulk.

For the 2D conductor, however, the conductor-vacuum
boundary in the plane of the conductor will be a dipole
line, and the electrostatic potential will vary as
|x—L,/2| ", where L,/2 is the position of the boun-
dary. One consequence of this is that the work function is
not as easily defined as for the 3D conductor. We will re-
turn to this point in Sec. III.

So far, the only attempt to describe the charge density
and the resulting current and voltage distributions for a
QHE system has been made by MacDonald et al.” They
used a Hartree scheme in which the electrostatic potential
was approximated locally by a linear function, thus avoid-
ing the mixing of Landau levels. In their paper they
showed the resulting charge, current, and voltage distribu-
tions to be weighted towards the sample edges with a de-
cay length that depends on the sample size and the
strength of the magnetic field.

The validity of their results rests on the assumption
that the curvature of the electrostatic potential energy,
V”(x), is much less than m*w?, with m* the effective
electron mass and w,=eB/m*c. However, the Coulomb
potential energy F(x) is of the order of e2/klp, where k is
the static dielectric constant and /3 =#c/eB. The length
scale of variation of V(x)is Iy, and so V"(x)~e2/(kl3).
For V"(x) to be much less than m*w?, we must have
e2/(kl3) <<m*w?, from which ea/(kA¥)? <<B, where A%
is the Compton wavelength for an electron of effective
mass m* and « is the fine structure constant. Substitut-

ing the values for GaAs (k=13, m*=0.07m,) we find
ea/(k\i)?=6T, which is a typical magnetic field strength
for experimental studies. The assumptions made by Mac-
Donald et al.” are thus of questionable validity, and sug-
gest the need for a more complete study of these interest-
ing questions.

II. ELECTROSTATICS AND THERMODYNAMICS

Our system is a 2D jellium slab in the xy plane of di-
mensions L, and L,. A current I flows in the y direction
and a constant, uniform magnetic field B=BZ is applied;
we use the Landau gauge and write A=(0,Bx,0). For L,
very large, the Hartree electrostatic potential energy V(x)
is a function of x only. Explicitly

V=20 “Inp(x)—n_(x]
Xln|2x'/L,—2x /L, |dx'+C , (1)

where n _(x) is the electron density and n  (x) is the jelli-
um charge density given by

N/L Ly, |x|<Ly/2
n+ =10, |x|>L./2 @

with N the number of electrons; C is a constant such that
V(0)=0. With periodic boundary conditions in the y
direction the system is then translationally invariant in
that direction. This means that the y component of
momentum, which we denote by k, is a good quantum
number with k =27l/L,, where [ =0,%+1,%2,..., and
we can thus write the wave functions as
P (x,)=e™¢,(x). In the absence of electrostatic fields,
the Schrodinger equation then becomes

2 g2
R el — x| =ede(x), (3)

2m dx

where x; =kI}. Equation (3) then describes a harmonic
oscillator centered at x =x;. One can easily show!>® that
the current ij carried by the state k is given by

: e Oe c  O&
= mo,L, 3x;  BL, 9x;

The question then arises of how to solve Eq. (3) when
an external Hall field E is applied. One cannot simply
write the applied potential V(x) as V(x)=eEgx, since
then the electrons would be unbounded in a potential that
would tend to — o0 as x— —oo. A better approach is
suggested by the manner in which the experiments are ac-
tually performed. In the laboratory, the current I is usu-
ally arranged to be maintained at a certain constant value.
The response to this current is noted by measuring the re-
sulting Hall voltage ¥V and also the longitudinal voltage
drop V¥, occurring in the direction of the current. In view
of the fact that there is no dissipation in the system (for
small enough current), one can then use equilibrium ther-
modynamics with the constant current included as a con-
straint on the system. We minimize the free energy F
given by

F=U+kpT J[feln(fo)+(1—f)In(1—1f,)] (5)

4)
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subject to the constraints

> fa=N, (6a)

S iofa=I. (6b)

a

Here U is the internal energy (in the Hartree approxima-
tion), kg is Boltzmann’s constant, and f, is the average
occupancy of the quantum state |a), which can be la-
beled by its wave number k and the Landau level n to
which it belongs. The minimization gives

fa={exp[Bleq—p—Eig)1+1) 7", )

where the constants u and & are fixed by the constraints
(6a) and (6b). The term p+&i,=p+(&c/BL,)0€,/0x,
then acts as an electrochemical potential with the interest-
ing property that whereas a high energy €, disfavors occu-
pation of a state, a high current, i.e., large value of the
derivative of the energy with respect to x,, will favor oc-
cupation of the state. The competition between these two
effects will then cause spatial fluctuations, as we will see
later.
III. RESULTS

Equations (1)—(3) and (7) were numerically solved self-
consistently. Each wave function was expanded in its five
lowest Fourier-Hermite components, and from the start-
ing point of an assumed initial configuration of electrons,
iterations led to convergence. Let us first look at some re-
sults from calculations for which the filling factor v
equals unity. The filling factor is the relevant dimension-
less density of the problem and describes how many elec-
trons are in the system relative to how many states are
contained in the lowest Landau level; it is defined as
v=2nNI3/L,L,. We take L,=7.2, L,=50m, k=1,
lp=1.0, #iw,=1.0, and kpT=5X%10"2% in units where
fi=e =m*=1. Here k is the static dielectric constant.
Energies and distances are given in units of #iw, and Ip,
respectively. For these values of magnetic field, effective
electron mass and dielectric constant the ratio of the
Coulomb energy e?/klp to the magnetic energy #iw, is un-
ity, which is fairly close to the value found in typical
QHE experiments. Figure 2 shows the electron energies
of the two lowest Landau levels, for which n =0 and
n=1.

A remarkable feature of these results is the structure in
the energies around the edges of the system (|x | =3.6).
To verify that these structures did not arise as an artifact
of a system with L, /Iz so small that the electrons at one
edge extended to the other, the calculations were repeated
for a system with L, =14.4. Another plausible objection
could be that the structure was a Gibbs phenomenon,
since the Fourier-Hermite expansion of the electron wave
functions was truncated at five terms. To check that this
was not the case, we also repeated the calculations for a
system with L,=7.2 but with each wave function ex-
panded in its ten lowest Fourier-Hermite components. In
each case the electron energies around the edges were
found to have exactly the same values as before to within
the numerical accuracy of the calculations.
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FIG. 2. (a) Electron energies in units of #w, are shown for
the two lowest Landau levels at unit filling factor as a function
of position of the state. (b) Detail from (a) for the lowest Lan-
dau level.

The explanation for these structures is seen in the plot
of the self-consistent electrostatic potential energy (Fig. 3).
The natural unit of length characterizing variations in the
potential energy in our calculations agrees fairly well with
the decay length discussed by MacDonald et al.,” namely
W =(Lye% /#w.)"/?, where i is the integer closest to v.
Our. results resemble those of MacDonald and co-workers’
in that both show peaks of this width near the edges.
There are, however, important differences between their
results and our own. Whereas their calculations show a
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FIG. 3. Self-consistent electrostatic potential energy in units
of #w, for unit filling factor.
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peak in the electrostatic potential energy at the edge, from
which the potential energy decays monotonically both into
the bulk and the vacuum, the self-consistent electrostatic
potential energy obtained from our solutions has a dif-
ferent appearance. As one would expect, it has an inflex-
ion point exactly at the boundary (since the charge density
changes sign there), and a variation as | x—L, | ~' fur-
ther away from the boundary, as a consequence of the
line-dipole charge distribution. Furthermore, the poten-
tial energy has a local maximum and a local minimum
near the boundary, at which points the modulus of the
curvature of the potential energy has maxima.

The differences are fundamental, since a close look re-
veals that all the structure in the energy curves corre-
sponds to points where the potential energy or its curva-
ture have maxima or minima, or to inflexion points of the
potential energy. That is, the structure is an effect of the
combination of the potential energy and the kinetic energy
associated with it, and stems from the 2D nature of the
interaction. ‘It is important to emphasize that it is not an
exchange or a correlation effect, since neither of these in-
teractions were included in the theory, nor is it a manifes-
tation of the electrons redistributing themselves self-
consistently in response to the interactions. The fact that
it a consequence only of the kinetic energy was further
demonstrated by the form of the electron energies for the
case where all states in the lowest Landau level within the
sample were occupied (fy=1 for |x;| <L,/2) but in
which the electron distribution was not allowed to relax.
The electron energies then showed exactly the same kind
of structure as in the case when redistribution was permit-
ted. Also, when a self-consistent solution was generated
within the space of the lowest (n =0) Landau-level wave
functions (so that the kinetic energies were all degenerate),
the structures were absent.

An important consequence of these results stems from
the fact that the current carried by each state is propor-
tional to the derivative of the energy; the currents that
each state can carry will thus show large peaks in the re-
gions around the edges. The electron occupancies will
then tend to show wide variations around the edges for
the following reasons. On the one hand, the energies in-
crease at the edges, and this has the effect of lowering the
occupancies. On the other hand, there is a wide range of
currents carried by the various states, and this favors an
increased occupancy for the state if the current carried is
positive, and strongly disfavors occupancy if the current
carried is negative. In Fig. 4 we show the electron occu-
pancies of the lowest Landau level. At the left edge of the
system there is a dip in the occupancies at x =3.35, corre-
sponding to the large negative derivative of the energies at
this point, which causes the electrons there to carry a
large negative current. On the other hand, there is a
broad peak in the occupancies for —3.7 <x < —3.5, since
in that interval, de/dx is very small, so that even though
the energies have increased somewhat from x=—3.35,
these states carry such small negative currents that they
can be more easily occupied. Similarly, at the right edge
there is a dip in the electron occupancies at x =3.6 since
those states carry relatively small currents, but at x =3.9
the electrons carry large currents so that these states are
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FIG. 4. Electron occupancies of the lowest Landau level for
v=1 in the presence of a small current.

easily occupied.

The effect of these peaks in the current distribution and
occupancies is that there are a few states at both edges
that carry very large currents. Figure 5 shows the current
carried per state, the total current in this case being 0.01
in the system of units used. While the current density is
negligible in the interior of the sample, there are large, in-
homogeneously distributed currents circulating at the
edges. The net total current constrained to flow in the
system occurs in two ways — through modification of the
current carried by states already occupied and by changes
in occupancy. That is, the current occurs through
changes in both the terms i, and f, that enter Eq. (6b).
Changes in f occur as electrons are displaced from the left
side, where the current carried by the states is predom-
inantly negative, to the right side, where the electrons car-
ry positive current.

We are now in a position to identify the location of the
major contribution to the total current. We subtract the
currents that circulate in equilibrium, which are the nor-
mal diamagnetic response to the applied magnetic field,
from the current density in the case where a net current is
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-0.0010 1 1 1 1 L
-6 -4 -2 o] 2 4 6

CURRENT PER STATE (e w.)

FIG. 5. Net current carried per state in the lowest Landau
level for v=1 and I =0.01 ew,.
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FIG. 6. Change in current carried per state across the sample
due to an applied current of strength I =0.01 ew, for v=1.

constrained to flow. The result is shown in Fig. 6 for the
same set of parameters as before. The filling factor v
remains equal to unity. The large peaks in this function
illustrate very clearly that the majority of the externally
imposed current is carried at the edges of the sample.

The sharp spatial structure in electron occupancy found
in these calculations is not restricted to the case of unit
filling factor. It is, in fact, even more pronounced at frac-
tional filling factors. The case of v=+ is shown in Fig.
7, where the occupancies for zero current and a current of
strength I =0.005 are plotted as function of position.
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FIG. 7. (a) Electron occupancies as a function of position of
the states for v= % and I =0. For this system, L, =8.0/5. (b)

Electron occupancies for v=+, I =5X10"%ew, and L, =8.0l3.

The fact that there are large, inhomogeneously dis-
tributed edge currents is very interesting. With a state &
that carried a current iy we can associate a drift velocity
vg=IirL,/e. We can estimate the maximum drift velocity
by the following argument. At the edges, the charge den-
sity changes in a distance of order /3. Thus the difference
between the positions of the maximum and the minimum
of potential energy is of order /3. The order of magnitude
of the peak-to-peak difference in potential energy is of or-
der e?/klp, so it follows that dV /dx ~e?/kl3. Since it is
largely the change in potential energy that will contribute
to de/dx, we have 0e/dx ~dV /dx ~ez/Kl§ and thus
from Eq. (4)

(8)

which gives vy ~e?/k#%i~10% ms~!. This qualitative esti-

mate is in accord with our detailed calculations, in which
we find the peak current to be about 1.1Xx 107> A. This
corresponds to a drift velocity of 6.0%10® ms~! which
agrees well with the above argument. For GaAs, for
which k=13, the same qualitative ideas predict a max-
imum drift velocity of vy ~1X 10° m s, while the actual
computations give a maximum drift velocity of the order
of 3x10*ms~1,

We have not, within the model presented here, attempt-
ed to calculate the onset of dissipation in the system.
However, the preceding argument does lead to some im-
plications for the breakdown. In a real system, there will
be spatial variations in the donor charge density,'® which
in GaAs is located above the electron gas. These spatial
variations will induce similar variations in the electron
charge density, but since the length scale of these varia-
tions is much larger than Iz, we can still locally describe
the electron states as line charges with logarithmic in-
teractions. It then follows that around these spatial varia-
tions there will be structures in the electron energies, simi-
lar to the structures found near the edges in our calcula-
tions. Theses will then cause fj and i to have strong
variations on a length scale of order /3. Thus there will
be a few states that carry very large currents. The break-
down of the dissipationless QHE must occur at these
states at an average drift velocity (vg)=IL,/eN much
lower than the critical velocity obtained in Ref. 14. Also,
it follows that the breakdown will be spatially inhomo-
geneous, as is observed experimentally.’

It is of interest to compare the net current in the bulk
to the magnitude of the edge currents as the filling factor
increases. We have performed calculations for filling fac-
tors ranging from 1.0 to 2.0 (#w.=1, =1, L,=38.0,
L,=507) with an applied constant current I/ =0.01 and
have calculated both bulk currents and edge currents. We
have also calculated the Hall conductivity oy in order to
compare it with results from a previous publication,®
where we presented a theory for the plateaus in o that
also was based on the equilibrium thermodynamic ap-
proach. In that publication we calculated oy for a lay-
ered system with an effective one-dimensional Hartree in-
teraction. One question is whether the Hartree interac-
tions in a truly 2D system would change the shape of oy
versus v, since the current carried in the bulk is deter-
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mined by the slope of the energy eigenvalues, which will
depend on the potential energy in the bulk.

For a 3D system, where the Coulomb potential is one
dimensional, the electrostatic potential energy will be step-
like when passing through the conductor-vacuum boun-
dary and then approach a constant value far away from
the boundary. In a 2D system, the potential will decay as
|x | ~! away from the boundary (in the plane of the sys-
tem). As v increases from unity, electrons will initially
enter states at the edges of the system, since those states
will still have energies much less than 3#w.. In the 3D
layered system, this increases the work function and thus
the Fermi energy until it is energetically favorable to put
electrons in the next Landau level. For the 2D system,
however, as v increases there are always states at x =+ o
with lower energies than < #w,, so electrons will escape to
x==c. In other words, a 2D jellium system will not
give rise to a work function. Because a more realistic cal-
culation involving lattice structure and Bloch states for
core and conduction electrons was beyond the scope of
this work, a potential

0, x| <Ly/2

HOO=Nug(|x | —Le/2% |x | >Ly/2
in addition to the Hartree interaction was applied as an
artificial device having the sole purpose of confining the
electrons within the sample. This will of course influence
the specific nature of the edge states, but the Hartree in-
teractions will still give rise to the interesting behavior of
the electron energies at the edges. Moreover, the net edge
current is insensitive to the explicit form of the potential
at the edges and will depend only on the Fermi energy
difference between bulk and edge states. Also, the net
current carried in the bulk will depend only on the shape
of the Hartree potential in the bulk, and not on the edges.
When the Hall voltage is measured in an experiment, an
electron is injected at one edge of the system and another
electron is removed from the other edge. The Hall voltage
is then measured as the difference in energies at which the
one electron is injected and the other one removed, divid-
ed by the electron charge. The Hall voltage was accord-
ingly calculated as the difference in electrochemical po-
tential between the two edges of the electron system divid-
ed by the electron charge. This was achieved by fitting

the electron distribution at each edge as a function f of .

energy to an expression of Fermi-Dirac form. The Hall
voltage was then identified as the difference between the
two values of € at which f=0.5, divided by the electron
charge.

In Fig. 8 we show the edge currents and bulk current as
a function of the filling factor v in the case where the pa-
rameter u, describing the confining potential is given the
value 0.15mw?2. At v=1.0, the magnitudes of the edge
currents are already larger than the net current, and they
increase rapidly as v increases, raising the Fermi energies
as more electrons enter the lower Landau level. It is in-
teresting to note that the total bulk current is small, which
for v=1.2 and v=1.4 results from e€;(x) being almost
symmetric around x =0, so that the bulk currents nearly
cancel. Moreover, as the upper Landau level is populated
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FIG. 8. The relative contributions of the three components of
the total current are shown as a function of the filling factor v
for up=0.15mw?. The two opposing edge currents are much
larger in magnitude than the bulk contribution.

more and more, €;(x) becomes practically flat so that the
states in the bulk carry little current until the upper Lan-
dau level is filled all the way to the edges.

What this implies for oy versus v is shown in Fig. 9.
To within the numerical accuracy of our calculations, oy
remains equal to e2/h until the upper Landau level is
practically full and the edge states are beginning to be
populated, at which point the Hall conductivity increases
by a factor of 2. The 2D system of interacting electrons
thus exhibits an almost perfect step in the Hall conduc-
tivity at v=2.0; this result is thus closely similar to that
previously -derived for the case of a noninteracting sys-
tem.® This seems to lead to the conclusion that Hartree
interactions in the 2D electron gas give rise to no net bulk
current. This does not imply that we do not accord an
important role to impurity states in determining the final
form of oy(v); indeed, the presence of noncurrent-
carrying states will be necessary to move the step between
plateaus from v=2 to v=1.5. We do make the point,
however, that localized states are not needed to explain
the presence of the plateaus in oy (v).
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FIG. 9. The Hall conductivity is shown as a function of
filling factor v in units of its quantum, e?/h.
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IV. CONCLUSIONS

We have presented calculations of current and electron
distribution for a 2D Hartree interacting QHE system by
using equilibrium thermodynamics with a constant-
current constraint. Because of the specific nature of the
2D Coulomb interactions and the peculiar form of the
electron distribution function, there are large inhomo-
geneities in electron and current distributions, and these
inhomogeneities are further enhanced by driving a current
through the system. The net current is principally due to
a redistribution of charge at the edges, which adjusts the
large edge currents to give the required net current. Very
little net current appears to be carried by states within the

bulk of the sample. The fact that a few inhomogeneously
distributed states carry large currents gives a qualitative
explanation for the spatial inhomogeneity and the rather
low total current observed at the onset of breakdown of
the dissipationless QHE.
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