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The general theory of.coupled molecular dipoles is applied to the vibrational spectra of interacting
molecules on surfaces. Both classical and quantum-mechanical analyses are presented for the
infrared-absorption spectrum. Asymmetric (Pano-effect) line shapes are derived for coupled mole-
cules that interact with electron-hole pairs or optical phonons in the substrate. A very general inten-

sity sum rule is derived which may be useful in constructing theoretical models to explain experi-
mental data. The sum ru1e may aid in assessing the relative importance to electrodynamic coupling
effects, chemical effects, and electromagnetic-field-enhancement effects.

I. INTRODUCTION

Experimental studies of the vibrational spectra of ad-
sorbed molecules can yield important information on the
bonding of molecules to surfaces and on dynamical pro-
cesses occurring between molecules and surfaces. ' This
information is usually obtained by fitting theoretical
models ' to the experimental data. Depending upon the
number of effects the theoretical models incorporate, one
may be faced with an uncomfortably large number of fit-
ting parameters. It may then become difficult to assess
the validity of the theoretical models. Consequently, it
seems appropriate to examine critically the most general
theoretical models, with an eye toward establishing how
model dependent the resulting vibrational spectrum is and
whether there are any universal relations, or sum rules,
that are insensitive to the details of the theoretical model.

The need for such critical studies is particularly strong
when one is investigating adsorbates at partial coverages.
In such cases, one can expect adsorbate island structures
or adsorbate clustering around structural defects such as
steps and kinks on imperfect surfaces or edges and corners
on small particles. The corresponding modes of vibra-
tion of the coupled adsorbate molecules become more
complicated9' ' ' and field-enhancement effects ' 2 may
need to be considered. It would obviously be useful here
to make some general model-independent statements that
would aid in sorting out the various physical processes
which give rise to the vibrational spectrum. This is one of
the goals of our paper.

The shape of the vibrational spectrum may appear
asymmetrical because of the excitation of different adsor-
bate modes having similar natural frequencies. This can
occur for a single island ' ' or for an ensemble of different
adsorbate groups. The resulting vibrational spectrum
would be composed of a sum of pure Lorentzian line
shapes of various center frequencies and line widths.
However, there is another, more interesting kind of line
shape that can occur even for a single adsorbate mode of
vibration. This line shape, having the same form as the
Fano line shape of atomic physics, is caused by the exci-
tation and interference of adsorbate modes with the con-
tinuum of excited states of the substrate. Recently,

Langreth' demonstrated that a Fano line shape occurs
when an adsorbed molecule interacts with the electron-
hole pairs of a metal substrate. Langreth's theory is
couched in terms of generalized susceptibilities and
response functions. The analysis we shall present is more
closely related to the standard Pano analysis. ' We also
treat the case of substrate excitations other than electron-
hole pairs. In addition, it is shown that there is a very
general intensity sum rule which remains valid even in the
presence of Pano line shapes.

In Sec. II we present the classical analysis of coupled
inolecular vibrations in some depth. A good portion of
the classical analysis is a review, but it does provide the
framework for a precise discussion of the parameters
which enter the quantum-mechanical analysis, as well as
the classical analysis. The new results in the classical
analysis are, as far as we are aware, the intensity sum rule,
our identical-oscillator results in the electrodynamic cou-
pling model, and our simple model for asymmetric line
shapes. The quantum-mechanical analysis of Sec. III cor-
roborates the classical results, except for an important
feature concerning asymmetric line shapes. The practical
significance of our results in interpreting experimental
data is discussed in Sec. IV.

II. CLASSICAL CALCULATION

A. Normal modes and absorption spectrum

Our analysis is based on the coupled-dipole theory in-
troduced by Decius for molecular crystals, and first ap-
plied to an overlayer of adsorbed molecules by Hammak-
er, Francis, and Eischens. 3 Subsequent refinements, inost-
ly concerning the form of the dipole-dipole coupling, were
made by Moskovits and Hulse, Mahan and Lucas,
Scheffler, and Persson and Liebsch. ' In these coupled-
dipole theories, a single adsorbed molecule, or more pre-
cisely, a given vibrational transition of a single adsorbed
molecule, is described in terms of an oscillating dipole. In
a system of molecules, the individual dipoles couple to
each other, giving rise to normal modes. An incident elec-
tromagnetic wave may then excite an individual normal
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mode if the frequency of the radiation coincides with a
normal-mode frequency.

The ith adsorbed molecule is described by a reduced
mass m;, a natural frequency too;, and an effective charge
e;. Following Persson and Liebsch, ' we regard these to
be renormalized quantities which include chemical effects
and self-image effects due to the substrate. In the pres-
ence of an applied radiation field whose component along
the vibrational-dipole axis of the ith molecule is E;(t), the
(linearized) equations of motion for a system of N
coupled molecules are

m;d g;(t)
(1)

LA
+m;coo;g;(t)++Kg~(t) =e;E;(t),

where g;(t) is the coordinate of the ith oscillator at time t
and K,J is the coupling coefficient between molecules i
and j. (The K matrix is a real symmetric matrix. ) The
sum over j is over all N molecules. The dipole moment of
the ith molecule is

p;(t) =e;g;(t) .

It is convenient to define a new coordinate u;(t) by

g;(t) =u;(t)/m

Substitution of expression (3) into Eq. (1), yields

d u;(t)
+coo;u;(t)+ g CJ uJ(t) =

dt

e;
Eg (t),

m

(3)

(4)

where C;J (m;mJ) '—J—2K,J.
We now look for solutions of Eq. (4) in which all quan-

tities oscillate harmonically at frequency to. Writing

E;(t)=Re(E;e '"') (5a)

u;(t) =Re(u;e ' '), (5b)

where Re stands for the real part, we obtain, from Eq. (4),

g L;J(co)uJ =F;,
J

gu; (u;")'=5~ (1 la)

and completeness

Qg QJ gJ ~ (1 lb)

The complex conjugates in Eqs. (1 la) and (1 lb) allow for
the choice of complex eigenvectors when there is mode de-
generacy.

The solutions to the driven-oscillator equation (6) can
be written in terins of the normal modes. Noting that

I-=A —a) I, (12)

where I is the unit matrix, the solution of Eq. (6) is, in
matrix notation,

u=(A o) I) —'F . (13)

u;=g 2 g(uJ) FJ .
COV CO

(14)

The absorption intensity, or the time-averaged power
absorbed at frequency to, is the time average of the force
e;E~(t) times the velocity dg;/dt summed over all the
molecules. This leads to the intensity expression

I(co)= ——Im g F;u (15)

where Im denotes the imaginary part.
It is easily seen that substitution of expression (14) into

Eq. (15) gives zero. The problem is that the oscillators
were originally assumed to be perfectly lossless. To
remedy this unphysical assumption, one usually adds
damping into the equations of motion. If we add a damp-
ing term ydu;/dt to the left-hand side of Eq. (4), it is ap-
parent that the only effect of this is to replace co by
to +itoy in Eqs. (7), (12), (13), and (14). Combining Eq.
(15) and the modified form of Eq. (14), we finally obtain

Insertion of the completeness relation (lib) just before F
in Eq. (13) leads to

where

L,J(co) =(co()g —co )5,J+C,J (7)

I(co)= Q I„(to),

where

(16)

and

1/2F; e;E;/m;= =1 CO P
2

V
2

2 2 2 2 2 + J J(co —co ) +oJ y
(17)

V 2 V
AiJ uJ. = ~tot

J
(9)

2
AiJ toot5JJ. +CJJ .—— (10)

The eigenvectors of the real symmetric matrix A satisfy
the usual relations of orthonormality

The normal modes of oscHlation are the solutions in the
absence of the applied field. If we set E;=0 for all i, Eq.
(6) becomes an eigenvalue equation for the N normal
modes. Denoting the normal modes with the label v, the
normal-mode eigenvalues co„and eigenvectors u" satisfy

is the intensity contribution from mode v.
We remark that, to be more general, one may assume a

different damping rate y„ for each normal mode. The
only effect is to replace y by y„ in Eq. (17). Note that
each normal mode gives rise to a Lorentzian function of
width y„centered at to„. (It is assumed that y„&~co )

The integrated intensity for each mode is readily deter-
mined. Denoting this quantity by P„, and denoting the
total integrated intensity by PT, we write

P„=I I„(oJ)dao (I(|)



6296 RICHARD S. SORBELLO 32

PT= I I(co)dip . (19) other electron and vibrational dipoles. Ft' satisfies the
self-consistency relation

Calculation of P„ from Eqs. (17) and (18) yields
2

P„=—g u;"F
4

(20)

m.a".
g

&J J 2 J
J eJ

(24)

and summation of this expression over v yields

e /E;)2
PT 4 mg

(21)

where we have made use of Eqs. (8) and (1 lb). Expression
(21) is our intensity sum rule. Note that it is independent
of the assumed damping constants y~ of the normal
Qlodes.

where F"=e~E t/m a.nd D; =0. The form of F
(24) when F "' and aj" are set equal to zero defines the
coupling matrix D. [It follows that the through-space
part of D;J equals e;ej/r (m;mJ)'~ for point dipoles
separated by a distance r on a flat surface and oriented
perpendicular to it.] The term with aJ in Eq. (24) follows
from the equivalence of an electronic dipole moment
aj EJ and a vibrational dipole pj ejuj——lmj having
the same amplitude.

The solution of Eq. (24) is, in matrix notation,

B. Local-field effects F"=(I+De) '(F'"' -Du)— (25)

(tpp cia )u =F. —2 2 eff (23)

where F =e;E /m and E is the amplitude of the
effective electric field. E is the sum of E "' and the to
tal electric fie)d amplitude at the ith molecule due to all

In general, E;(t) is not the radiation field that would be
experienced by a solitary molecule (with no other mole-
cules present). Rather, E;(t) is the total time-dependent
field at the ith molecule when we imagine that all oscilla-
tors are fixed at their equilibrium positions (all uJ ——0) so
that no vibrational dipole coupling is included. (The
latter coupling is already included in the CJ.) Thus,

E;(t)=E "'(t)+E (t), (22)

where the external field E "'(t) is the radiation field on a
solitary adsorbed molecule at site i and E (t) is the field
due to the electronic polarizability of other adsorbed mol-
ecules. Obviously, E;(t) implicitly depends upon the loca-
tion of the other adsorbates. Similarly, CJ implicitly de-
pends upon the complete adsorbate configuration, and is
not simply a function of the positions of the ith and jth
molecules. None of these complications affects the validi-

ty of the equations given thus far.
In the remainder of this section we consider the most

common model' for dipole-dipole coupling ' In this
model, the vibrational dipoles are assumed to be point di-
poles which interact by quasistatic electrodynamic cou-
pling through space and through the substrate via includ-
ed image potentials. The electronic polarizability causes
electronic dipoles to be created, and these are assumed to
give rise to quasistatic electric fields just as a vibrational
dipole would (i.e., through space and through image po-
tentials). For simplicity, we assume that the electronic di-

pole of mo1ecule is oriented along the same direction as
the vibrational dipole, so that tensor polarizabilities can be
avoided. The electronic polarizability of the ith molecule
is denoted by a,'-', and the electrodynamic coupling be-
tween dipoles is described by a matrix D,J.

We can easily determine the matrix C and the vector I
in Eqs. (7) and (8) in terms of a" and D. To do this, we
consider the equation of motion for the complex ampli-
tude u;. In place of Eq. (6), we,write

where

e1 2B,J (mjaj /ej ——)5,J . (26)

We now see that Eq. (23) is equivalent to Eqs. (6)—(8)
provided that we make the identifications

C =(I+DB) 'D (27)

and

( I +Dg) —1Fext (28)

In the special case of identical oscillators, characterized
by parameters coo, m, e, and u", we note that
8=(ma"/e )I. It then follows from Eqs. (9), (10), and
(27) that there is a simple relation between the normal-
mode frequencies with and without electronic polarizabili-
ty. Denoting these frequencies by tp and co respectively,
we find

2
X

1+PX ' (29)

X=
2 gD,z (uniform mode),

1

¹OP fJ

(31)

which reproduces the well-known results' '" for cp„and

COO

where X=(cogcop) —1 and P= "amcop e/, which is the
ratio of electronic to vibrational polarizability for an ad-
sorbate molecule. Similarly, we find that the integrated
intensity for mode v is

pp
P = 30

(1+PX)
where P pertains to the case of vanishing electronic po-
larizability.

We emphasize that Eqs. (29) and (30) remain valid for
identical oscillators no matter how complicated are the
molecular configurations, the coupling coefficients D;J,
the normal mode patterns, or the local variation of the ra-
diation field E "'. However, there is a further simplifica-
tion if the system happens to support a uniform mode (uz"
the same for all j). For such a mode it is easy to show
from Eq. (9) that
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P„ in the uniform mode of an ordered overlayer. We re-
mark that the use of expression (31) in Eq. (29) is also
likely. to be a good approximation for the in-phase (node-
less) mode of a finite structure (such as an island) of iden-
tical oscillators, even though such a structure does not
strictly support a uniform mode. The point is that using
Eq. (31) in Eq. (29) is equivalent to obtaining a variational
solution for the eigenvalue of Eq. (9) using the trial func-
tion u& ——I/~¹ The insensitivity of eigenvalue to choice
of variational trial function implies that the resulting co„
should be a good approximation for the in-phase mode.
We have numerically verified that in the case of one-
dimensional islands, expression (31) leads to in-phase-
mode frequency shifts that are accurate to within a few
percent.

C. Asymmetric line shapes

In the classical model thus far described, each mode
gives a Lorentzian contribution to the intensity, as seen
from Eq. (17). The true line shape for a single mode may
in fact be asymmetrical. One way to obtain an asym-
metric line shape is to couple the mode to a system that
has a broad-band (continuum) spectrum that overlaps the
single mode. If the applied radiation field can directly ex-
cite the single mode and the broad-band system as well,
one can expect something analogous to the Fano effect
of atomic physics to occur. Fano line shapes have been
theoretically obtained by Langreth' for an adsorbed mol-
ecule coupled to electron-hole pairs at the surface of a
metal. A quantum-mechanical calculation such as that
performed by Langreth, appears to be necessary for a
quantitative description of Pano line shapes of adsorbed
molecules. Nonetheless, it is helpful to consider classical
models that highlight some of the physics of the Fano line
shape. The quantum-mechanical theory is presented in
Sec. III.

In a particularly simple classical model, one may couple
a normal mode v to a lossy broad-band system, such as an
overdamped oscillator or a viscous bath that can be
described by one degree of freedom. The equations of
motion for the normal mode amplitude U" and the bath
degree-of-freedom amplitude U are taken to be

(co„co )U"+cU =—F" (32)

In the absence of direct excitation of the bath (Fs=O),
and assuming weak coupling between oscillator and bath,
the absorption spectrum obtained from Eqs. (32) and (33)
is a Lorentzian centered at co„+hen„with linewidth y,
where

c 1
(34)

ki+ik2I(a))=1m i+
(any+ +ai~) —co —icoy

I (co), (36)

where k& and k2 are real constants depending on the
model parameters and

F, I'Im[Z '(~)t

is the background intensity due to direct excitation of the
bath. The ik2 term is responsible for non-Lorentzian line
shapes.

The true Fano line shape is

I(co) =[(q+e) /(1+@ )]I (co) (37)

where @=2(co—co„—hco„)/y and q is a parameter govern-
ing the line-shape asymmetry. If we set
kz/ki =2q/(q —1), we find that expressions (36) and (37)
give the same result (in the vicinity of resonance) for the
difference spectrum I(co) I (co), excep—t for a multiplica-
tive constant. Thus the simple classical model gives the
same shape for I(co) I (co) as doe—s the Fano expression,
but it does not, in general, give the same strength or in-
tegrated intensity. For agreement on integrated intensity,
we need to consider a bath that contains infinitely many
degrees of freedom, rather than a bath modeled by a sin-
gle degree of freedom subject to frictional damping. The
bath is appropriately modeled as a continuum in the
quantum-mechanical calculation described in the next sec-
tion.

and

0 1y= Im (35)
uv Z aiv

The occurrence of a Lorentzian line shape in the absence
of direct excitation of the bath is a key aspect of the Fano
effect which is contained in this model.

The absorption spectrum when both I'" and I' are
nonvanishing is calculated to be

r

Z(co)U +cU"=F (33) III. QUANTUM-MECHANICAL CALCULATION

where c is a coupling coefficient and Z(co) is a complex
response function characterizing the bath. Z(co) is as-
sumed to be nearly independent of co in the region of in-
terest close to co„. (For a purely viscous bath,
Z(c0)= —iso/r, where r is an effective relaxation time. )
F"and F~ are the amplitudes of the driving forces on the
oscillator and the bath, respectively. (The ratio F"/F is
a parameter that depends only on the type of excitation
field, not on its strength. ) Note that if we take
Z(co) =co& m2 icoy—s, Eq—s. (32) and (33) would formally
describe two coupled-dipole oscillators, with one oscillator
(the bath) having frictional damping parameter ys and
resonance frequency co+.

In our quantum-mechanical analysis of coupled molec-
ular vibrations on surfaces, we invoke the viewpoint com-
monly taken in the theory of lattice vibrations. 27 That is,
the adsorbate normal modes of vibration are assumed to
be calculated classically from an adiabatic potential ener-

gy derived within the Born-Oppenheimer approximation.
These modes are then quantized, resulting in what we
shall call "phonons. " The phonons can then be coupled to
an external field. Nonadiabatic effects are included by
means of a coupling between the phonons and other exci-
tations, e.g., electron-hole pairs. Note that adiabatic in-
teractions between the adsorbate molecules and the sub-
strate are implicitly included in the phonons.
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The normal modes are obtained from the classical equa-
tions of motion (9). The displacement operator gz for the
jth molecule is written in terms of the adsorbate phonon
operators b„and b~ in the usual way, viz. ,

1/2

[b„uj +b„(uj")*], (38)

where b creates (and b„annihilates) a phonon in mode v.
The rate W(co) at which the system absorbs photons of

frequency co is given by the golden rule

g I &f I
M

I
i & I

'@~—&f+&i» (39)

where
I
i & is the initial state of the system,

I f & is one of
the possible final states, and E;,ef denote the energies of
the initial and final states, respectively. The sum is over
all possible final states. M is the interaction Hamiltonian
between the system and the radiation field, and may be
written in the form

M=M +M', (40)

(43)

This agrees with the classical expression (17) in the limit
that y~0. Consequently, the classical expressions (20)
and (21) for the integrated intensities are also valid in the

where M is the interaction with the phonons and M' is
the interaction with all other excitations. The explicit
form of M for coupling to molecular dipoles is

(41)
J

where we have used Eq. (2) for the dipole moment of an
adsorbate. M', like M, is linear in the (classical) radia-
tion field. By definition,

I
i & and

I f & are the system
states in the absence of the radiation field. We shall as-
sume that the system is initially in the ground state (no
phonons or other excitations present).

The adsorption intensity is related to the transition rate
by

I(a)) =fin) W'(co) .

The frequencies of interest are generally confined to a fre-
quency range bee about the normal mode frequencies co

such that Aco«co . Consequently, the Ace factor in Eq.
(42) may be taken as a constant, to an excellent approxi-
mation.

The interesting Fano-effect line-shape asymmetries are
due to interferences brought about by the presence of M',
which describes the coupling between the radiation field
and the continuum system of excitations (recall Sec. IIC).
For the moment, however, we ignore these excitations
completely. The states of the system in the absence of ra-
diation are then the adsorbate phonon states, which we
denote in the occupation-number representatiori by

I I~„]&. Noting that Ii &=
I IO„] &, and using Eq. (41)

for M in expression (39), we easily obtain
I(co)=Q„I„(co),where

quantum-mechanical analysis.
We now wish to allow coupling to the continuum of ex-

citations. This will introduce a finite linewidth and, pos-
sibly, a line-shape asymmetry. Before deriving an expres-
sion for the line shape, we show that the total integrated
intensity measured with respect to the continuum back-
ground absorption satisfies the intensity sum rule (21). To
do this, consider the quantity 68'(co), which is the total
transition rate minus the transition rate due to excitation
of the continuum background alone. By definition,

X( I &f IM I
i & I

'—1&f IM'
I

i & I
')

fi

)& 5(fuu ef +e—; ) .

Integration of b, W over all frequencies yields

f b.w(co)duo= &i
I
(M ) Ii &, (45)

where we have used the completeness relation

gf I f &&f I
=1, and noted that M acts only on the pho-

nons, while M' acts only on the excitations. The right-
hand side of Eq. (45) is precisely the result that obtains in
the absence of coupling between phonons and the excita-
tions. It follows from Eq. (42) that to an excellent ap-
proximation the difference spectrum satisfies the intensity
sum rule

f [1(co) I (co) ]den =——g, (46)
0 4 . noJ.J

where I (co) is the background intensity due to absorption
by the continuum, i.e., the intensity calculated from Eq.
(39) with M=M'. The right-hand side of Eq. (46) is the
total integrated intensity in the limit of vanishing cou-
pling between the phonons and the excitations.

The intensity line shape is readily determined by a
straightforward extension of the Fano analysis. For
convenience, we shall use the form of the Fano analysis
that was introduced by Shibatani and Toyozawa. The
Hamiltonian of the system in the absence of the radiation
field is written as

H =Ho+H (47)

k kCk Ck
k, k'

(49)

where Ho is the Hamiltonian for the system of adsorbate
phonons and continuum excitations in the absence of cou-
pling, and H' is the coupling term. We now specialize to
the case of electron-hole pair excitations and write

H =ggfi ckckb~+H c ~ (48)
kk'

where the electron states are labeled by k and k', with ck
and ck being the electron creation and annihilation opera-
tors. gkk is the electron-phonon coupling constant for
phonon mode v. (We are ignoring intermode conversion
via the coupling, so we consider each mode v independent-
ly. )

The coupling of the electronic system to the radiation
field has the form
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where the mt, k are coupling coefficients.
Following Shibatani and Toyozawa, we rewrite ex-

pression (39) in terms of the Green's function
G=(fuo is —H—), where s is a positive infinitesimal.
The result is

m +P g (rgmg)/[iri(co —cog)]
Q

g rgmg6(Aco —%cog )

Q

and the natural linewidth parameter is

(56)

W(co)= —Im(i ~MGM ~i ) .2
(50) y= g ~ rg ~

5(fico fico—g') .
fi

(57)

To determine 6, we use the Dyson equation

6=Gp+ 6pH'6, (51)

where Go (Ace——is ——Ho) '. The inatrix elements of Eq.
(51) are evaluated in the representation in which Ho is di-
agonal, i.e., the

~
[M„j;[nk ) ) basis. These matrix ele-

ments of G are then used in expression (50). After some
algebra which is forinally identical to the algebra per-
formed by Shibatani and Toyozawa, we obtain precisely
the Fano line shape (37), with the parameter q given by

0 [gkk'mk'kfk'(1 fk)1
m +P

k, k (~ &k+«—)
g gkk™k'kfk'(1 fk@( ico &k+&k')—
k, k'

where m =(0„;[nkJ ~M
~ 1„;[nkJ), and jnkj is the set

of occupation numbers for the electrons in the ground
state, P denotes principal value, and fk, the Fermi func-
tion, equals unity if the electron energy « is below the
Fermi energy, and equals zero otherwise. In obtaining Eq.
(52) we have taken the initial state ~i) to be the state

~
0„;[nk J ) in which there are no phonons or electron-hole

excitations. The Fano line-shape asymmetries arise from
the mixing (due to H') of phonons and excitations in the
final states

~
f) in Eq. (39), and from the coupling to

these states via M and M'. If M'~0, then q~oo and
the difference spectrum I(co) I (co) appro—aches a
Lorentzian whose width is equal to the natural linewidth
parameter y, which is given by the usual golden rule ex-
pression

~
gkk'

~
fk'(1 fk )'5(~—«+«) .=2~ 2

k, k'
(53)

H'=g rg(ag+ag)b, +Hc.
Q

(54)

where a~,a~ are substrate-phonon operators and r is a
coupling constant. In this model, the radiation couples to
the substrate phonons through an interaction of the form

M'= gmg(ag+ag) .
-Q

(55)

The calculation proceeds as before; the q parameter of
the resulting Fano line shape turns out to be

A similar calculation can be performed for substrate ex-
citations other than electron-hole pairs. For example, if
the substrate excitations are optical phonons (i.e.,
infrared-active vibrations), we can write

In a typical experiment, there may be other independent
sources of the background absorption spectrum besides
the excitations. Denoting this extra absorption as I (co),
we should add this quantity to the Fano line shape (37).
The intensity sum rule (46) is still valid for the true differ-
ence spectrum, i.e., I I I'—rath—er than I I . T—hus,
the true difference spectrum satisfies the relations

f [I(co) I (co) —I'(co)]—dco=2y(q 1)I (co—~) (58)

4 mj
(59)

IV. DISCUSSION

We have presented very general classical and quantum-
mechanical descriptions of the vibrational spectra of cou-
pled adsorbates. Classical and quantum-mechanical cal-
culations are in essential agreement, except for the case of
asymmetric line shapes (Fano effect) where a simple clas-
sical model misses an important feature of the
quantum-mechanical calculation, namely, the intensity
sum rule (59). This sum rule has been shown to be valid
under the most general conditions, including the presence
of chemical shifts (contained in the coo; and in the cou-
pling coefficients Cij), local-field enhancements, image ef-
fects, and arbitrary coupling between molecules.

Our quantum-mechanical analysis of asymmetric line
shapes complements the recent work of Langreth, ' which
is more detailed in its modeling of the adsorbate-substrate
interaction. The analysis presented here is couched in
rather different terms, and makes closer contact with the
original Fano analysis. In the case of indirect coupling of
adsorbate modes via the Fano effect, the simple Fano (or

The first line would allow the experimental determination
of the absorption I due to the excitations alone, which is
a quantity not ordinarily accessible by experiment. The
second line is the intensity sum rule. We emphasize that
these expressions are not obtained in the simple classical
model of Sec. IIC, despite the fact that the shape of the
difference spectrum in that model has the same form as in
the Fano theory.

It should be pointed out that if the radiation couples to
two or more adsorbate phonon modes which involve the
same molecules and which would produce strongly over-
lapping Fano line shapes, then the spectrum is not a sim-
ple sum of the individual Fano line shapes. Instead, a
more complicated spectrum is expected because of in-
direct coupling of the modes via the continuum. How-
ever, the intensity sum rule [Eqs. (46) or (59)] remains
valid since its derivation does not assume noninteracting
phonon modes.
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Langreth) line shape does not, in general, apply. Nonethe-
less, the total integrated intensity (over the background
level) does satisfy the intensity sum rule (21). This prop-
erty may be useful in interpreting asymmetric line shapes,
should they be unequivocally seen in future experiments.
The observation of Fano asymmetries requires that the
magnitude of q not be too large, say,

~
q

~

&10. Equation
(52) implies that relatively small

~ q ~

is expected for large
adsorbate substrate coupling gkk and large background
absorption mk k. Langreth's estimate is that an
Anderson-Newns-type resonant-level model' for adsor-
bates would lead to relatively small q values for CO on
Cu(100). It appears that ordinary electrodynamic
dipole-coupling of an adsorbate to a metal surface may be
too weak to give appreciable linewidth asymmetry. This
is consistent with the results of a classical model (Ref. 26),
and with Langreth's usage of a resonant-level model to
achieve appreciable asymmetry.

We now turn to the question of how the intensity sum
rule and the identical oscillator expressions (29) and (30)
might be put to practical use. From a theoretical point of
view, these expressions can, at the very least, provide a
useful check of numerical computations for spectra aris-
ing from general molecular configurations. In the case of
the electrodynamic dipole-dipole coupling model for a
system of identical oscillators, expressions (29) and (30)
also shove that it is unnecessary to solve the complete
coupled-dipole problem with assumed values of the elec-
tronic polarizability a". Rather, one can use the results of
the calculation in which u" is set equal to zero, and then
scale these results in a simple way. Such a procedure can
be a significant simplification when the value of a" is not
known a priori and one is trying to fit experimental data
to determine a".

The general effect of a" on co, and P„ for identical os-
cillators is apparent from Eqs. (29) and (30). For exam-
ple, consider the in-phase modes (for dipoles normal to
the surface), whose frequencies in the a"=0 case are ex-
pected to increase with coverage 6 because of the increase
in the number of dipole-dipole coupling terms D,J with X
(or 6) in Eq. (31). It follows from Eq. (29) that for such

modes, as 6 increases, co vs 6 should bend increasingly
downward with respect to the linear slope of co vs 6 at
small 6. Concomittantly, Eq. (30) implies an even more
marked downward bending in P vs 6, which may in fact
have a negative slope at sufficiently high coverage. This
behavior has been noticed in some experiments, and has
been understood in such terms only for the inphase, uni-
form coverage mode. ' '" We point out that it is also true
for more complex structures, where a uniform mode does
not strictly exist. Note also that for other modes (i.e.,
out-of-phase modes) for which co„vs 6 may slope down-
ward, we can expect that the P vs 6 curve will be con-
cave upward.

The intensity sum rule (21) yields its most powerful im-
plications for adsorbates with negligible electronic polari-
zability. In that case, the electric field in Eq. (21) is sim-

ply E,""', which is completely independent of the inter-
molecular coupling. In that case, it follows that in the ab-
sence of field enhancement effects (E "'=const) or adsor-
bates of different reduced masses, PT will be proportional
to 6, unless e; is changing with 6 due to chemical effects
arising from the intermolecular interactions or a change
in bonding sites. In the more general case, we expect that
a sudden drop in PT vs 6, as in some experiments, ' ' is
signaling a rearrangement of some atoms from sites of
higher e; ~E;

~

to sites of lower e; ~E; ~. This idea has
been used ' in interpreting experimental data for stepped
crystals. The great generality of the intensity sum rule
makes it a useful tool in developing theoretical models to
fit experimental data

We conclude that greater experimental effort should be
focused on obtaining accurate integrated intensities and
line shapes of vibrational spectra. Theoretical modeling
shouLd take into account the intensity sum rule.
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