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The anomalous edge behavior iri the appearance-potential spectroscopy of simple metals has been
investigated. With the use of simple diagrams and a realistic pseudopotential for the core-hole in-

teraction, the Nozieres —De Dominicis —Laramore theory has been extended beyond the immediate
neighborhood of the edge region. It is shown that close to the edge, this theory reduces to the same
power-law expression as calculated by Laramore. Away from the edge, numerical results are
presented for both 1s and 2p intensity spectra of Al. Derivative spectra are also calculated numeri-

cally. The resulting singularities and widths of the edge structures in both 1s and 2p derivative
spectra are consistent with experimental data.

I. INTRODUCTION

The anomalous edge behavior iri the x-ray band spectra
of metals was first investigated by Mahan' and Ander-
son. The singularities at the edge in the emission (ab-
sorption) -intensity spectra are due to the interaction of
the core hole with the conduction band. The first process
contributing to the edge behavior, known as the ortho-
gonality catastrophe, creates low-energy particle-hole
pairs because of the change in potential due to the sudden
destruction (creation) of a core hole as seen by the conduc-
tion band. The core hole is assumed to have no recoil
(e.g., infinite effective mass) and therefore can excite an
enormous number of particle-hole pairs with little expen-
diture of energy. The departure (intrusion) of an electron
in the conduction band also affects this edge behavior.
This second process deals with the interaction betweeri the
core hole and the additional hole (electron) in the conduc-
tion band and was first related by Mahan to the excitonic
scattering in semiconductors. These two competing pro-
cesses were combined in the Nozieres —De Dominicis
(ND) theory, which relates the scattering of the conduc-
tion electrons due to the sudden change in potential in
terms of their phase shifts (5t) near the Fermi surface.
The ND theory is a one-body theory, where one looks at
the response of each conduction electron to the sudden
change in potential due to the destruction (creation) of a
core hole. The form for the x-ray-emission (absorption)
intensity near the edge is given by a power law

It(ek )—
k Ea 2&F

with exponent

(4)

where Ip(co) is the one-electron transition intensity and ez
is the Fermi energy. Gp and gp are constants on the order
of 1 and eF, respectively. The first power term is related
to the open-line part of the ND theory (rearrangement
term), while the second is due to the closed-loop part of
the ND theory (Anderson catastrophe). Note that the
sign of at given in (2) determines if the intensity at the
edge is convergent or divergent.

The ND theory was applied to the appearance-potential
spectra (APS) of metals by Laramore. In the APS exper-
iment, a solid surface is bombarded by a fast electron (en-
ergy ek), which excites a core electron (energy Ett) and
thus in the final state, the system contains a core hole and
two electrons above the Fermi level. Experimentally,
what is measured is the x-ray-emission intensity (deexcita-
tion of the core hole) as a function of the incident energy.
The threshold (edge) region of the spectrum corresponds
to both final-state electrons being very close to the Fermi
surface. Laramore gives a power-law expression near the
APS edge which can be expressed as

Ii(co) =Ip(co)Gp
CO —CF

with

2 —2 g (2l'+1)
l' =0

2
5l

The additional factor of 2 in the first term of the ex-
ponent yt appears because APS results in two final-state
electrons causing the scattering, and the additional —1 in
yt is due to the self-convolution in the zeroth-order pro-
cess (no effective interaction).

Another two-electron process, the Auger process, was
also studied in the framework of the ND theory by Natta
and Joyes (NJ). In Auger spectroscopy, one electron of
an electron pair in the conduction band falls into the pre-
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viously created core hole, while the other is ejected as an
"Auger" electron. A power law similar to the APS form
was found. The ND theory was also applied to the photo-
einission spectra by Doniach and Sunjic (DS).

The edge theory described so far is reliable only at ener-
gies close to the threshold. The theory was extended to
regions away from the edge in the x-ray-emission and ab-
sorption spectra of metals by one of the authors (P.L.).7
Unlike the other theories which require that a separable
scattering potential be used, the Longe theory allows the
use of a realistic nonseparable potential, which is an essen-
tial requirement in dealing with regions away from the
edge. The extended theory essentially results in replace-
ment of the constants Go and go in (1) by energy-
dependent values Gp(co) and go(co). The extended theory
was later applied to the Auger spectra of metals by Longe
and Bose (LB). Using this extended theory, they found a
shift in the position of the maximum of the Auger spec-
trum. In this paper we follow the method of LB to study
the effect of the sudden creation of the core hole on the
APS process and thereby obtain a measure of the width
and strength of the edge structure.

In Sec. II we give a general formulation of the APS
problem in terms of a Hamiltonian describing the process,
and introduce the pseudopotential used to describe scatter-
ing of the conduction electrons by the core hole. The
APS process is then related to "one-body" —type diagrams
which can be separated into "closed-loop" (orthogonality
catastrophe) and "open-line" (excitonic process) diagrams.
In Secs. III and IV the closed-loop and open-line parts are
calculated to obtain the intensity in terms of the phase
shifts. Numerical results for both the ls and 2p APS in-
tensity spectra of Al and their derivative spectra are given
in Sec. V. The derivative spectra are also observed in APS
experiments as they enhance any structures that may be
present (edge, plasmon satellites, etc.) in the intensity
spectra. As in the experimental data, the calculated inten-
sity spectra at the edge will be shown to be convergent
while the derivative spectra divergent.

II. FORMALISM

Our model for the metal consists of a filled conduction
band up to the Fermi level and deep core levels that are
recoilless (can absorb infinite momentum). We also as-
sume that the core hole cannot change its state, i.e., there
is no finite lifetime of the hole due to Auger-type transi-
tions. The purpose for these assumptions is to have a hole
lif'ctime long enough so that the conduction-band elec-
trons have enough time to adjust to the hole potential.
This structureless hole is what gives rise to the abrupt
edge effect. The zero of the energy levels is taken to be at
the bottom of the conduction band so that the core-level
energies are negative.

The Hamiltonian describing the APS process can be
written as

H =Hp+H, ) g+H
with

V(p,p')a~a~ alas,
p' ( gkF),

p (&kF)

a%kg = ~ 8 kpp~Qp Qp~QkQg

p (&kF),
p' (&kF)

(Sc)

(Sd)

where R, is the cutoff radius modified by the absence of
a core electron. Note that this potential, unlike the ones
used in other edge theories, is nonseparable.

The last Hamiltonian term Hkz is the interaction Ham-
iltonian describing the creation of the core hole by the in-
cident electron with energy ek. Since our energy region of
interest is small ( =ez away from the threshold), the tran-
sition matrix element ( Wk~~ ) which has been shown else-
where"' to have small variation for small momentum
transfers, will be considered a constant, c.

Since the object of this study is to find the edge shape
of the APS intensity spectrum, interaction effects among
conduction electrons which give a smooth background to
the spectrum, along with any plasmon structures at higher
energies, ' ' is not considered.

In the APS process, the initial state (P) is a filled con-
duction band and an incident electron with energy sk with
no core holes. In the final state, there is a core hole and
two electrons are present above the Fermi level. The in-
tensity can be written in terms of the linear-response func-
tion as

00

I(co)=—Re ds e'"'F(s),
where

Hp describes the noninteracting system where we have
a filled conduction band (energy states a~=p &ez) and
filled core level with energy Ez (&0). (In this paper we
will take 2m =Pi= 1.)

The second term in the Hamiltonian, H,~z, is the in-
teraction term between the final-state core hole and the
conduction electrons which is responsible for the edge
behavior. V(p,p') is the potential seen by the conduction
electrons and is written as

Vp, (q)
V(p,p') = V(q) =

e(q)

where q =
~ p —p' ~, e(q) is the static Lindhard dielectric

function describing the polarization of the conduction
band, and V~, is the Coulomb pseudopotential containing
the information about the size and strength of the scatter-
er (core hole). The formalisin presented in this paper uses
the Ashcroft pseudopotential, ' which is Coulombic out-
side a cutoff radius R, and zero inside R, . The original
Ashcroft radius will be modified, using a proportionality
rule introduced by Longe, to take into account the effect
of the missing core electron. In momentum space this
pseudopotential takes the form

4me
V~, = cos(qR,'),

Ho —— y Gpapap+Egagas+ eka/, ak,
p ( &kF)

(5b)
and

CO= Ck +Eg,
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(P ~

U( oo,s)Hka(s) U(s, 0)Hei(0) U(0, —oo )
~

II'I)
F(s)=

&y~ U(~, —~) [y&

t=.s

p 4l4
1

is the response function in the interaction picture. The in-
teraction Hamiltonian acts between times 0 and s. U is
the time-development operator and the denominator in (9)
corresponds to the S matrix.

The Feynman diagrams showing the APS process in the
zeroth, first, and a typical seventh order are given in Fig.
1. The corresponding "one-body" graphs used by ND are
given in Fig. 2 where the open circles represent the initia-
tion of the APS process (removal of a core electron by the
bombarding electron). For an nth-order interaction pro-
cess there are n solid circles. Those attached to the single
line pointing up represent scattering of the final-state elec-
trons above the Fermi level by the core hole. Solid circles
on the closed loops represent particle-hole pair creation
due to the core-hole interaction with the conduction band.
Comparing the full Feynman diagrams (Fig. 1) and the
"one-body" diagrams (Fig. 2), we note that for each "one-
body" diagram there are three Feynman diagrams; two di-

agrams to include both spin states (contributing a factor
of 2) and one exchange diagram (contributing a factor of
—1).

A calculation of the zeroth-order intensity (no effective
interaction) is now carried out by applying the diagram-
matic rules, stated in the Appendix, to Fig. 2(a). The total
response function is

(c)

-0 ----&&--

t=s

p2

=0

—ip sF"'(s)= c' f„dp,p', e

. 2
'—ip pSc dp2p2e

F
(10)

Inserting this response function into the intensity expres-
sion (8) and performing the s integration we obtain

FIG. 2. Diagrammatic representation in the manner of
Nozieres and De Dominicis of the APS process in the (a) zeroth,

(b) first, and (c) a typical seventh order. The open circles

represent the interaction of the incident electron with a core
state, while the solid circles represent scattering by the core hole.

4 II

p Ea

c'
lo(~)= f «, f «» 5(~—s, —sz )(sz s&

)'~2

P
E

c4

4

co —2&F 1/2
2

[ep(co —s~ ) ]

(1 la)

2
Q) 2+F

sin
2 CO

e(co —2sz),

(c)

FIG. 1. Feynman diagrams (direct and exchange) describing
the APS process in the (a) zeroth, (b) first, and (c) a typical
seventh order. A single line pointing up (down) represents a
particle {hole) above (below) the Fermi level. A double line

pointing down represents a core hole, while a dashed-horizontal
line represents the static Coulomb interaction.

(1 lb)

where e is the step function. The term (s)'~2 is the free-
electron density of states and (1 la) is just the self-
convolution of the density of states. Near the edge, the
density of states can be replaced by a constant (ez)'~2 and
an approximate form to (1 la) can be given as

0 c4
Io(co-2sF ) = sF(co —2sp. )e(co —2a~) .

4,
(12)
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As discussed in Ref. 8, the correlation function F(s)
can be expressed as the product

F (s) e[c(s)—c(P)] (14)

F(s)=F0&(s)E,(s),
where F,~(s) and F,(s) correspond to the open-line part
and closed-loop part of the APS problem, respectively. In
the next two sections we describe the methods of calculat-
ing F,(s) and F,~(s), and their contributions to the inten-
sity of the APS spectra of simple metals are calculated by
using (8).

III. CLOSED-LOOP PART

where C(s) is the contribution of all single-loop terms and
C(0) corresponds to the contribution of the S matrix. In
this article we will only use the two-vertex loop, the first
nonzero contribution to C(s). (The one-vertex loop is the
Hartree term, which is canceled out by the positive-ion
background of the electron gas. ) As was explained in
Refs. 7 and 8, this corresponds to calculating the scatter-
ing process in the Born approximation. Furthermore,
F,(s) will first be calculated from

The purpose of this section is to calculate all contribu-
tions from the closed-loop diagrams, which describe both
the scattering of conduction-band electrons by the core
hole (between times t=0 and t =s) and the vacuum polar-
ization part (S matrix). Our final result for the intensity
function due to the closed loops [I,(co)] will then be cast
in a form similar to Laramore's (3), but the function gp

will now be energy dependent. Using the linked-cluster
theorem, the closed-loop part of the response function can
be written as

F,(s) = 1+C2(s) —C2(0), (15)

which is the expansion of (14) retaining up to first-order
terms. Its contribution to the intensity function will sub-
sequently be recast in the exponential form ' as discussed
below. Using the diagrammatic rules stated in the Appen-
dix, one obtains

00 kF
Cz(s) —Cz(0)= —2 g (2l'+1) f "dp f dqp ( —q )[iDt(p, q)] f dt& f dtqe'

I'=0 k~ 0 0 1

(16)

Information about the phase shifts is included in

o(p, q)= — g (2l'+1)[D((p,q)]
2 1'=0

(17)
(21)

kF 4Z(co)= f dp f dq 2 2 zcT(p, q)

Ip(co p+q )—
X

Ip(~)

cT(p, q)= — f dk k [V(k)]
(2~)~ IF —e l

(18)

with &(k) given by (6). After performing the t and t' in-
tegrations function (16) becomes

Cz(s) —Cz(0)= f dp f dq z z z(7(p, q)
p (

2 qz)2

X(1—.-"&'-"') . (19)

Since we are dealing with plane waves, (17) may be writ-
ten in the following integral form:

I,(co)=e (22)

as was done in Refs. 7 and 8. As mentioned above, this in
a sense corresponds to evaluation of I, (co) using (14) for
F, (s) rather than (15). Placing (12) into (21) we have for
the Z(co) term

Note that in the bracketed term in (21) we have replaced
the open-line intensity function I,~( )c,oby the zeroth-
order function near the edge (12). This approximation is
made in Z(co) to avoid complications introduced by
higher-order corrections which have negligible contribu-
tions. Once Z(co) is calculated, the closed-loop part in-
tensity function is recast in the exponential form

A term proportional to is has been dropped because its ef-
fect when put back into the exponential form (14) is only
to shift the whole spectrum uniformly, which is irrelevant
to the present problem. Substitutions of (19) into (15), of
(15) into (13) and of (13) into (8) and subsequent evalua-
tion of the s integral yields

Z(~)= f dpdq Pq P,q,
(p q)—

+ 1 f d d 4pq~~pq)
(co —2EF ) (p q )

P (23)

I(co)=I p(co)[1+Z (co)],

where

(20) where the regions of integration a and A are shown in
Fig. 3. Since the integrands are ill-behaved as p ap-
proaches q, let us recast (23) into the following form:
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C 0I,p(co) = (co —2sp)
' f dx

[x (1—x)]

&( Ig [(co—2e„)x +sp]g [(co —2sp )(1—x)+ep] I, (36)

where

g(y)=~y[ko(y)] ' Go(». (37)

A numerical integration of this is prohibitive since the integrand diverges at the endpoints. With some simple algebra-
ic manipulations, however, we can recast (36) into

4.

I,p( co) = (co —2eF)
2SO/m

g (eF )g (co —eF )
p 77

1/2 dx g [(co—2ez)x +ez]g [(co—2ez)( 1 —x)+e~]
o 2so/s 250/m.

g(e—F )g (co eF—)
X (1—x)

g [(co—2e~)x +a~]g [(co—2e~)(1 —x)+eF]
0(1—x) X

(38)

The integral in (38) can be carried out numerically.
This function corresponds to the open-line part of

Laramore's result (3) if we set gp(y)=ez and Gp(y)=l,
which is valid in the edge region co-2sz. The resulting
integral can be done analytically with the result with

r

kF p (p~ q2)~ cTo kg, kp)

(40)

c4
Lo 450/mI,~( co-2 Fs) — sF(eFe )4

~oV,e)= —
2 [Do(I,e)] .ie

V. RESULTS AND DISCUSSION

where

[I (1—25p/m)]
X (co —2eF ) ', (39)

p rf The total intensity function may now be written as the
product of intensities due to the closed-loop part (29) and
the open-line part (38) as

I(co)=l, (co)I,~(co)

C4
e(co —2&p )

(e e&(a))) 00 22sp/~c~e
g (s~)g (co —e~)

45p/n+nop —& (1—25plm )
(co —2' )

1/2 dx g [(co—2eF)x +&@]g[(co—2')(1—x)+eF]+
p 2SO/e )250/s

—g (eF)g (co —2ep)

dx
250/n'

g [(co—2sp)x +e/]g [(co—2EF)(1—x)+&/)
250/m

—g (e~)g (co —2eF ) (41)
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This function gives a measure of the effect of low-energy electron. -hole pair creation on the APS of metals. Before
proceeding with the numerical calculation of (41) away from the edge, let us note that close to the edge, (41) reduces to
[see (30) and (39)]

C [I'( 1 —250/7r ) ] —(450/m +ooo —1)I(co-2EF)= e(c0—2ag)ag(ape ') '
(Eye ') (co —2ap)

4 I (1—450/n )
(42)

which has the same power-law behavior and energy
dependence as (3) or Eq. (17) in Ref. 4.

Numerical calculation of (41) has been carried out for
the ls and 2p APS spectra and their derivatives for Al
(radius parameter r, /ao ——2.07). As mentioned in Sec. II,
the cutoff radius R, in the pseudopotential (7) has been
modified to take into account the effect of the missing
core electron using a proportionality rule (Ref. 7)

Rc Rsj
RsI.

(43)

In this equation, R, is the cutoff radius for a free atom,
RsL is the radius of the valence electrons obtained by us-

ing Slater rules, ' and Rsz is the Slater radius with the
missing core electron. For Al, R, =0.59 A, Rsl ——0.453
A, Rsz ——0.365 A for an L-shell electron missing, and
RsL ——0.353 A for a E-shell electron missing. The pro-
portionality rule gives R,' =0.475 A and R,*=459 A for
the L and E shells, respectively. The phase shifts were
calculated in the Born approximation at the Fermi level.
As mentioned in Sec. III, only s-wave scattering is con-
sidered for the open-line part. The values for 50 are 0.407
for the 2p spectrum and 0.428 for the 1s spectrum.

The calculated APS spectra for the ls and 2p excita-
tions in Al are shown in Fig. 4 along with the one-electron
band shape (dashed line). Since both spectra have nega-
tive power-law exponents, they are finite but have a large
positive slope at the edge. The derivative spectra calculat-
ed numerically are shown in Fig. 5. Near the edge both

the 1s and 2p derivative spectra are divergent, with a
strong negative slope. Away from the edge, however, the
derivative spectra are slowly varying with a positive slope.
The dashed curve in Fig. 5 corresponds to the derivative
one-electron spectrum of Al.

It is interesting to attempt to compare our results with
the currently available experimental APS spectra of Al.
Andersson and Nyberg' have measured the 1s APS spec-
trum and Nilsson and Kanski' have measured the 2p
spectrum. The various structures appearing in the experi-
mental spectra are the effects of superposition of the
many-body effects (edge anomaly, plasmon and single-
pair excitations, etc.) and the band-structure effects. Since
we have not included the band-structure effects in our cal-
culation it is not possible to make a quantitative compar-
ison of our results with experiment. Nonetheless, we no-
tice that the threshold peaks calculated in this paper are
very similar to the ones observed experimentally in the 1s
and 2p derivative APS spectra. A comparison of the two
observed spectra indicates that the 1s spectrum is more
sharply peaked at the threshold —a conclusion borne out
by our theoretical calculation. The sharpness of these
peaks is not as gr'eat in the experimental spectra because
the hole has some structure. However, the experimental
1s spectrum exhibits more of the singular nature of the
theoretical line shape. This is not surprising in that the 1s
spectrum is better suited for comparison with any "one-
body" theory since the ls core hole (Ez ———1547 eV) has
less mobility than the 2p core hole (Ez ———61.4 eV). Ny-
berg and Andersson have concluded from the analysis of
their experimental data that the width of the threshold
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FIG. 4. Line shapes for the 1s and 2p APS of Al. The
dashed hne represents the one-electron band shape, which is
proportional to the self-convolution of the density of states.

FIG. 5. Derivative spectra of the 1s and 2p APS of Al. The
dashed line represents the derivative of the one-electron band
shape.
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peak of the ls spectrum is approximately 0.95 eV. Our
calculated spectra appear to be wider. However, for a
quantitative comparison with experiment one must in-
clude other many-body effects and band-structure effects
in the theoretical calculation.

Finally, in this paper we have calculated the many-body
effects of the sudden creation of the core hole on the edge
structure of the APS spectra of Al. By using a realistic
nonseparable potential for the scattering of the conduction
electrons by the core hole, we have been able to extend the
calculation beyond the intermediate neighborhood of the
edge region. Our theory results in large peaks in the
derivative APS spectra and shows that, unlike the x-ray-
absorption and emission cases, both 1s and 2p derivative
spectra have singularities in the edge region verifying ex-
perimental observations. Our calcuLation also corro-
borates the experimental fact that the edge structure in
the 1s derivative spectrum is more sharply peaked than
the 2p derivative spectrum.

ao

g I'P(p}I't (q}DI(p q)
1=0 m= —I

where

(A2)

Dt(p, q)= —f dr r j&(pr)V(rj)&(qr), (A3)

or as an integration over k, D&(p, q) is

Dt(p, q) = f dk kV(k)Pt
4~ pq Ip —ql 2pq

X pXVr qX

where the pk's are the conduction-electron wave func-
tions. Since the conduction electrons are described by
plane waves, the angular part is separable and (Al} can be
written as
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APPENDIX: DIAGRAMMATIC RULES

The rules for calculating the diagrams which describe
the response function F(s) are as follows.

(a} For an open circle, which describes the creation of a
core hole, a constant c. This is a constant since we are as-
suming a constant transition matrix element

Wkpp
.

(b} For each solid circle a factor of iDt(p, q), the core-
vertex function. This function comes from the core-hole
scattering matrix element

Note that this is related to the Born approximation if we
set p =q. Scattering will occur near the Fermi level, so
the Born approximation is made for the 1th phase shift

51 = kFDt(kp,—kF. ) .
2

(A4)

(g} Integrate over all internal momenta and times.

(c) For each particle line (arrow pointing up) of momen-
tum p between times t ~ and tz, a factor

p e'& (t~ —tq)8(p —k~), where B is the unit step func-
tion.

(d) For each hole line (arrow pointing down) of momen-
tum q between times t, and tz, a factor
—q e'e (t& —tz)B(kz —q}.2

(e) Include a factor —2(2l + 1) for each closed loop.
(f) Sum over all angular momentum quantum numbers
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