
PHYSICAL REVIEW B VOLUME. 32, NUMBER 2 15 JULY 1985

Continued-fraction coefficients in the presence of critical points
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We examine in this paper how van Hove critical points, in a given density-of-states distribution,
modify the asymptotic behavior of the corresponding continued-fraction coefficients. Singularities
within and at the boundary of a single connected band are discussed in detail, for one-, two-, and
three-dimensional structures, in a simple and comprehensive way.

I. INTRODUCTION

Goo(E) =
E—ao—

$ 2

b 2

E—a)—E—a2—

follow a damped oscillatory behavior; the limits a and b
are related to the band edges E& and E2 by the relations

a= lim a„=
75~no 2

b =limb„=
2

Two procedures are most appropriate to arrive at a
continued-fraction' representation of the resolvent of a
given operator. ' The first procedure is the method of mo
ments (originally developed by the French school ),
which uses power moments of the Hamiltonian to obtain
the parameters of the continued fraction representing its
spectral density. The second procedure is the recursion
(or Lanczos) method (promoted mainly by the English
school ), which directly gives these parameters via a tridi-
agonalization of the given Hamiltonian.

These methods, and other closely related approaches,
have been fully described in the literature both for Hermi-
tian and relaxation operators. ' In this paper we focus
on the asymptotic behavior of the coefficients produced
by the singularities of the spectra of crystal structures.

For periodic systems the translational symmetry leads
to energy bands and thus determines well-defined cuts on
the real energy axis. We consider here a single connected
band (the extension to the presence of a number of bands
will be presented elsewhere). For such a situation,
Gaspard and Cyrot-Lackmann first realized that in the
asymptotic region (i.e., for n ~ ao ) the coefficients a„and
b„of the continued fraction,

i.e., a is the middle of the connected band and 2b is the
half bandwidth. The same authors observed that the fre-
quency of the oscillations were related to the position of
the singularity and the decaying rate to its strength. This
asymptotic behavior has then been deduced rigorously by
Hodges for square-root internal singularities in the case
of three-dimensional crystals.

The knowledge of the analytic expressions which dic-
tates the asymptotic behavior of the parameters of the
continued factions, also allows the construction of ap-
propriate extrapolation procedures for them. This has
been proven useful in the determination of Lifshitz limits
both in periodic crystals and in the case of disordered al-
loys. Moreover, this "prediction" of the coefficients has
been successfully used for the study of density of states of
bulk semiconductors also in the presence of extended im-
purity states.

The necessity of a more complete treatment on this
matter has stimulated several numerical and analytical
works. We quote the analysis by Turchi et al. " on the
asymptotic behavior of the recursion coefficients in the
presence of several gaps, and the mathematical papers of
Magnus' who exploits the connection between continued
fractions and orthogonal polynomials to arrive at a satis-
factory presentation of the problem.

This work gives a simple but complete study of the
behavior of the continued-fraction coefficient, in the
asymptotic region, in the presence of any kind of uan Houe
critical points, for one , ttuo , a-nd thr-ee dimensional-
periodic structures. Particular attention is devoted to the
discussion of these singularities both in the interior and at
the boundary of the simple connected band. To keep this
paper self-contained, we summarize in Sec. II the results
of the Green s function for infinite and semi-infinite
linear chains with constant parameters. In Sec. III, using
a first-order approximation to the Dyson equation, we
study the oscillatory behavior of the coefficients around
the constant asymptotic chain. We present in Sec. IV the
systematic study of singularities in a single band and the
analytic results for van Hove critical points. Although a
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number of the results in Sec. IV for three-dimensional
crystals are already known in the literature, the results for
low-dimensional solids are provided here for the first
time. Finally, Sec. V contains the conclusions.

The results (5) and (6) for the infinite chain represented
by Hamiltonian (1) can be used to obtain the Green's
function for a semi inf-inite one. We start, for example,
.from n =0 and introduce an infinite perturbation at site
n = —1, of the form

II. GREEN'S FUNCTION FOR A ONE-DIMENSIONAL
CRYSTAL W'ITH CONSTANT PARAMETERS

We consider an infinite one-dimensional crystal
described by the one-state-per-atom, nearest-neighbor
tight-binding Hamiltonian with constant parameters a and
b

with a ] ~ oo . In terms of the Dyson equation
9' =g+g8'3, we obtain the following for the semi-
infinite crystal:

(E)=
b

go (E) (e in'& e
—i(n—+2)g&)1

2iasing
'

From Eq. (8) it is also evident that So„——S„o.

(8)

I P„& is an atomiclike orbital centered at site n, a and b
represent site-diagonal and interaction hopping integrals,
respectively.

It is easy to show, by the recursion method, that the
continued-fraction representation of the Green's-function
diagonal matrix element goo(E) is given by

goo«) =

III. COMPARISON BET%'EEN A GIVEN
SEMI-INFINITE LINEAR CHAIN

AND A CONSTANT CHAIN

Consider a Hamiltonian of a semi-infinite chain of the
form

goo«) = 1

[(E )2 4b2] &n (3)

[here and in the following, the sign of the square roots are
chosen to give Imgoo(E) &0 for ImE~O+ in order to
preserve the Herglotz property of goo(E) ]. The off-
diagonal matrix element

E —a

From' Eq. (2) the following familiar expression is ob-
tained:

n=0

Let us suppose that the parameters an and b„are very
near to the parameters a and b of a constant chain, i.e.,

o.'n =an —a,
13„=b„b, —

are very small, for any n We can .write

can be easily obtained in the k-space representation:
I K'Pnm/~

go.«)= dK,
2~ ~~~ E —a 2b c—os(ar)—

where r is the lattice parameter. In terms of the reduced
variable E=(E—a)/2b, the above integral gives

where

n=O

1 [E (E —1)'~ ]"—
(4)

and

Def1nlng now

ip(E) =arccos[(E —a)/2b] + &&.(I4"&&4.-il+ Id. -i&&4" I) .
n=1

[with 0&y(E) &vr for ImE~O+], expression (3) and (4)
can be recast in the simple forms Under the assumption of small deviations a„and 13„,

the Dyson equation can be written to first order in W:
1

goo«) = 2.b .
2ib sing

—in'
go„(E)=

2ib sing

9 =9'+9'+%=AD'+S'w9'
(6)

and we obtain for the diagonal matrix element 9'oo(E),
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Ãpp(E) =Sop(E)+ g a„&p„&„p
n=0

+ QP. (&o.&' (,o+&o,.-)&'o) .
n=1

Using Eqs. (7) and (8) we obtain

n (E) n—p(E) = ——1m[Goo(E) —G()()(E)],

we obtain

2b
J [n (E)—n (E)]sin[(2n +2)y+5, ]dy

S

9pp(E) —8go(E) = b' n=o

+ y 2P e
—i(2n+1)y

n =1

b2
f3„= j [n(E) —n'(E)]

S

X sin[(2n + 1)ted+5, ]d(I) . (13b)

We can now connect the behavior of the real parameters
a„and P„with the singularities in the density of states.

Let us consider in fact an actual crystal, a state of in-
terest, and its corresponding semi-infinite chain with
Green's function Gpp(E). Also consider the modified
semi-infinite chain obtained from the actual one substitut-
ing for a given large l, the actual parameters with the con-
stant asymptotic limits. We denote by Gop(E) the diago-
nal Green's function obtained. The difference
Gpp(E) —Gpp(E) can be matched with the asymptotic
problem as follows (see the Appendix):

Equations (13) show directly how the singularities in the
density of states influence the asymptotic behavior of the
continued-fraction coefficients. In addition, we note that
the presence of the density n (E) in Eqs. (13) is inessential
because of its well-behaved nature. From now on we con-
sider explicitly only the expression for a„.

IV. CRITICAL POINTS IN A CONNECTED BAND

A. General remarks
Gpp(E) —Gyp(E)=C(E)[&pp(E) —8()p(E)], (10)

where C (E) is a function, whose expression is provided in
the Appendix. Equation (10) can be rewritten in the form

r

G (E) Go (E) ) ~ a e i(2n+2—)g
00 00

+ g 213 e i (2 +—1n)q

n=1

r

It is convenient to write C(E)=
~

C(E)
~

e and to
take the imaginary part of Eq. (11). We have

Im [6()()(E)—G()()(E)]

g a„sin[(2n +2)y+5~]JC(E)
~

b2

+ g 213„sin[(2n + 1)()2+5@] . (12)
n=1

Equation (12) is exact. Near a singular point E, we can
take

~

C(E)
~

=
~
C(Es)

~

and 5z —5„' Eq. (12), so modi-
fied, can then be inverted using only the fundamental in-
tegrals of the type

f sin[(2n +2)(p+5, ]sin[(2m +2)y+5, ]d(t2= —5 „,0 s s 2 mn

We can now use the preceding results for one-, two-,
and three-dimensional crystals in presence of singularities
within and at the boundary of a single connected band. It
is well known that the asymptotic limits a and b of the
continued-fraction coefficients are independent from the
particular form of the connected spectrum and only de-
pend on its bounds: this allows us to write the reference
continued fraction with constant parameters. Moreover,
only with the knowledge of the analytic expressions of the
critical points we can evaluate the deviations, a„and Pn,
from the constant chain, via Eqs. (13).

In what follows a distinction must be made for singu-
larities within and at the boundary of the band. We can
locate energies within the band, in terms of the asymptot-
ic values a and b as follows:

E=2b cos(p+(2 (b ~ 0),

where O~y&rr (for ImE~O+). Then, around a given
energy E, corresponding to a critical point we have

dE = —26 sings dg .

For energies at the boundary of the band, Eq. (14) be-
comes

0
sin[(2n + 1)y+5, ]sin[(2m +1)y+5,]dy= —5~n,

~~

s s 2 mn

where m, n are integer numbers, and 5, is any arbitrary
phase. In the asymptotic region, in fact, we can deal
separately the singular parts produced by the coefficients
a„and P„, respectively Using th.e spectral definition
(ImE~0+ ),

E=2b 1 — +a
2

and for nearby energies we have dE= 2bq)dy. This—
means that for energy dependences of the type

j
E E, ~, we have, in te—rms of the variable y,
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fE E,—
f

dE=
for internal singularities

(16)

for boundary singularities-

This will be useful for the explicit integration of Eqs. (13).
A further comment must now be made on the particu-

lar farm of the singularity in the density function. Near
singular points E„the behavior of the function n (E) is of
the type

n(E)=f(E)+A fE E, f

—6(+(E E, ))—, (17)

1 1G»(E) =
2

E —ao—
$ 2 G(g(E)

rather than the Green's function Goo(E) itself.
A similar procedure could be used for logarithmic

divergent distributions (two-dimensional saddle points),
but we find it more convenient in this case to simulate at
any desiderated accuracy, lnE with lim~ o(E lnE), which
is finite near the singular point.

We note finally that Eqs. (13) can be written in the
form

where f(E) is a regular function, a= ——,', 0, + —,
' for

one-, two-, or three-dimensional crystals, respectively, and
A (A &0) gives the strength af the singularity. Equation
(17) exhibits a peculiar divergence in the case a&0. In
the Appendix we show that the asymptotic behavior for
densities of states of the form (17) is dictated by the
behavior of A

f

E E, ) ~ ~.—This means that for negative
a we have to focus on the asymptotic behavior of the
memory function

B. Asymptotic behavior in presence
of van Hove critical points

With the ingredients of the preceding sections we can
now obtain the asymptotic behavior of the continued-
fraction coefficients in presence of van Hove critical
points. Let us consider first a three-dimensional crystal.
For energies near an internal critical point E„the density
of states behaves as

n(E)=f(E)+A
f
E E, f

—' 6(+(E E, )—),
while at the boundary

n(E)=A fE E,
f

'r —6(+(E E, ))—.
Different couples of signs indicate different critical
points: (+ —) is a maximum M3 ( + + ) is a
minimum Mo, ( —+ ) and ( ——) are saddle points M2
and M1, respectively.

Using Eqs. (16), (18), and (19) we obtain for internal
critical points

a„=+I(:
&

cos (2n +2)p, +5, +1 'r

where

2b 3/2

)
f

For singularities at the boundary of the band we have

a„= -3 cos[(2n +2)ps+5, ],
n

where

g 7/2

f
C(E, )

f

a„= Im e ' n (E)e ' +—2b2

fC(E )f o
(18)

For a two-dimensional crystal, the density of states
behaves as

n (E)=f(E)+B6(+(E E, )), —
and similarly for P„.

Thus, we can use the theorems which connect singulari-
ties of a given function with the asymptotic behavior of
its Fourier transform. ' ' In particular, we quote the fol-
lowing results:

where. signs + and —refer to minimum Po and max-
imum I'2 points. For saddle points we have

n (E)=f(E)——In 1—8 E
E,

f fx f
6(x)e '" dx

=e —(1/2)mi(a+ 1)sgnnr t x ! ! —a —1

+ 00f x 6(x)e ' dx
r

(
.

2 .
) t (5(t)( )

( —1)'(l!)(2m)

(19)

(20)

and for singularities at the boundary of the band

n(E)=B6(+(E E, )) . —
Using Eqs. (16), (18), (20), and (21) we obtain for inter-

nal critical points (maxima and minima):

a„=—cos[(2n +2)p, +5,],X

+ 00

lim f fx f
lnfx fe ' dx = —mf fn

where 6(x) is the Heaviside unit step function, a is a real
positive number, and l is an integer )0.

with

Q2

fC(E )
f

B 12bsmys
I

In the case of logarithmic singularity we find
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a„=K—sin[(2n +2)y, +5, ] .
1

For singularities at the boundary of the band we have

a„=+ sin[(2n +2)y, +5,]
n

with

Bb

/
C(E, )

f

Finally, for one-dimensional crystals internal singulari-
ties are of the type

n(E)=f(E)+A iE E,
~

—''i 6(+(E E, ))—,
where the + sign corresponds to a minimum Qo and the

sign to a maximum Q&. Boundary singularities are
described by the same formula with f(E)=0.

As discussed in Sec. IV and in the Appendix we can
now focus on the behavior of the memory function
Green's function. We obtain in this way the same
asymptotic behavior as in the case of the corresponding
three-dimensional structures.

V. CONCLUSIONS

In the present paper we have provided a novel and sim-
ple procedure to handle the recursion coefficients of con-
tinued fractions representing the densities of states of d-
dimensional structures. The case of a single connected
band has been completely discussed for singularities at the
boundary and within the band.

For the first time, this problem has been fully analyzed
for crystals with any dimension, and some erroneous re-
sults in the literature for low-dimensional cases have been
corrected. Moreover, this type of approach is suitable for
extension to the more complicated situations of noncon-
nected distribution functions.

APPENDIX

1 Ql(E) ~t(E)[Goo(E)+G oo(E)1
Gg(E)= sbi' QI-i«) —Pi i«)[Goo«)+Goo«)l

For energies near the energy of a critical point we can ex-
pand (A3) and obtain at first order in Goo(E):

1 QI(E) —PI(E)Goo(E)
Gg(E) =

bI' QI-~«) —Pi-~«)Goo«)
I —] Goo«)

Q
2 (A4)

[Qi ~«) Pi ~«—)Goo(E)]'

where we have used the determinantal formula
I —1

Q, (E)P, ,(E)—P, (E)QI,(E)= IIb; . (A5)

Equation (A4) shows that the singularity in Goo(E) is also
transferred to the diagonal element GI~(E).

With similar arguments let us study the effect of substi-
tuting G~~(E) with the constant continued-fraction GII(E)
in Eq. (Al). If Goo(E) has no poles and remains finite in
a given energy interval, and we are in the asymptotic re-

gion, we can expand Goo(E) in terms of the difference
Ga(E) G~~(E) aroun—d GII(E). Using Eq. (A5), we obtain
to first order

Qi«) b i'Qi ~«)Gg(E)
Goo(E) =

Pl(E) bl PI —1(E)GII(E)

where QI and PI are, respectively, the partial numerators
and denominators of the Ith approximant of the contin-
ued fraction (Al). In the following we will consider
Goo&0 and finite. For divergent Goo(E) we will transfer
the reasoning to G»(E).

Let us split Goo(E) into its regular and singular part

Goo(E) =Goo(E)+ Goo(E)

where Goo(E)—&0 for E~E, (critical point energy). We
can now express GI~(E) in terms of Goo(E) and Goo(E):

Let us examine first how a singularity of given strength
in the crystal Green's function Goo(E) propagates to the
successive diagonal-matrix elements Gl~(E) defined by

Goo(E) —Goo(E) =C (E)[GII(E)—Gll(E) ]
with

(A6)

Goo(E) =
2

2

E —a/ $ b/ Gp(E)—2

It can be shown by induction that

IIb'
(E)=

[PI«) bi'Pi I «)G3«—)]'

Equation (A6) coincides with Eq. (10) of the main text,
where G~~(E) and G&&(E) are denoted by 9'oo(E) and
Boo(E), respectively.
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