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The dispersion of the overlayer plasmon on Si(001)2X 1-K surface is investigated theoretically
based on structure models in which alkali-metal adatoms form one-dimensional chains on the ridge
of Si dimers. First, a simplified rod model is introduced to clarify qualitative features of the over-

layer plasmon in such systems.

Then a first-principles band-structure calculation is performed to

elucidate the detailed electronic structure of Si(001)2 X 1-K surface. Based on the surface bands ob-
tained, the dispersion of the overlayer plasmon on this surface is calculated nonempirically by the
use of the random-phase approximation. The interband plasmon mode between K 4s—like and
K 4p,—like bands is found to reproduce the observed plasmon dispersion very well.

I. INTRODUCTION

Overlayer plasmon is a collective excitation of electrons
which has been often observed in alkali-metal atom mono-
layers adsorbed on the surface of other materials.!~> Its
dispersion, namely plasmon energy versus two-
dimensional wave vector Q, is quite sensitive to the mi-
croscopic structure of surface and thus can be a powerful
tool for analyzing alkali-metal overlayer systems. Ad-
sorption of alkali-metal atoms on solid surface has been
intensively studied as an example of simple chemisorption
systems. In contrast to the cases of transition-metal ad-
atoms, covalent interaction between alkali-metal atoms
and the substrate is not very strong and alkali-metal
atoms do not have as much influence on the structure of
the substrate. At the full coverage, the alkali-metal over-
layer becomes metallic due to the formation of surface
bands.

Excitations of valence electrons within a single or be-
tween two surface bands are the origin of the overlayer
plasmon. The collective excitation within a partially oc-
cupied surface band is called as intra-surface-band
plasmon whereas that between two different surface bands
is called as inter-surface-band plasmon. The former is
characterized by the energy dispersion rising from zero in
proportion to Q'/2 (0= |Q]|) in small Q regions while
the dispersion of the latter starts linearly from a finite
value. The energy of the inter-surface-band plasmon at
Q =0 is pushed up at somewhat higher value than the in-
dividual excitation energy owing to the depolarization ef-
fect.

When the Si(001) surface is clean, it takes the 21 or
the ¢(4X2) reconstructed structure. Supported by num-
bers of experiments and theoretical studies, the dimer
model has been most widely accepted for the reconstruct-
ed structure of this surface. Based on low-energy electron
diffraction (LEED) observation, Levine proposed a struc-
ture model for Si(001)2X 1—alkali-metal-atom surfaces
shown in Fig. 1.° In his model, alkali-metal atoms sit on
the fourfold hollow sites between two dimers and form
raised rows of one-dimensional chains which extend along
[110] direction. ‘When oxygenation is carried out on this
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surface, O atoms must be located in large caves between
alkali-metal chains. Therefore the large dipole between
alkali-metal and O atoms required to achieve NEA (nega-
tive electron affinity) is expected for this model. Actually
among the crystal surfaces of Si, the (001) surface is the
only one that can be activated to NEA by the adsorption
of al’%(ali-metal atoms followed by the O atom chemisorp-
tion.

" Recently Aruga, Tochihara, and Murata® have exhaus-
tively investigated the dispersion of overlayer plasmons on
Si(001)2x 1-K surface by AREELS (angle-resolved
electron-energy-loss spectroscopy). The measured plas-
mon dispersion is shown in Fig. 2. Here it cannot be
determined experimentally which of the two azimuths
([110] or [110]) the plasmon dispersion in the left half of
the figure corresponds to, since Si(001)2 X 1-K surface is
composed of two kinds of domain structures. The
plasmon energy corresponding to the main loss peak has a
finite energy (~1.7 eV) at Q =0 and its dispersion de-
pends positive linearly on Q when Q is small. The slope
of the observed plasmon dispersion shows an azimuth-
dependent anisotropy, which is expected to reflect the
peculiar “chain” structure of the alkali-metal overlayer.
In the energy-loss spectrum of the [100] azimuth they also
found a shoulder on the lower tail of the main loss peak
that might be assigned to another excitation mode.
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FIG. 1. Structure model of alkali-metal overlayers on the
Si(001)2 % 1 surface. Solid and open circles indicate alkali-metal
and Si atoms, respectively.
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FIG. 2. Dispersion of the overlayer plasmon on. the
Si(001)2 X 1-K surface measured by Aruga et al. (Ref. 8).

Microscopic theory of the overlayer plasmon was ini-
tiated by Newns.” He used the “box” model where
alkali-metal adatom layers are modeled by an uniform
thin film which confines free electrons by infinite poten-
tial barriers at both sides. In such an uniform model, mi-
croscopic structure of the electron wave function parallel
to the surface is completely neglected and the observed
anisotropy of the plasmon dispersion cannot be explained.
Moreover, the box model always predicts the negative
linear dispersion at Q =0, which jis in disagreement with
the observation by Aruga er al.® Recently Nakayama
et al. discussed some general properties of the inter-
surface-band plasmon at Q =0 with the random phase ap-
proxlmatxon (RPA).!1® According to them, the microscop-
ic shape of the wave functions of electrons in surface
bands plays a crucially important role to determine the
plasmon dispersion, since the polarization field of
plasmon is ruled by it.

In this paper we calculate the dispersion of the over-
layer plasmon on the Si(001)2 X 1-K surface nonempirical-
ly based on the self-consistent band calculation and dis-
cuss the validity of the structure model through the com-
parison between the theory and the experiment. The plan
of this paper is as follows. In Sec. II we introduce a sim-
plified model which simulates alkali-metal overlayers on
the Si(001) surface and clarify the features of the over-
layer plasmon in such systems. In Sec. III we reveal the
surface-band structure of the Si(001)2 X 1-K surface with
the self-consistent LCAO-Xa (LCAO denotes linear com-
bination of atomic orbitals) method. Based on this band
calculation the dispersion of the overlayer plasmon is cal-

culated nonempirically in Sec. IV.
|
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FIG. 3. Parallel-rod model which consists of rectangular rods
confining free electrons on the semi-infinite dielectric medium
with a dielectric constant .

II. PARALLEL-ROD MODEL

To simulate alkali-metal adatom chains on the
Si(001)2 X 1 surface, a simplified parallel-rod model is in-
troduced in this section.!! As depicted in Fig. 3, the
model consists of rectangular rods confining free elec-
trons. The rods have side lengths 11,12 ( ~diameter of an
alkali-metal atom) and are arrayed in parallel at intervals
of a (7.2 A) on the surface of the uniform substrate which
is modeled by a semi-infinite dielectric medium with a
dielectric constant x (~15). The eigenfunction and the
energy of electrons confined in the nth rod are written as

2 ik [P (5 — in |47
()= 0L L 1/2 sin I, (x —na) |sin I, z
(2.1
and
2 2
k2 1 T 1 T
g _ 1|7 |47
&= > +2#1 I, I, ] ) (2.2)

where L is the quantization length in the y direction, m
is the free-electron mass, and u, and u, are the effective
masses for x and z directions, respectively. The integers
p —1, ¢ —1 mean the number of nodes of the wave func-
tion in the x,z direction and thus the modes with (p,q)
=(1,1),(1,2),(2,1) approximately correspond to alkali-
metal s,p,,p, valence orbitals. In the following, we con-
sider these lowest three modes. We assume the higher .
bands €32, €2! to be empty while assuming the lowest one
€i' to be occupied if the absolute value of k is less than
the Fermi wave number ks. Then three kinds of excita-
tion modes appear; (i) s-s intraband, (ii) s-p, interband,
and (iii) s-p, interband excitation modes. Each consists
of individual excitation and collective excitation, namely,
“plasmon.”

The induced charge pjn4(r,@) due to the external one
Pexi(T,®) is obtained by the standard RPA equation

(2.3)

where f;,f; are the Fermi distribution functions and i,/ represent the set of indices (k,n,p,q). The interaction potential

between two unit charges G(r,,r,) is given by
1 k—1 1

G(ry,r)=
’ |r1—r2|

Tkl [y —x 24|z |+ |2 | P12

(2.4)
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Pext(T,0) is set equal to exp(iQ-X)pex(2) to discuss the charge fluctuation with a crystal wave vector Q. Then we find

Pind(T,®) can be expanded as

Pind(T,0) =3 D(V)P(Q,v,1) ,

1

igy 1 iQ.na . | P17
Y X
e N2 Se sin
n

—-l—l—(x —na)

O(Q,v,r)=

L

(2.5)

¢127TZ
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m
plL(x —na) |sin z |sin , (2.6)
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where N is the number of rods and v represents a set of indices (py,p,,91,92). The correspondence of the pair band in-
dices (p1,p2,91,92) and the mode index v is listed in Table I. Substituting Eq. (2.5) into Eq. (2.3) yields the matrix equa-

tion

E[SW——X(Qy,w,v)I(Q,v,v')]D(v’)=X(Qy,a),v)J(Q,v) . 2.7

v
In the above, X(Q,w,v) is the polarization function defined by

29, 191 191 292
X(Q0m=223 %o~/ (18, , 8, )23 filo—fx : (2.8)
L % Py4q, P49, . 1#72-90192° 1, P49, Py4, .
ek—Q_ek +w+18 k €r_o €k +w+i8

I(Q,v,v') and J(Q,v) are the matrix elements defined by
I(Q,v,v')

:%fdrlfdrzq>*(Q,v;r,)G(rl,rz)cb(Q,v',rz) :
Ut

2.9
J(Q,v);;;;’—gfdrlfdrz<1>*(Q,v,r,)G(r1,r2)
xe' ¥ (z) . (2.10)
The plasmon energy is determined by the condition
det[8,, —X(Q),0,V)I(Q,v,v']=0. (2.11)

As we are considering three coupled excitation modes,
the matrix in Eq. (2.7) becomes 3<3. But nondiagonal
matrix elements are smaller than the diagonal ones in
small Q regions, so at first we use the approximation to
treat the three modes independently. Such a procedure is
quite helpful to emboss the physical picture of each
plasmon model.

A. s-s (v=1) intraband mode
When Q is small, the plasmon dispersion is given by

2
Kk+1

' 2k
200)— S5 1 k=1
0 (Q)= a2 3 + 1

ma

1,0 |0 cos?0

(2.12)

TABLE 1. Correspondence of the mode index v and pair-
band indices (p1,72,91,92).

v Mode D1 D2 q:1 q2
1 s-5 1 1 1 1
2 $-Pp; 1 1 1 2
3 S-Dx 1 2 1 1

where 6 is the angle between Q and rod axis. The disper-
sion is almost the same as that of 4 mode of Newns’s
model® except for the factor cosd. This mode is essential-
ly caused by the charge fluctuation parallel to the rods.
Thus it can oscillate most rapidly along the chains (6=0°)
and cannot oscillate perpendicularly to them (6=90°).

B. s-p, (v=2) interband mode

When Q is small, plasmon dispersion is given by

0HQ)=wh,+4w ks |1(Q=0,2,2)
16, |
2k |02 201 2.13)
k+1 | 972 a

where w1, =3m2/(2u,l3) is the energy difference between
s and p, bands. The plasmon energy exceeds the indivi-
dual excitation energy w;, by the depolarization shift.
The polarization field is perpendicular to the surface and
this mode is essentially the same as the B mode of
Newns’s model.” The dispersion is linear with negative
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FIG. 4. Schematic illustration of the polarization fields by s-
p. mode [(a) and (b)] and s-p, mode [(c) and (d)]. Q is equal to
(0,0) for (a) and (c) and (7 /a,0) for (b) and (d).
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gradient and moreover it is isotropical in small Q regions
though the electronic structure is extremely anisotropic.
Here we clarify the physical meaning of the negative
linear dispersion. It means the decrease of the depolariza-
tion shift as Q deviates from zero. Actually, as shown in
Fig. 4(a), all the rods oscillate in phase at Q =0 and the
polarization field of a rod is reinforced by those of neigh-
bors. This results in the largest depolarization shift at
Q =0. On the other hand, the adjacent rods begin to os-
cillate in antiphase as Q increases and the polarization
field of a rod is partially canceled by those of neighbors
[Fig. 4(b)]. Therefore the depolarization shift becomes
smaller and the negative linear dispersion occurs.

C. s-px (v=3) interband mode
When Q is small, the plasmon dispersion is given by

0 Q) =0} +4w ks [1(Q=0, 3,3)
161,

972

2

2
20 Gn2
k—+1

a

b

(2.14)

where w;; is equal to 372/(2u;/?). This mode is charac-
- teristic of the chain structure of the present model and
does not exist in uniform thin-film models advanced so
far. The dispersion depends on Q positive linearly. The
slope of the dispersion at Q =0 is proportional to sin?0
and thus becomes the largest at 6=90°. The origin of the
positive linear dispersion is easily understood. In contrast
to the case of s-p, mode, the polarization field of a rod is
weakened most by those of neighbors when they oscillate
in phase [Fig. 4(c)] and the depolarization shift becomes
the smallest at Q =0. On the other hand, the cancellation
of the polarization field becomes smaller with the increas-
ing Q and correspondingly the depolarization shift be-
comes larger by degrees [Fig. 4(d)]. This mode reproduces
the features of the observed plasmon dispersion well and
is expected to be responsible for the main loss peak of the
AREELS observation. Thus the plasmon dispersion_in
the left half of Fig. 2 may well be assigned to that of [110]
azimuth.

We have solved Eq. (2.11) numerically in general Q re-
gions and obtained dispersions of three coupled plasmon
modes. Fig. 5 shows the plasmon dispersion for 6=45°.
The interband transition energies ®;, are adjusted to 0.59
eV in order that interband plasmon modes roughly repro-
duce the observed loss peak and /,/, are chosen to be 3.7
A. Near Q =0 the plasmon modes wj,w,,»3 correspond
to s-s (w=1), s-p, (v=2), s-p, (v=3) modes, respectively.
The shaded regions indicate the individual excitation ener-
gies. The s-p, mode reproduces the observed plasmon
dispersion corresponding to the main loss peak in small Q
regions well. Subsidiary structure appearing in the tail of
the main loss peak may be assigned to the s-s intraband
mode.

III. ELECTRONIC STRUCTURE
OF THE Si(001)2 X 1-K SURFACE

In Sec. II we showed that the observed plasmon disper-
sion can be explained fairly well provided that there are
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FIG. 5. Calculated plasmon dispersion of the parallel-rod
model for the case of k=15, §=45°. Solid circles show the ex-
perimental data.

two surface bands near the Fermi level, which have char-
acters of K 4s and 4p, states. In the real system the band
structure of the alkali-metal overlayer might change
drastically from such a simplified model due to the charge
transfer and the orbital hybridization between the K ad-
atoms and the substrate Si atoms. To elucidate the elec-
tronic structure of the Si(001)2 X 1-K surface qualitatively
as well as quantitatively,. the self-consistent band calcula-
tion is performed in this section.

A. Model and the method of the band calculation

We adopt two structure models as candidates for the
Si(001)2 X 1-K surface. Model 1 is the original Levine
model,’ in which Si atoms in the top layer are assumed to
form symmetric dimers and the K atom sits on the four-
fold hollow site between two dimers. Model 2 is identical
to model 1 except that the K atom sits on the bridge site
of a dimer instead of the hollow site. The reason why we
take two structure models is as follows. Though it is al-
most established that alkali-metal atoms are arrayed on
the ridge of the Si dimers, the precise adsorption site of
the K atom still remains unknown. So it is interesting to
examine the change of the electronic structure when the
construction of the surface is slightly modified in order to
extract common features of the band structure in such
chain systems.

The surface band structures are calculated with the
thin-film models KSigH,. Figure 6(a) shows the side view
of the thin film model 1, which is the same as that of
model 2 except for the height of the K atom. Figures 6(b)
and 6(c) show the top views of models 1 and 2, respective-
ly. The thin film consists of the K overlayer, four Si
layers, and the H overlayer on the backside surface. The
hydrogen atoms are adsorbed to eliminate the dangling
bonds of the backside surface. The structure of the sub-



6250

strate Si is assumed identical as that of the bulk Si except
for the top dimer layer. The bond length between neigh-
boring Si atoms is 2.3 A and we use the same value for
the Si—Si bond length of a dimer. The distance between
the K atom and the closest Si atom of a dimer is chosen
to be equal to the sum of K and Si atomic radii, 3.52 A.
The band structure is calculated with the numerical-
LCAO-Xa method. The details of the numerical pro-
cedures are given in Ref. 12.

Since the asymmetric dimer is presumed superior to the
symmetric one with respect to the bare Si(001)2< 1 sur-
face,!>!4 it is intriguing to calculate the electronic struc-
ture of the Si(001)2 X 1-K surface with the asymmetric di-
mers. However, it should be remarked that the mecha-
nism which stabilizes the asymmetric dimer as compared
to the symmetric one might not work for the alkali-metal
covered surface because of the charge transfer between the
alkali-metal atom and the dimer.

B. Results of the band calculation

To test the validity of our band calculation, we first cal-
culated the band structure of the bare Si(001)2 X 1 surface
with the thin film model SigH, which is obtained from
KSigH, by removing the K atom. The resultant band
structure near the Fermi level Er is shown in Fig. 7 to-
gether with the Brillouin zone (BZ) and the notation of
symmetry points. The bands with bulklike characters are
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FIG. 6. (a) Side view of the thin-film model KSigH,; seen
from the [110] direction, which is common to models 1 and 2,
except for the height of the K atom. (b) Top view of model 1.
(c) Top view of model 2.
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FIG. 7. Surface bands of the thin-film SigH,;. The BZ and
the notation of symmetry points are also shown.

located in shaded regions. There appear two surface
bands in the gap region. The lower band has the charac-
ter of the bonding 7 orbital while the upper one has the
character of the antibonding 7* orbital composed of two
dangling bonds of a dimer. The obtained band structure
is almost the same as that proposed by Ihm, Cohen, and
Chadi'® using the pseudopotential method. Hence, the
present slab model KSigH, is also supposed to work well
to reveal the band structure of the Si(001)2 X 1-K surface.
The calculated band structures of KSigH, for models 1
and 2 are shown in Figs. 8(a) and 8(b), respectively, in the
energy region near the Fermi level Er. The surface be-
comes metallic and Ep crosses the band b. Three elec-
trons per unit cell are accommodated in the bands @ and
b. The bands a, b, and c are the surface states composed
mainly of K valence states and those of a dimer as dis-
cussed below. Other bands with bulklike characters are
situated in the shaded regions. It should be noted that our
band calculations do not reproduce the band gap of the
substrate Si because they are obtained with thin-film
models which include only four Si layers. But this is not
crucial as we are mainly interested in the surface band
structures, which can be reproduced with thin-film
models so long as the charge transfer between the over-

" layer and the substrate is adequately described by them.

By comparing Fig. 8(a) with Fig. 8(b), we find overall
structures of surface bands are common to models 1 and 2
except for some detailed points such as width of each
band and relative energy differences between them. Ow-
ing to the chain structure of the Si(001)2X 1-K surface,
the energy dispersion of each surface band is generally
smaller along the G—X and Y—S axes than along the
G—Y and X—S axes. Yet, the band b has a rather large
energy change along the G—X axis as compared with oth-
ers due to the interaction between chains mediated by the
substrate Si.

Next, we will discuss the orbital characters of the three
surface bands as they are closely related with the disper-
sion of the overlayer plamon. Reflecting the peculiar
chain structure, the orbital components of each band do
not change along the direction perpendicular to the chain.
The origin of the bands a, b, and ¢ near the G—X axis in
the BZ is common to models 1 and 2 and can be under-
stood schematically as illustrated in Fig. 9. The wave
function of the surface band a is mainly made of the anti-
bonding combination of the K 4s and the bonding o orbi-
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FIG. 8. Surface bands of the thin-film KSigH, for (a) model 1 and (b) model 2.

tal of a dimer. It also contains the 7 orbital of a dimer
with a little smaller weight. The wave function of the
band b is mostly contributed from the bonding combina-
tion of K 4p, and the 7* orbital of a dimer. On the other
hand, the wave function of the band c is mainly made of
the bonding combination of K 4p, orbital and the 7 orbi-
tal of a dimer with a considerable admixture of K 4s orbi-
tal. The interaction between K 4s,4p, states and the 7*,0
states of a dimer is effectively larger in model 1 than in
model 2 since the K atom has two adjacent dimers in
model 1 while it has only one in model 2. Thus model 1
exceeds model 2 both in the energy lowering of the band b
and in the energy rising of the band a. Therefore the en-
ergy difference between the bands a and b of model 1 at
the G point (~0.7 eV) becomes smaller than the corre-
sponding value of model 2 (~1.1 eV). In contrast to this,
the interaction between the K 4p, state and the 7 state of
a dimer becomes larger in model 2 than in model 1 owing
to the large overlap of the two orbitals. This results in the
larger energy lowering of the band ¢ near the G—X axis
for model 2.

Near the Y—S axis, the orbital components of the
valence states of the substrate Si are for the most part the
same as those near the G—X axis for both models 1 and 2.
On the other hand, weights of K valence states in the
bands a, b, and ¢ are considerably reduced and each sur-
face band comes to have the character of the dangling-
bond band of a dimer. The large energy increase of the
band c¢ along the X—S axis is due to the K 4s component

Si( 001

898
s8
Sldb“ é 988 z-like
x-like
© O.{ .(’o. sike

FIG. 9. Orbital character of the surface bands a, b, and ¢
near the G—X axis. Sigp denotes the dangling bond states of Si
atoms before the formation of dimers.

K SigH,

in it while the large energy decrease of band b reflects 3-
Py of the substrate Si atoms.

Finally, we mention the charge distribution of the sur-
face. According to Mulliken’s population analysis, the
charge transfer from K atom to the substrate is about 0.13
electron for model 1 and about 0.09 electron for model 2.
The Si atom of a dimer becomes negative about —0.08
electron in model 1 and about —0.09 electron in model 2.

IV. DISPERSION OF THE OVERLAYER
PLASMON BASED ON THE SURFACE
BAND CALCULATION

A. Theoretical formulation

In this section we calculate the dispersion of the over-
layer plasmon by a nonempirical way based on the surface
bands calculated in Sec. III. For this purpose we solve the
random-phase-approximation (RPA) Eq. (2.3). The wave
function ¢, (=¢;) for the state with the wave vector k in
the nth band is written in terms of the Wannier function
of the nth band as

Bux(r SeXw, (r—1), @.1)

N1/2

where [ is a lattice vector. pey(r) is hereafter set equal to
exp(iQ-X)pexi(z). Then the induced charge can be ex-
panded as

Pina(,®)= 3 D(m,n,d)®(Q,m,n,d,r) , (4.2)

m,n,d

®(Q,m,n,d,r)= N% SellW,, (r— )W, (r—1—d) ,
1

/2

(4.3)

In the above, d is a lattice vector and only the terms with
n=m are included in Eq. (4.2) as ®(Q,n,m,d,r) is equal
to ®(Q,m,n, —d,r). The following matrix equation is de-
rived for the expansion coefficients D(m,n,d):
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[Smlnldl,mznzdz_"X(Q’wym 1,”1,d1,d3)I(Q,m 17"1’d3;m2’n2’d2)]D(m2:n2,d2)=X(Q,wam1;n17d1>d3)J(Q,m1;n|,d3) >
(4.4)

where repeated indices are understood to imply summation. In the above, X(Q,w,m;n,d,d’) is the polarization function
defined by

2 f(m,k—Q)—f(nk)
X(Qa,mmd,d) = e o) —e(mk) + o+ 78

____’2 f(mk—Q)—f(n,k)
N < elmk—Q)—e(nk)+w+i8

eik-(d—d')_,_iz f(n,k)—f(m,k+Q)

—ik-(d—d")
N4 f(n,k)—e(m,k+Q)+w+i8e (n>m)

—ikd | Li(Q-k)1d _

(efkdyelQ-Krd_5 . )e da0) (n=m). (4.5)

1(Q,m,n,d;m’,n’,d’) and J(Q,m,n,d) are the matrix elements defined‘by
1(Qm,n,d;m',n',d)= [ dr, [ dr, ®*(Q,m,n,d,r))G(r;,1,)®(Q,m",n",d',1;) , 4.6)

J(Qm,n,d)= [dr, [ dr, ®*(Q,m,n,d,r))G(r;,5,)e' pp(z;) . .7)

The plasmon energy is determined by the condition that Eq. (4.4) for no external field (J =0) has the nontrivial solu-
tion, i.e.,

/ det[amlnldl,mznzdz_X(Q’w’m 1,n1,d1,d3)I(Q,ml,nl,d3;m2,n2,d2)]=0 . (4.8)

However, if the plasmon energy is merged in the continuous energy spectrum of other individual excitation modes, the
plasmon peak becomes broad owing to the coupling with them and the zero point of the determinant becomes undecided.
In such a case, we calculate the energy loss spectrum of the incident electron beam directly by means of the “classical

trajectory approximation.”!6 17

The energy loss W of the specularly reflected electron beam outgoing with velocity (v),v,) is then given by

W=_— fo‘”d fBZ (27)2 [(Q+G1,0)[(Q+Gy,0)ImA(Q,0,G,G,) , 4.9)
l' 2
where
47v,
rNQ,n)= (4.10)

(0—v;" QY +v7Q%’

and G, G, are reciprocal lattice vectors. In the above, A(Q,w,G,,G;) is defined by

A(Q,w,Gl,G2)=-§:(1

where S is the area of the unit cell and the exponentially
decaying field exp(Qz) should be used as an external po-
tential in calculating J(Q,m,n,d). The quantity

— 2 I'Q+G;,0)IN'(Q+G,,0)ImA(Q,0,G,G,;) (4.12)
G,,G,

is interpreted as a loss function which gives the probabili-
ty that an excitation mode with energy o and with crystal
momentum Q is generated in the system by an incident
electron beam. All information of the elementary excita-
tion peculiar to the system is contained in A(Q,w,G,G,).

B. Numerical procedure

The Bloch function dnk(r) is expanded as
el
¢nk(r)=zcal(n,k)—§72~2e'k( oy ar—I—1,) ,
ar N4

(4.13)

—XD) tn ay,mynya X (Qu@,m N2, da,d3)T *(Q+Gyym y,ny,d T (Q+Go,mag,ng,ds)

(4.11)

where r, is the coordinate vector of the ath atom in the
unit cell, ¥4, is the Ath atomic orbital of the ath atom,
and C,,(n,k) is the expansion coefficient. The Wannier
function is composed of linear combination of atomic or-
bitals,

W,(r)= 3 Ala,A,Dg(r—I—1,) ,
a,A,l

(4.14)

where

xk‘(l+ra)

Ala, A )= (4.15)

EC,,;,(

We select the phase of C,,(n,k) so that W, (r) may be lo-
calized at r =0 as well as possible. This is achieved fairly
well if Cg,(n,k) corresponding to the dominant orbital of
the nth band is chosen to be a real positive number. In
this case, W,(r) becomes a real function since Cy;(n,k)
coincides with CJ,(n, —k) due to the time reversal sym-
metry.
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In evaluating matrix elements I(Q,m,n,d;m’,n’,d’)
and J(Q,m,n,d), G(r;r,) is replaced by the bare
Coulomb potential as it is not certain how the image po-
tential approximation holds on an atomic scale. To com-
pute them analytically, each numerical atomic base which
constructs the Wannier functions is fitted by the linear
combination of Gaussian orbitals. Six Gaussian orbitals
are found sufficient to reproduce the features of the
valence orbitals of Si and K perfectly. The k-space in-
tegral of the polarization function is calculated with the
tetrahedron method of Lehmann and Taut.!3

C. Results of the calculation

There are three surface bands a, b, and ¢ near the Fer-
mi level Er and thus following four excitation modes are
possible, in principle: (1) b—b intraband, (2) a —b inter-
band, (3) a—c interband, and (4) b—c interband excita-
tion modes. At first the dispersion of the a—b plasmon
is calculated following the procedure described above.
‘This mode corresponds to the s-p, mode of the parallel
rod model and is expected to reproduce the features of the
observed plasmon dispersion. As we are interested in the
a —b excitation mode, we adopt an approximation to re-
tain only the matrix components with (m,n)=(a,b)
neglecting the couplings with other excitation modes.

The Wannier functions of surface bands a and b are
calculated from Egs. (4.14) and (4.15). In order to localize
them at r=0, C,y(n,k) corresponding to the bonding o
and 7* orbital of a dimer are chosen to be a real positive
number in the BZ for surface bands a and b, respectively.
Since the obtained Wannier functions are well localized
along the direction perpendicular to K chains, the overlap
of two Wannier functions, W,,(r)W,(r—d), becomes
large only for the three vectors in units of lattice parame-
ters: d=(0,0), (0,+1). Thus these three vectors are in-
corporated into the sets of indices (m,n,d) and as a result
the matrix in Eq. (4.4) becomes 3X3. The calculated
dispersion of the a—b interband plasmon of models 1
and 2 is shown in Figs. 10(a) and 10(b), respectively, for
the [110] and the [100] azimuth. The shaded region indi-
cates the maximum of the individual excitation energy.
The depolarization shift at Q=0 amounts to about 0.5
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FIG. 10. Calculated dispersions of the a—b interband
plasmon for (a) model 1 and (b) model 2. The shaded region in-
dicates the maximum of the a — b individual excitation energy.

eV. The obtained plasmon dispersion exquisitely repro-
duces both the positive linear dispersion and the
azimuth-dependent anisotropy of the experimental disper-
sion. The slope of the dispersion at Q =0 becomes the
largest for the [110] azimuth as in the case of the
parallel-rod model. Moreover, saturation of the plasmon
energy in large Q regions, which was not reproduced by
the parallel-rod model, is also realized very well. The
difference of the plasmon energy between models 1 and 2
is attributed to the difference of the maximum single-
particle excitation energy that amounts to 0.4 eV.

Next, we consider the couplings of the a—b excitation
and other surface excitation modes. Especially for model
2, the energy region of the a—b plasmon overlaps with
the individual excitation spectrum of the a—b and b—c
excitation modes. Thus these modes might conceal the
a —b interband plasmon from the energy loss spectrum of
the incident electron beam. So we solve the matrix equa-
tion (4.4) taking three excitation modes (m,n)
=(a,b),(a,c),(b,c) into consideration. But in this case we
must be reconciled to taking only d=(0,0) in sets of in-
dices (m,n,d) so as to make the calculation tractable.

The obtained energy loss spectrum by Eq. (4.12) is
shown in Fig. 11 for a crystal momentum Q=(0.2,0)
A ~1. The sharp peak at w~1.5 eV corresponds to the
a—b plasmon. Though the plasmon energy is somewhat
smaller than that of Fig. 10(b), this is an effect caused by
neglecting the matrix elements with d=(0,£1). The con-
tinuous loss spectrum below the a—b plasmon corre-
sponds to the a —b individual excitation spectrum, while
that around and above it is due to the ¢ —c and b—c in-
dividual excitations. The additional small peak near the
maximum of the b—c individual excitation spectrum is
roughly regarded as the b—c plasmon. However, the ma-
trix element 1(Q,b,c,d=0;b,c,d’=0), in other words, the
polarization. field by the b—sc excitation, is rather small
and this peak appears only after taking account of the
coupling of the b—c and a—b modes. We find another
plasmon pole at @~4.0 eV which is identified as the
a—c plasmon. The Wannier functions of the surface
bands a,c have the same symmetry and thus the matrix
element I(Q,a,c,d=0;a,c,d’=0) becomes large. This
leads to the large depolarization shift of the a—c

>
N
=
[
E
- -+ T w(eV)
0 10 20 300

-FIG. 11. Calculated energy-loss spectrum of model 2 for
Q=(0.2,0.0) (A~!). Three excitation modes with (m,n)
=(a,b),(a,c),(b,c) are considered. The sharp peak corresponds
to the a —b interband plasmon. )
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plasmon which comes to about 1.2 eV. From the figure
we can expect that the a—b plasmon is clearly observed
in the energy loss spectrum of the electron beam even if it
is merged in energy regions of other excitation modes and
it seems reasonable to assign the observed plasmon peak
to the a—b interband plasmon in the present structure
models. ’

Finally we will comment briefly on the absolute value
of the a—b interband plasmon energy at Q=0. It is
about 1.2 eV for model 1 and about 1.6 for model 2. So
regarding the agreement with the experimental value
(~1.7 eV), model 2 seems superior to model 1. But it is
not conclusive, since we have not calculated the total ener-
gies of both systems yet.

V. SUMMARY

Collective modes in the array of alkali-metal adatom
chains are elucidated using the simplified rod model. The
s-p, interband plasmon peculiar to the chain structure
reproduces the features of the observed plasmon disper-
sion well. The subsidiary structure of the AREELS at the
lower tail of the main loss peak is considered to corre-
spond to the s-s intraband mode. Detailed band structure
of Si(001)2X1-K surface is obtained by the first-

principles band calculation. Three surface bands, a, b,
and c, appear near the Fermi level. The bands a, b, and ¢
have the K 4s—, K 4p,—, and K 4p,—like characters near
the G—X line, respectively. These surface bands are
found not to be influenced against slight changes of the
surface structure. The dispersions of the overlayer
plasmon are calculated nonempirically based on this band
calculation. The a —b inter-surface-band plasmon mode,
which reproduces the observed plasmon dispersion very
well, is assigned to the main loss peak of the AREELS.

In conclusion, the observed plasmon dispersion of the
Si(001)2 X 1-K surface can be explained fairly well based
on the structure models with alkali-metal adatom chains
riding on the ridge of Si dimers. This fact provides a sup-
porting evidence of such models from the theoretical
point of view.
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