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Quantum Brownian motion in a periodic potential
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We study the statics and dynamics of a quantum Brownian particle moving in a periodic potential
and coupled to a dissipative environment in a way which reduces to a Langevin equation with linear
friction in the classical limit. At zero temperature there is a transition from an extended to a local-
ized ground state as the dimensionless friction o. is raised through one. The scaling equations are
derived by applying a perturbative renormalization group to the system's partition function. The
dynamics is studied using Feyoman s inAuence-functional theory. We compute directly the non-
linear mobility of the Brownian particle in the weak-corrugation limit, for arbitrary temperature.
The linear mobility p~ is always larger than the corresponding classical mobility which follows from
the Langevin equation. In the localized regime a& 1, pI is an increasing function of temperature,
consistent with transport via a thermally assisted hopping mechanism. For a&1, pI(T) shows a
nonmonotonic dependence on T with a minimum at a temperature T*. This is due to a crossover
between quantum tunneling below T* and thermally assisted hopping. above T . For low friction
the crossover occurs when the particle's thermal de Broglie wavelength is roughly equal to the dis-
tance between minima in the periodic potential. We suggest that the regime a&1 describes the
physics of the observed nonmonotonic temperature dependence of muon diffusion in metals.

I. INTRODUCTION AND MODEL

The study of Brownian motion of a classical particle
described by the simple Langevin equation

tance only via the weighted density of states
2

7T ~a
+(co)= g 5(co —co ), co )0 .

ma~a
(1.4)

(g(t) ) =0, (g(t)g(t') ) =2il T&(t —t'), (1.2)

where the angular brackets denote an ensemble average
(throughout the paper we take k~ ——1). In recent years
there has been much interest in studying the quantum
mechanics of a particle, acted on by dissipative forces,
which reduces to (1.1) in the classical (i.e., high-
temperature) limit. ' The most successful approach has
been to couple the quantum particle to an environment or
bath of an infinite number of degrees of freedom, which
provides both the friction and the fluctuating force. Prob-
ably the simplest system-plus-bath Hamiltonian which
reduces to (1.1) in the classical regime was recently stud-
ied by Caldeira and Leggett. ' In the Caldeira-Leggett
model the coordinate q is coupled linearly to an infinite
set of harmonic oscillators with a Hamiltonian'

p2
+ V(q)+ gP /2m

2M

+ —,
' g macoa(xa+qtIa/macoa) (1.3)

As far as the properties of the particle ar'e concerned, the
coupling constants A,a and frequencies coa are of impor-

Mq+iiq+ =f(t)av
Bq

is one of the basic subjects of nonequilibrium statistical
mechanics. Here, il is a phenomenological friction coeffi-
cient, V(q) the external potential, M the particles mass,
and g(t) a fluctuating force which obeys

Caldeira and Leggett considered specifically a spectral
density' of the form

J(co)=i)co . (1.5)

V(q) = —V cos(2irq /qo ) —Fq,

with I' a constant externally applied force. As em-
phasized recently, this model can be generalized easily to
arbitrary dimensions and may then be appropriate for
describing the motion of a heavy charged particle in the

With this choice the Hamiltonian (1.3) when treated clas-
sically is equivalent, upon elimination of the bath degrees
of freedom, to the Langevin equation (1.1). By canonical-
ly quantizing (1.3) it is then possible to study the motion
of the Brownian particle within the quantum regime.

We emphasize that (1.3) is certainly not the only possi-
ble microscopic Hamiltonian which reduces to (1.1) in the
classical limit. It is, however, probably the one most
amenable to theoretical analysis since all the terms in the
Hamiltonian except possibly the external potential are
quadratic. For nonlinear potentials V(q) the dynamics is
entirely nontrivial, and the model (1.3) is expected to
share many qualitative features with more complicated
system-plus-bath Hamiltonians. As such, the Caldeira-
Leggett approach provides us with a generic, yet tractable,
model for studying Brownian motion in the quantum re-
girne.

In this paper we use the Caldeira-Leggett model to
study the behavior of the quantum Brownian particle in a
periodic potential of the forin (see Fig. 1)
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v(q )

FIG. 1. Periodic potential V(q) = —V cos(2mq/qo) —Fq with
lattice constant qo and potential drop e=Fqo per period.

interior or at the surface of a metal. The underlying crys-
tal provides the periodic potential, and the coupling to the
conduction electrons gives rise to a frictional force (i.e.,
the dissipated power is proportional to the velocity of the
particle squared). Although this reasoning is suggestive,
at present there is no detailed justification for replacing
the conduction electrons with a bath of harmonic oscilla-
tors as in (1.3)." Moreover, in a real metal there are addi-
tional complications due to the presence of impurities and
the effect of phonons. Nevertheless, this model provides
an idealized description of the dynamics of charged parti-
cles in metals and, as we will see, does in fact show non-
trivial behavior which may be compared with real sys-
tems.

Caldeira and Leggett originally introduced the Hamil-
tonian (1.3) to study the macroscopic quantum tunneling
of the phase difference q across a Josephson element in an
rf SQUID ring. It has also been applied to describe tun-
neling in a current-biased Josephson junction. Although
the washboard potential (1.6) has generally been used to
model the current-biased junction, ' our analysis may not
be appropriate in this case. The difficulty is that in the
Josephson junction adding 2m to the phase difference (i.e.,
adding qp to q) returns the system to the same state. '3 In
our analysis below, however, we treat these states as dis-
tinguishable, as is appropriate for a physical particle.

This paper focuses on both the static and dynamic
properties of the quantum Brownian particle in the
periodic potential (1.6). Firstly we discuss the nature of
the particle's ground state in the unbiased periodic poten-
tial (F=0). In accordance with a suggestion by Schmid
and more recent work, ' we find that if the friction
exceeds a critical value, the ground state changes from ex-
tended to localized. This transition is analyzed by apply-
ing a perturbative renormalization-group theory in the
weak-corrugation (small V) limit to the system s partition
function. The partition function is a one-dimensional
(1D) analog of the two-dimensional (2D) sine-Gordon
theory' ' and the localization transition can in fact be
thought of as a 1D version of the roughening transi-
tion. ' '

The bulk of the paper, however, is devoted to studying
directly the dynamics of the Brownian particle at finite
temperature. In particular, we are interested in the physi-
cal dc mobility

p=v/F,
where U is the particle's steady-state velocity down the
washboard potential. We determine p explicitly in the
small corrugation limit (to order V ) but for arbitrary
friction, temperature, and external force. The resulting
expression contains the mobility all the way from zero
temperature up to the classical limit. The main con-
clusions we reach are the following.

The linear mobility for the quantum Brownian particle
is always larger than the corresponding classical linear
mobility which follows from the Langevin equation. This
is in accordance with one s intuition that quantum fluc-
tuations allow for tunneling through the barriers of the
periodic potential. For large friction, where the particle is
localized at T =0, the linear mobility is a monotonically
increasing function of temperature which approaches the
classical result as T~oo. This is consistent with trans-
port via a thermally assisted hopping mechanism, which
proceeds at a faster rate with increasing temperature. The

-most interesting result, however, is for low friction where
the particle is delocalized at T =0. In this case, the linear
mobility is found to have a nonmonotonic temperature
dependence with a minimum at a crossover temperature
T'. Below T' the mobility is a decreasing function of
temperature, whereas above T' it is increasing with T.
For T && T* the dominant transport mechanism is

- "thermally resisted" quantum tunneling between adjacent
minima in the potential; with decreasing temperature the
environment destroys less of the quantum coherence
necessary for tunneling and the mobility increases. For
T &&T, on the other hand, the environment has
suppressed the quantum tunneling and the dominant con-
duction mechanism is thermally assisted hopping over the
barrier. The crossover temperature is given by'

T =C(a)fP/Mqp, 0&a& 1

where C(a) is a monotonically decreasing function of the
friction a, which approaches m /3 as a~0 and zero as
a—+1. With increasing friction the crossover temperature
decreases, requiring lower temperatures to reach the quan-
tum tunneling regime (T & T'). For low friction (1.8) can
be written

A, ( T*)=qp,

where A,(T)=Pi(MT) ' is the particle's thermal de Bro-
glie wavelength and qo the periodicity in the washboard
potential.

Recently several authors have studied the same model
in the strong-corrugation limit by replacing the system
with a tight-binding lattice with one state per site. These
authors also find that for low friction the mobility de-
creases with increasing temperature. However, since
thermal activation over the barriers is not present in a
tight-binding description, it is not possible to see the
crossover from "resisted" quantum tunneling to thermally
assisted hopping. The advantage of the present approach
is that the results are valid for arbitrary temperature, al-
lowing the crossover to be studied explicitly.

A nonmonotonicity in the diffusive behavior of a
Brownian particle has in fact been observed indirectly in
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recent experiments probing the spin relaxation of muons
in metals. Kondo has recently discussed this sys-
tem in a tight-binding description and argues that the
nonmonotonicity is due to a competition between the ef-
fects of the electrons and phonons on the nearest-neighbor
tunneling rate (computed within Fermi's golden rule).
When the temperature approaches the Debye temperature
the effect of the phonons is strongly modified, leading to
an enhancement in the quantum tunneling rate. In con-
trast to Kondo, we suggest that the high-temperature re-
gime (T )T") may in fact correspond to thermal activa-
tion over the barriers, rather than a modified quantum
tunneling. In our calculation it is these "over-the-barrier"
processes which lead to the nonmonotonic diffusive
behavior.

The paper is organized as follows: In Sec. II we study
the ground-state properties of the particle in the unbiased
periodic potential and determine its T =0 phase diagram
by a renormalization-group calculation. In Sec. III the
finite-temperature dynamics is investigated within
Feynman's influence-functional theory. ' In particular,
it is shown in Sec. IIIB that there is an exact duality in
the time-dependent density matrix between the periodic
potential and a tight-binding model. The mobility in the
tight-binding lattice is determined in Sec. III C to second
order in the hopping matrix element. Using the duality
relation, this gives the mobility in the small corrugation
limit at arbitrary bias and temperature. The results are
discussed in detail in Sec. IV, all the way from zero tem-
perature up to the classical limit.

where

Ko(P)= g [—,csch(Pficg /2)]

is the partition function of the free-oscillator bath. The
path integral in (2.2) satisfies the boundary conditions
q(0) =q(PA') =q. The effective Hamiltonian (or effective
"action") is given by

H=Ho+H

with

(2.3)

q (r) —q (r')
0

+—f dr q (r), (2.4)

V ~ 2~q (r)
H& ———— d~cos

e'o
(2.5)

2~q (1.)
e'0

(2.6)

(2.7)

/

It is convenient to rewrite H in terms of the dimensionless
parameters

Vo ——V/Eo, (2.8)
II. GROUND-STATE PROPERTIES

AND LOCALIZATION TRANSITION

In this section we study the ground-state properties of
the Hamiltonian (1.3) for a periodic potential with zero
bias. By considering the weak-corrugation limit, we' ar-
gue below that the ground state changes from delocalized
to localized in the coordinate q as the dimensionless fric-
tion n is raised through a critical value a=1. A simple
variational calculation suggests that the transition is
second order with a localization length diverging as
(a —1) i . A careful renormalization-group analysis,
however, shows that the Aows are rather singular, making
it difficult to distinguish between a first- or second-order
transition.

To obtain information about the nature of the ground
state, we study the diagonal elements of the reduced
equilibrium density matrix

p~(q'P)= Xe f Qd~a I P.(q [&a]) I'

p q(q 'p) =Ko(p) f Dq(v')exp[ —H (q)] (2.2)

as P~ oo. Here g„and E„are the eigenstates and ener-
gies of the full Hamiltonian (1.3). The inverse tempera-
ture P= 1/k&T. It is convenient to write (2.1) as a path
integral over paths q(r) and x (r) with the imaginary
time r running from 0 to PA'. After performing the
harmonic-oscillator path integrals, the density matrix
takes the form

with the energy Eo defined by

(2M)
0 2

Mqo
(2.9)

Here Eo is the quantum-mechanical energy necessary to
confine a particle of mass M within a lattice spacing. De-
fining, finally, a corresponding frequency

A =Eo/A, (2.10)

we have, after taking P~oo and Fourier transforming
(2.4),

H = —,
' f Sw(co)

I
P(co)

I

—Vo& f d«os/(r),
2m.

(2.1 1)

with

I
~

I
+2' A

(2.12)

The gradient term proportional to a in (2.11), which
arises from integrating out the environmental degrees of
freedom, is scale invariant in co or v. and, as such, is a
one-dimensional analog to the Laplacian in two dimen-
sions. Thus, the Hamiltonian (2.11) is essentially a 1D
version of the 2D sine-Gordon model. ' ' The higher-
order gradient term due to the kinetic energy simply pro-
vides a natural high-frequency cutoff A, which is inverse-
ly proportional to the particle's mass. By simple power
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counting this term is expected to be irrelevant. Thus, in
what follows we will drop it,

particle is localized with a localization length
g=qo(P )'~ which, from (2.17) and (2.18), is found to
diverge as

SA(co)~S(co)=
~

co
~

277 g-(a —1) '~, a~i+ . (2.19)

F&F„+(H H„)„, — (2.13)

where the average is performed over H„. We choose a
quadratic trial Hamiltonian of the form

and instead restrict the frequency integrals to ~co
~

&A.
Equations (2.2), (2.11), and (2.12) are equivalent to the
partition function of a classical one-dimensional interface
model with "height" variable P(r) in an external field
which favors interfacial positions at integer multiples of
2~. As we will show below, such a model has a
roughening transition as a is varied. Since the interfacial
width is equivalent, in the original variables, to the width
of the ground-state density matrix, this is a transition be-
tween a localized and extended eigenstate.

Before we discuss the renormalization-group analysis of
this transition, let us first consider a simple variational
calculation in a form originally applied by Saito' to the
sine-Gordon model. This method employs Feynman's
variational principle, which states that for any trial Ham-
iltonian H„with associated free energy F„„the system's
true free energy is bounded above by

We now consider a systematic renorrnalization-group
analysis of this transition. Working perturbatively in
powers of Vo, we derive scaling equations for a and Vo
using a finite-momentum-shell recursion method. ' We
show below that a is not renormalized to second order in
Vp and argue that this should remain true to all orders.
As expected, Vp is renormalized and a transition at a= 1

is found. Consider the Hamiltonian (2.11} with
S(co)=(a/2m')

~

co
~

and a sharp high-frequency cutoff at
A. As usual, we divide the field into slow and fast modes,

P(r) =P, (r)+Pf(r) ',

where

(2.20)

P(co) =P, (co) for
~

co
~

&p ,

y(co)=yf(co) for p& ~co
~

&A .
(2.21)

Here p, which separates the slow from the fast modes, is
chosen to satisfy p «A. We now integrate out the fast
modes in the density matrix by expanding in powers of
Vp,

Htr =
2 ~tr

St,(co)=
~

co
~
+m .

2m

(2.14)

(2.15)

p~- D exp —Hp —H1 —— D,exp —H

(2.22)

In the trial Harniltonian we have replaced the periodic po-
tential by a harmonic potential which constrains the inter-
face to be near the origin. The variational parameter will
thus be nonzero for a localized ground state. Minimizing
the right-hand side of (2.13) gives the following self-
consistent equation:

where H is given by

N s co + H1

——,'((H, —(H, ))')+o(v,') . (2.23)

m/A= Voexp( ——,
' (y'&„)= Vo

(a/2m )A+ m

(2.16)

The averages in (2.23) are over the fast modes with a
two-point correlation function

G(r) =(pf(r)pf(0)) = J' " S-'(co)e'" W(co/p),
l~l «

Since a consistent solution requires that m vanishes in the
limit Vp —+0, we obtain

0 for a&1,
A(2n/a)' ' "Vo ' " for a&1, (2.17)

which gives a localized ground state if a & 1. The corre-
sponding interfacial width is

(2.24)

where W(x) is a smoothing function with W(x}~0 for
x «1 and W'(x)=1 for x »1. To avoid the generation
of spurious long-ranged behavior in G (r), W(x) must be
chosen sufficiently smoothly. For example, with

W(x)= (2.25)
(1+x )'

dco(Pz)„= f S,, '(co)=(2/a)ln(A/m), A»m .

(2.18)

we have, for A»p,
G(r)=(2/a)XO(pr) if Ar»1,

G (0)= (2/a)ln(A/p),
(2.26)

The variational approach thus predicts that for low fric-
tion, a & 1, the interface is rough (i.e., has a width which
diverges logarithmically with the size of the system) and
the particle is delocalized. .For high friction, a&1, the

where Ko is the modified Bessel function of the second
kind which falls off exponentially for large argument.
The averages in (2.23) can be expressed entirely in terms
of G(r),
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(Hi) = —VOAexp[ ——,'G(0)] I drcosP, (r),
VA

((Hi —(Hi)) ) = exp[ —G(0)] I d~ I d r'Icos[/, (~)+P,(~')]( e ' '' —1)
2

(2.27)

+cos[P, (~)—P, (v')](e ' ' —1)I . (2.28)

To complete the renormalization-group transformation,
we must rescale, r~w'=(A/p)r, to bring H back into its
original form. No rescaling of P (i.e., wave-function re-
normalization) is needed, since the theory has an underly-
ing /~/+2m. symmetry. Consider first the renormaliza-
tion of Vo generated by odd powers in (2.23). After re-
scaling in (2.27) we have, to lowest order,

Vo(p) = Vo(A)(A/p)exp[ ——,
' G(0)]

= V,(A)(~/A)"-' . (2.29)

I

To obtain the differential flow equations, we differentiate
Vo(p) with respect to p, keeping the bare parameters A
and Vo(A) fixed. Defining dl = —dpi@, we then have

r

av,
Vo(I)+ 0( Vo),3 (2.30)

I a

which shows that to lowest order Vo scales to zero if a & 1

and grows if a & 1.
Consider next the renormalization of a coming from

even powers in Vo, i.e., Eq. (2.28). Since G(r) is short
ranged and falls off exponentially with the renormalized
"lattice spacing" p ', we may perform a gradient expan-
sion in (2.28). As in the sine-Gordon model, the first term
generates a cos(2$) contribution which is irrelevant near
the transition at a=1. The most relevant operator gen-
erated by the gradient expansion in the second term is of
the form J dw(BQ/Br) . In the 2D sine-Gordon theory
this renormalizes the temperature. ' ' However, in the
one-dimensional theory considered here, such a term is ir-
relevant by simple power counting and clearly does not
modify a, the coefficient of f dc@ ~co

~ ~

P(co)
~

. Thus,
we conclude that a is not renormalized to second order in
Vo. In fact, we believe that a will remain unchanged to
all orders. To argue this, we first observe that the friction
g is the coefficient of an operator which is nonlocal in ~
[i.e., the first term in Eq. (2.4)]. In our momentum-shell
recursion method, however, only local operators can be
generated, and thus g cannot be modified. Moreover,
since q~q+qo is a symmetry of the Hamiltonian, qo is
not renormalized either (there is no need for wave-
function renormalization), and thus the dimensionless
friction coefficient a =rjqo/2rrR remains unchanged
under the full renormalization-group transformation. '

The flows we have deduced are shown in Fig. 2. Since
a is not renormalized, the flows are a11 vertical. %'e
have also drawn the flows near Vo ——Oo by exploiting a
self-duality between the weak corrugation and the tight-
binding limit Vo —+ 00. Specifically, Schmid demonstrat-
ed that the equilibrium density matrix in an imaginary-
time path-integral representation is self-dual under

a~1/a and Vo~b, ( Vo), with 3 the hopping matrix ele-
ment in the tight-binding limit, which goes to zero as
Vo~ ao. As in the variational calculation, the flows indi-
cate a transition as a function of the dimensionless fric-
tion u. For a&1 and Vo small, Vo scales to zero, imply-
ing that at long imaginary timescales the system's
behavior is described by the Gaussian fixed line Vo ——0.
Thus, the interface is rough and the particle delocalized.
When a&1 and Vo small, Vo is increased by the flows
outside the range of the weak-corrugation expansion. The
behavior of the system is then determined by the fixed
point which attracts these flows.

It is tempting to connect the flows between the two per-
turbative regimes of large and small Vo, implying that for
a & 1 all flows terminate at the localized fixed line
Vo ——oo. This is reasonable only if the coefficients of all
the higher powers in Vo, in the flow equation (2.30), van-
ish at a=1 as the linear term does. For example, if, as in
the 2D sine-Gordon theory, ' ' the coefficient of the cu-
bic term were nonzero and, say, negative at +=1, then a
parabolic line of fixed points Vo-(a —1)'~ would ter-
minate the flow lines for a & 1 in Fig. 2. To rule out this
possibility, we have demonstrated explicitly that the
coefficient of the Vo term does indeed vanish at a= 1.
We believe that, in fact, the coefficients vanish at a= 1 to
all orders in Vo. Thus, a=1 would represent a fixed line.
This suggests that it is not unreasonable to connect the
flows as shown in Fig. 2. At any rate it seems extremely
likely that for a& 1 they will terminate at a localized
fixed point. We thus conclude, in agreement with the
variational calculation, that when u ~ 1 the particle is lo-
calized for arbitrari1y sma11 Vo.

Even if the flows for a & 1 are as depicted in Fig. 2, it is
still impossible within perturbation theory to discern

O
I Q

FIG. 2. Scaling flows at zero temperature in the unbiased po-
tential. The dashed lines are the expected flows for intermediate
corrugation strength Vo. For any Vo the ground state is delo-
calized if a & 1 and localized if a & l.
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whether the transition is second or first order {in the sense
that the localization length diverges smoothly or with a
discontinuous jump as a —+1+). Normally, the correlation
length would be determined b'y integrating the flow equa-
tions from small Vo out to a reference state, say Vo—1,
where it is argued to be of order 1 (in units of the lattice
spacing). This method cannot be applied here, since a
flow which starts near a=1 and small Vo arrives at a
reference state that is still near the transition a=1 and,
thus, might not have a correlation length of order 1. Con-
sequently, from the perturbative flow equations, we can
neither confirm nor refute the prediction from the varia-
tional treatment (2.19) that the localization length for
small Vo diverges smoothly as (a —1) '~ when a—&1+.

We would like to point out that, through the simple ex-
tension p= lim

(x(r))
tF (3.3)

Due to the external force F, subsequent minima in this
potential differ in energy by an amount e=Fqo. Of in-
terest is the dependence of the mobility on the dimension-
less friction a, the corrugation strength V, the bias e, and,
in particular, the temperature T. The analysis is based on
the influence-functional formalism developed by Feynman
and Vernon. Initially the system is prepared with the
particle in a localized wave packet near the origin and the
harmonic oscillators in a thermal distribution at tempera-
ture T. The probability density P(x, t) for finding the
particle at x at a later time t is expressed as a double path
integral. The particle's mobility is then obtained directly
by averaging x over the probability density

H =H(q„) +H(q~ ) +H(q, ), (2.31)

the analysis above can trivially be extended to two or three
dimensions without any change in the phase diagram and
scaling behavior.

Finally, we emphasize that the nature of the ground
state, and, in particular, the existence of the localization
transition, is rather sensitive to the precise form of the
coupling in the original Hamiltonian (1.3). For example,
suppose this coupling was modified in such a way that the
nonlocal term in the effective Hamiltonian (2A) took the
orm

f d, g(q(~) —q(~') )
d7 d7

(v ~')
(2.32)

with some non-negative function g, satisfying g(0)=0.
The nature of the ground state is then exceedingly sensi-
tive to the behavior of g (q) for large argument. If, for ex-
ample, g -aq" for q —+ ao, then the particle would be lo-
calized regardless of the magnitude of a (since this term
renormalizes a, the coefficient of the quadratic term,
leading to flows which always scale to large Vo). On the
other hand, if g decays to zero as q ~ oo, then the particle
will be delocalized. This is because, in this case, it is al-
ways possible to find a quadratic theory of the form (2.4)
with a& 1, which nevertheless suppresses the interfacial
fluctuations more than (2.32).

III. DYNAMICS AT FINITE TEMPERATURE

A. Statement of the problem

In this section we study the dynamics of the quantum
particle with coordinate q which is generated by the Ham-
iltonian (1.3). Our aim is to calculate the response to a
time-independent external force I". In particular, we
analyze the nonlinear dc mobility p defined by

Our calculation of p is, for the sake of clarity, divided
into two steps. In Sec. III B the general Feynman-Vernon
theory is introduced and applied specifically to the Hamil-
tonian (1.3). Since the potential energy (3.2) enters in the
exponent of the path integral and is nonlinear in q, the
probability density cannot be computed exactly. Howev-
er, by expanding the exponential and retaining all terms,
we derive a formally exact expression for the nonlinear
mobility p as an infinite series in powers of V . Using
this result, the system s mobility p is, in turn, related to
the mobility for a particle hopping on a one-dimensional
tight-binding (TB) lattice with matrix element V. The
tight-binding model is at the same temperature T, but has
a dimensionless friction 1/a and energy drop «/a between
nearest-neighbor sites. In particular, we show that the
mobilities are related by

p, (e a) pTB(e/a, 1/a)=1-
90 Po

(3.4)

at arbitrary T and e. Here po ——1/g is the mobility for a
free particle, V =0, with friction (which is independent of
e or T and also whether the particle is quantum or classi-
cal in nature). Equation (3.4) is a generalization to real
times and finite T and e of the duality between the period-
ic potential and a tight-binding model, discussed by
Schmid for the T =0 equilibrium density matrix.

In Sec. III C the formal power-series expression for the
mobility is analyzed in the weak-corrugation limit. In
particular, p is obtained to second order in V at arbitrary
temperatures, friction, and external force. The calculation
is most easily discussed in the language of the dual tight-
binding system which, in this limit, has a very small hop-
ping matrix element.

p=u/F, (3.1) B. Feynman-Vernon theory and duality

V(q) = —V cos(2mq/qo) Fq . — (3.2)

where u is the velocity of the particle moving down the
("washboard" ) potential

In this section we derive a formal expression for the
nonlinear mobility in the periodic potential (3.2) and relate
it to the corresponding quantity in a tight-binding model
with hopping matrix element V. To study the dynamics



6196 MATTHEW P. A. FISHER AND WILHELM ZWERGER

generated by the Hamiltonian (1.3), we use the influence-
functional formalism developed by Feynman and Ver-
non. ' This theory considers directly the time-
dependent reduced density matrix

(3.5)

traced over the bath coordinates. The probability density
P(x, t), which is necessary to obtain the mobility via Eq.
(3.3), is simply the diagonal matrix element of p,

P(x, t) = &x
i p(r) i

x) . (3.6)

Under the assumption that the initial total density matrix
factorizes, the time evolution of p(t) in the coordinate
representation can be written as

&q I
p(r)

I
q')= f "qo f "qo'&qo

I
p(0) I qo &

XJ(q,q', r; qo, q0, 0) . (3 7)

Here, J is given by the double path integral

'C

J(q,q', t; qo, q0, 0)= f Dq f, D*q'expI (i/A' )[S(q)—S(q')]+i@(q,q')],
q i (3.8)

t

4, may be expressed in terms of the environment density
of states J(co) introduced in (1.4) by

where
r

S(q)= f q —V(q) dt' (3.9) 86)
ag(t) = —f J(co)sin(cot),

az(t) = f J(co)cos(~t)coth( —,'Pkco),

(3.12)

is the classical action of the uncoupled particle and
C&[q(t'), q'(t')] the influence phase. In this formulation
the environment has been eliminated completely from the
problem and reveals itself through an effective coupling
between the paths q(t') and q'(t') described by @. If the
bath of harmonic oscillators is assumed initially in ther-
modynamic equilibrium at temperature T, @ has the
orm

(3.13)

(3.14)

Specializing to Ohmic dissipation with spectral density
J(co)=rico, the influence phase (3.10) becomes

i+(x,y) =(i /fi)ri f dt'x (r')y'(t')

(i /fi)rex (t)—y(t) —S2(y), (3.15)

h
t t'

S,(y)= —f dt' f ds y(i')a~(r' s)y(s) . —
(3.10)

where for later convenience we have introduced center-
of-mass and relative coordinates

(3.16)

t t
i @(x,y) = —(i/A) f dt' fds 2x, (t')y (s)aI(s t')—

t'—(I/R) f dt' f dsy(t')az(t' s)y(s)—
t—(i /fi)M(bc@) f dt'x (r')y(t'),

x = —,
' (q+q'), y =q —q' . (3.11)

The functions aI and az, as well as the counter term in
the original Hamiltonian (1.3) which we have included in

Due to the nonlinearities which enter into S(q), it is
clear that a direct evaluation of the double path integral
for J is not possible. In order to make progress, we ex-
pand the cosine term of the potential and write

t al
(g V/g)ll t g g n

exp —V f dt'cos(2mq/q ) = g, f dt, f . . f dt„ ff c so[ m2q(t;) /q] .
n=0 i=1

(3.17)

Since each cosine has two Fourier components, it is convenient to introduce n variables, e; =+1, which we refer to as
charges. Theri (3.17) may be written in the form

r

f dt, f dt2 . f dt„exp ——f dt'p(t')q(r') (3.18)
n =0 fe;)

where g{,)
denotes the summation over all possible configurations of the e;, and

t

(3.19)

is the corresponding charge density. The time integration in (3.18) is over the range 0& t& & . & t„&t Since we ne.ed
to calculate a double path integral for the time-dependent density matrix, this procedure has to be repeated for the conju-
gate variable q'. A new set of charges oJ

——+1 are introduced with corresponding charge density

2m.Ap'(r)= g o 5(r —r') .
qo

(3.20)
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Inserting these expansions into (3.7) and expressing everything in terms of the coordinates x and y, we find that the prob-
ability density can be written in the following form:

'n 'n'
00

P(x, t) =
n, n'=0

with

f dti f dt's
' ' ' f dt f dxo f dyo(xo+ yo ~

p(0) ~xo 2~yo)G(p p 'xo yo»
Ie;,cr I

(3.21)

X 0
G= f Dx f Dy exp (i/A) f dt'[Mxy+gxy'+Fy —x(p —p') —,'y(p+—p')]—S2(y) (3.22)

The advantage of this representation is that the path integrals over x and y are now Gaussian and can be done exactly.
Performing these integrations, we obtain

G = exp —Mxy +—f dt'[F —,
'

(p—+p')]y (t') —S2(y)
2m% (t) fi o fi

(3.23)

where d(t)=y '(1 —e i') (y=g/M), and the path y(t')
is the solution of the differential equation

y —yy =(p' —p)/M, (3.24)

with boundary conditions y(0) =yo and y(t) =0. Taking
the Fourier transform of (3.24) and inserting it into Sz(y),
it is easy to see that at long times t~ ao the only configu-
rations which contribute are those for which

tf (p p')dt'=—0 . (3.25)

Thus, we can restrict the sum over n and n' in Eq. (3.21)
to n+n'=even, which leads to a series containing only
even powers in V.

The general solution of (3.24) may be written as a sum
of a particular and a homogeneous solution, y =y~+yq.
It is convenient to define a function

h (t)=ei'H( t)+H(t), — (3.26)

where H(t} is the usual Heaviside step function. Then a
particular solution may be written as

qO n n

yz(t'}= $ e;h(t' t;}—$ ojh(t' —tj ), (3.2—7)
i=1 )=1

t

which has the form shown in Fig. 3. Due to condition
(3.25), yz satisfies yz(t) =yz(t) =0, and up to exponentially
small terms of order exp[ —@min(t„ti)] we also have
that y~(0) =y~(0) =0. The homogeneous solution which
fulfills the required boundary conditions is therefore

3'0
yi, (t') =

I 1 —exp[ y(t —t—')]
J .yd(t) (3.28)

p 1 . 1=1——lim —f dt' ,(p+p')—
P0 I ~ ~ t

(3.30)

Here we have defined an average by

We are now in a position to obtain our formal expres-
sion for the mobility p. Consider the average position of
the particle at time t

(x(t))= f dxxP(x, t), (3.29)

which gives the mobility directly by using (3.3). For a fi-
nite dc mobility p, (x (t) ) will grow linearly with time for
t~no. Thus, we need only keep those terms which scale
linearly with time. As is shown in Appendix A, the mo-
bihty p may be written in the form

with

(a)=
n, n'=0

n+n' even

n nl

f dt, f dt, f dt'„a expn(y, ), (3.31)

Q(y&) =—f dt'[F z(p+p')]y&(t') —S—2(y&), (3.32)

and yz given by (3.27). Equation (3.30) is our formally ex-
act expression for the nonlinear mobility at arbitrary tem-
perature. The first term gives the mobility po ——1/g in
the absence of a periodic potential V='0. The second
nontrivial term is an infinite series in powers of V and
describes the deviation from po due to the presence of the
corrugation.

In view of the complexity of the average (3.31), this ex-
pression does not seem very useful for explicitly calculat-

q /a--
0

0

FKx. 3. Typical particular solution of Eq. (3.24). The step
heights are of size kqo/a and are rounded on the timescale y
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ing the mobility for nonzem V. However, as will be
shown in the following, the nontrivial part is, apart from
changes in the parameters, identical to the mobility in a
tight-binding model with hopping matrix element V.
This result will then be used in Sec. III C to evaluate ex-
plicitly the nonlinear mobility in the small corrugation
limit at arbitrary temperature and friction.

Consider a tight-binding model consisting of a lattice of
discrete sites connected by some nearest-neighbor hopping
matrix element. The continuous coordinate q then be-
comes a discrete variable with values nqo, n =0, +1,
+2, ..., where qo is the distance between lattice sites, The
paths which have to be summed over in the infiuence-
functional theory consist of successive steps of size +qo
(see Fig. 4). The central idea underlying the transcription
of (3.31) into a tight-binding model is to associate the
charges e; and o.j. with the possible nearest-neighbor hops
+qo of the paths q, (t) and q,

' (r) on the tight-binding lat-
tice. Thus, we define tight-binding trajectories

q, (t)=qo g e;H(t t;), — (3.33)

n'

q,
' (t) =qo g oJH(t tj' ) . — (3.34)

Since y~(t) which enters into (3.32) looks like a
smoothed-out tight-binding trajectory with step size qo/o.
[see (3.27) and Fig. 3], it is natural to choose the lattice
spacing qo in the tight-binding model as

qo=qo/~ . (3.35)

The trajectories x, = —,
'

(q, +q,
'

) and y, =q, —q,
'

may be
expressed in terms of our old charge densities as

x, (t) =g ' f dt'[ —,
' (p+p')],

(3.36)
y, (t)=q ' f dt'(p p') . —

In order to make the interpretation of (3.30) and (3.31) in
terms of a tight-binding model complete, we reexpress Q
in (3.32) in terms of the sharp tight-binding trajectories x,
and y, rather than the smooth particular solution yz and
the charge densities p and p'. Enserting y~ from (3.27)
into (3.32), and using (3.36), it is straightforward to show
that, apart from exponentially small boundary terms, Q
takes the form

where @ is the influence phase defined in (3.10). The su-
perscript y, however, indicates that the spectral density
which enters 4& is now of the form

J(r)(~)
1+(co/y)'

(3.38)

with a soft cutoff at frequency y. Formally, this is due to
the smoothness of yz(t) which is smeared out on a scale
y ', compared to the sharp tight-binding trajectory y, (t).
Physically, it means that the finite mass of the particle
provides a natural cutoff for the bath oscillators in the
tight-binding model.

From (3.37) it is clear that expQ is identical to the com-
plete influence functional for the tight-binding paths x,
and y, in the presence of an external force F. Moreover,
the remaining pieces in (3.31) can be interpreted as the
nearest-neighbor transition amplitudes per unit time
+iV/2A for hopping on the lattice, integration over all
possible locations of the hops, and a summation over all
possible paths. Thus, the average defined in (3.31) is
equivalent to an average over the diagonal time-dependent
density matrix of a corresponding tight-binding model.
Therefore, using (3.36), Eq. (3.30) may be written as

»mp
Po Po taboo

(x, (r))
Ft

(3.39)

where (x, (t) ) is the average position of a particle hopping
on a tight-binding lattice with hopping matrix element V
and lattice constant qo

——qo/a. The tight-binding model
is at the original temperature T and subject to the same
external force I. Since the lattice spacing in the tight-
binding theory enters only through the dimensionless fric-
tion constant a, we have

'gq oA=
27' A

(3AO)

with g remaining fixed. En terms of the energy drop
F=I'qo per period in the original washboard potential, the
energy drop @=I'"qo between nearest-neighbor lattice sites
in the tight-binding model is now

e=e/a . (3.41)

Denoting the mobility in the tight-binding model as
pTB(e, c7), we finally obtain from (3.39) the desired result

Q= dt'y, (t')+i@'r)(x„y,),o
(3.37) &(e ~) pTB(e/a, 1/a)=1-

Po Po
(3A2)

y, (t)"

FRjr. 4. Typical tight-binding hopping trajectory y, =q, —q,
'

with lattice constant qo.

%'e have thus demonstrated an exact duality between
the nonlinear mobility of a particle in a periodic potential
and in a corresponding tight-binding model. It is most
important to stress that no restrictions were placed on T
or e in our derivation. The relation (3.42) is therefore
valid at arbitrary temperature and arbitrary bias. This
goes far beyond a previous' investigation of the problem by
Schmid, where a p~l —p duality was found by a for-
mally similar analysis of the partition function at zero
temperature. In particular, p—which should correspond
to our linear mobility at T=0 is defined there as the
prefactor in the logarithmic growth of (q(r)q(0)) at
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large imaginary times. In contrast, we have worked at
finite T and within a real-time formulation from the be-
ginning and have defined p in the usual way as the ratio
between current and field.

It should be kept in mind that the dual tight-binding
model has a soft cutoff y in the environment spectrum
(3.38) which was not present in the original continuum
problem. This cutoff will play a crucial role in the
analysis of Sec. III C. Finally, we remark that the duality
between the periodic potential and the tight-binding
model actually holds for the full time-dependent density
matrix. The mapping is, thus, not confined to (x(t))
alone, but can be extended to different kinds of averages.

p = 1 — lim
PP P0 t~~ (3.43)

with

C. Mobility in the weak-corrugation limit

In this section the formal power-series expression de-
rived in Sec. III 8 for the nonlinear mobility is analyzed in
the weak-corrugation limit. In particular, we calculate
the mobility to second order in V, but at arbitrary fric-
tion, temperature, and bias. Our general results from Sec.
III 8 (3.39), (3.31), and (3.37), were

n, n'=0
n+n* even

n '

f dti f dtz f dt„x, (t)expQ (3.44)

Q = dt'y, (t')+i N(r'(x„y, ), (3.45)

where @ is the influence phase defined in (3.10). The x,
and y, are sharp tight-binding trajectories with transitions
of size +qz ——+qo/a at times t; (i =1,2, . . . , n) and tj'

(J' = l, 2, . . . , n') (see Fig. 4). The double summation and
integrations in (3.44) are simply a representation of the
functional integral over the paths q, (t) and q,'(t), which
hop on a one-dimensional tight-binding lattice with hop-
ping matrix element V. These paths can be most easily
visualized in terms of the walk of a fictitious particle on
an infinite matrix, whose elements correspond to the
discrete values of (q,q') (see Fig. 5). At t =0 the walker
starts at the origin and then performs vertical or horizon-
tal steps with weight +iV/2A', returning at time t to the
main diagonal at some arbitrary position
x,(t)= —,(q, +q,'). Equation (3A4) is then simply a sum
over all possible paths the walker can take which return to
the main diagonal. As in the corresponding two-state cal-
culation, ' we refer to the times that the walker is on the
main diagonal y, =q, —q,

' =0 as "sojourns" and denote as
"blips" the periods spent in either of the first off diago-

8(g', g) =expQ
~ bi; (3.46)

For a blip starting at t& and ending at t i, it is straightfor
ward to show that

nals y, =+q0. All other locations on the matrix apart
from the tridiagonal will be referred to collectively as
"higher-order blips. "

We now analyze the general expression in the weak-
corrugation limit V—+0. The most naive approach is to
simply retain only those terms in the series (3.44) which
are proportional to Y . In terms of our walker, we then
need only consider the four paths which start at (0,0) and
take one vertical and one horizontal step, ending at
x, (t)=+1. We need not consider the paths which take
two steps and return to x, (t)=0, since they carry no
weight in the average (3A4). In the language of blips and
sojourns, the four paths consist each of a single blip be-
tween the original and final sojourns. Since y, =0 during
the sojourns, the only contribution to the weight expQ
comes from the blip. It is convenient to label the four
possible blips by g'=+1, if the blip is above or below the
main diagonal, and (=+I, if x, changes by +qo/2 upon
entering the blip from the previous sojourn. The weight
of a single blip obtained by inserting the trajectories into
(3.45) is denoted by

B(g, g, ti t'i )=exp—ig (ti —t'i )
aA

..(io)
(o o)))

(2

—g(2/a)Qi(ti —t i )

—(2/a)Q2(t i t I)—(3.47)

FIG. 5. Matrix representation of the discrete density matrix

(q
~
p(t)

~

q') in a tight-binding model. The average in (3A4)
corresponds to a random walk on this matrix, with amplitudes
+i( V/2A) per unit time for horizontal or vertical hops and an
additional factor expQ. To lowest order in V the walks may be
restricted to the tridiagonal indicated by the dashed lines.

where

oo J(r ~(ni )Qi(t) = f dec
2 sin(cot), (3.48)

'/CO

J(r)(~)
Qq(~) = f des [I —cos(cot)]coth( —,

'
pirtn~), (3.49)

and J r'(c0) is the spectral density (3.38) with a soft cutoff
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(x, (&))= g f dh, f dr', gq,
V
2'

g

XB(g, g, ti ti ) —.
(3.50)

Since 8 only depends on t, t—'i, it is clear that (x,(t))
grows linearly with time. As t~ oo we obtain

(x,(r))
4

qo V
a 2'lim

y. The contribution to (x,(t)) from these four blips is
then

or alternatively

I=tanh(e/2aT)y f dt cos(et/afi)
0

Xcos[(2/a }Qi (t}]

Xexp[ —(2/a)Qz(&)] .

The functions Qi and Qz are defined by

Qi(t) = f den f(co/y),

Qz(t)= f de coth( ,'Pfico)f(—co/y),

(4.3)

(4.4)

(4.5)

X f dt sin(et/aA')sin[(2/a)gi(t)]

Xexp[ —(2/a)Qz(&)] .

(3.51)
Inserting this into (3.43) gives, within our naive perturba-
tion theory, the final result for the mobility to order V .

To justify this result, it is necessary to check whether
the neglected higher-order terms in (3.44), proportional to
V, V, . . . , are indeed small in comparison to those
terms retained. Since the general structure of the series
(3.44) for long times is actually of the form

(x,(t) ) =a, Vzr+az(Vzt)z+ (3.52)

these terms would eventually dominate the V terms as
t~00 no matter how small we choose V. The correct
procedure for obtaining the mobility to order V —as op-
posed to the naive perturbation theory abov~therefore
really involves a summation of the whole series, letting
t~ oo and then extracting the coefficient of V as V~O.
It is not obvious that this will give the same answer as the
coefficient a i in (3.52), i.e., it is not clear-that we can in-
terchange the limits V—+0 and taboo. By summing an
infinite class of terms, however, we show in Appendix B
that the two limits can indeed be interchanged and the
naive approach (3.51) gives the correct answer to order
V2

IV. DISCUSSION: DEPENDENCE
OF THE MOBILITY ON TEMPERATURE

A. Classical and zero-temperature limits

In the following we will discuss in detail the actual
behavior of the mobility in the weak-corrugation limit us-
ing the general expression derived in Sec. IIIC. From
Eqs. (3.43), (3.51), and (B13) the nonlinear mobility to or-
der V is given by

2Vr (4.1)
pp 6'Af

with

with a cutoff function f(x)=(1+x ) '. It is important
to emphasize that the result (4.1) is valid only perturba-
tively for small V; thus, V must always be chosen suffi-
ciently small that p/po remains close to 1. This is always
possible, except when a ) 1 and both T and e tend to zero.
In this limit the coefficient of V diverges and the pertur-
bation expansion is invalid.

We start with a discussion of the high-temperature lim-
it, where a comparison with results from the classical
Langevin equation is possible. In the classical limit the
temperature must be taken sufficiently large that all the iii

dependence in (4.1) cancels out. In particular, by taking

T ))Ay, (4.6)

we may replace the coth( —,'PAco) in Qz by 2T/Ace. To
leading order in Ry/T the factor exp[ —(2/a)Qz(t)] then
takes the form

exp[ K(yt+ e r—'—1)], (4.7)

where we have introduced the purely classical dimension-
less quantity

2m T T ~o

-Ay V y
(4.8)

with coo the small undamped oscillation frequency around
the minima of the unbiased periodic potential. Notice
that (4.7) is now independent of iri. The only remaining iii

dependence in (4.2) is in the argument of the second sine,
since a-fi . Provided that in addition to (4.6) we take

(2M)T ))Eo=
Mqo

(4.9)

2 r

p'(&) V TKdx sin x (1——e ")
Po 2&T

it is straightforward to show that irrespective of the value
of K, the integral (4.2) is cut off at values of t such that
(2/a)Q&(t)&(1. Thus, to leading order in Eo/T and
fiy/T, the sin[(2/a)Qi(t)] may be replaced by its argu-
rnent and we obtain the classical result

I=y f dt sin(e't/aiii)sin[(2/a)gi(t)]
0

Xexp[ —(2/a)Qz(&)], (4.2)

Xexp[ K(x ~ e "—1)] . —

(4.10)
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As required, all the A' dependence has now dropped out.
The linear mobility follows with e~O,

cl '2
sc —x=1——— e X + y(EK), (4.11)

pp 2 T

where y(EC,E) is the incomplete y function. These clas-
sical results can be checked by performing perturbation
theory directly on the Langevin equation (1.1). Inserting
the expansion

q (t) =q"'(t)+ Vq"'(t)+ V'q"'(t)+ (4.12)

into (1.1) and comparing powers of V, we find that to
second order in V the corresponding ratio p(e)/po is ex-
actly equal to (4.10).

To complete the analysis of the high-temperature limit,
we examine the form of the quantum corrections to the
classical mobility. These can be generated in a straight-
forward fashion by retaining the next-to-leading terms in
the expansion in powers of Eo/T of the coth( —,'Pfico) in

Q2 and the sin[(2/a)Qi] in Eq. (4.2). To lowest order we
find that the linear mobility has quantum corrections pro-
portional to fi of the form

pt(T, a)1—
po

cl

1 — [1—W(E)(EO/T)

+o((EO/T)')], (4.13)

where W(K) is a smoothly varying, positive function of
K which approaches —,', as %~0 and 4 as %~ac. It is
of interest to note that the sign of the quantum correc-
tions is such that they enhance the mobility compared to
the classical prediction. This is in accord with one s intui-
tion that inclusion of quantum fluctuations allow the par-
ticle to tunnel between the minima of the washboard po-
tential, thus increasing the mobility. Of course, as
Eo/T~O the coherence necessary for tunneling is com-
pletely suppressed and the classical result is obtained. Us-
ing the inequalities Qz & Q2 (classical) [see (4.7)], and

sin[(2/a)Qi ] & (2/a)Q i,
it is easy to see from (4.1) and (4.2) that quite generally
for arbitrary T&0 we have

pt(T) &p'i'(T), (4.14)

with pt' defined in (4.11). Although we have proven
(4.14) only to order V, it is likely to hold to any order in
V.

After discussing the high-temperature limit, we now
turn to the opposite extreme of zero temperature. In this
limit we recall that the renormalization-group treatment
in Sec. II indicated a T=0 localization transition as a
function of a, with the particle localized for a&1 and
delocalized for a&1. Consequently, we expect that the
linear mobility for a& 1 should vanish at zero tempera-
ture. This is clearly a nonperturbative result and cannot
be deduced from our expansion to order V . For a &1, on
the other hand, the weak-corrugation expansion is valid

all the way down to zero temperature. To facilitate the
computation of the nonlinear mobility at T =0, we re-
place the smooth cutoff f (x) =(1+x )

' by an exponen-
tial one, f(x)=e . With this choice the integrals for Qi
and Qz in (4.4) and (4.5) can be performed explicitly:

Q, (t)=tan-'(yt),

exp[ —(2/a)Q2(t)] = [1+ (yt) ]

(4.15)

( I(1+T+iTyt) j'
(
I (1+T) (

(4.16)

with T= T/Ay as the reduced dimensionless temperature.
Inserting these in (4.2) we find that at zero temperature

p, (e, T=0)
pp

2
V

aI'(2/a) fiy
2(1/a —1)

X
aA'y

exp
aRy

(4.17)

This shows explicitly that for a & 1 our perturbation ex-
pansion breaks down for the linear mobility e~O. How-
ever, it is still valid as long as /ca%'y is large enough such
that p/po is near 1. For a & 1, setting e=O, we see that
the linear mobility is identical to pp, independent of the
corrugation strength V. The potential is only felt through
the non-Ohmic corrections, varying as e " ". This
strange result is related to the fact that for a & 1 the parti-
cle in the dual tight-binding lattice [see Eq. (3.42)] is lo-
calized at T =0 since a=1/a&1, and a finite current
only arises in the nonlinear response pT~-e ' ". For
e~&aA'y the nonlinear mobility approaches pp as expect-
ed, although the detailed asymptotic behavior may depend
on the choice of the cutoff f (x). At any rate it can be in-
ferred from (4.1) and (4.3) that this remains valid at arbi-
trary temperature, since for e~ oo, 1 —p/po goes to zero
faster than 1/e.

~t(a») ~V'=1— R (a, T),
po any T

with the dimensionless integral R defined by

R (a, T)=y J dt cos[(2/a)Q, (t)]

X exp[ —(2/a)Q2(t)],

(4.18)

(4.19)

which depends on temperature only through the dimen-
sionless combination T=T/Ay. Let us first discuss the
case a & 1. In the limit T« Ry the integral (4.19) can be

B. Linear mobility

For the remainder of the discussion we will confine
ourselves to the linear mobility p~, but consider arbitrary
temperature. Using Eq. (4.3) and taking e~O gives for
the linear mobility
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evaluated explicitly using the exponential cutoff and gives

T«Ry (4.20)

Pl(ri & 1 T «&7) m +'~ I (1/a)=1-
@0 2al (1/a+ —,

'
)

'2

so that 1 —pi/po varies as T " '~ '. Thus, for
T «Ry, pi is an increasing function of temperature as it
is in the high-temperature limit T &&A'y. Since we were
unable to find a closed-form expression for R at arbitrary
temperatures, we have evaluated the integral numerically.
The result is shown in Fig. 6, where pi/po is plotted
versus the reduced temperature T/Ay for the specific
value a= —', . This demonstrates that pi(T) is a monotoni-
cally increasing function at all temperatures (solid line in
Fig. 6). As the temperature approaches zero, however,
R/T~op, indicating that in this limit the perturbative
expansion breaks down and the mobility cannot be deter-
mined from (4.18). Thus, we have terminated the solid
line in Fig. 6 such that pi/go remains close to 1. As men-
tioned earlier, however, at T =O the renormalization-
group calculation in Sec. 11 demonstrates that, for a & 1,
the ground state is localized, implying that the linear mo-
bility vanishes identically. We have used a dashed line in
Fig. 6 to interpolate between these two results.

The monotonicity of pI(T) for a & 1 is physically very
reasonable. As the temperature is raised from zero, we
expect that the localized (at T=—0) particle will be trans-
ported via a thermally activated hopping m.echanism.
Since the friction is large enough to suppress much of the
quantum tunneling and localize the particle even at zero
temperature, this thermal hopping is in some sense rather
classical in nature. In any case, with increasing tempera-
ture the hopping proceeds at a faster rate, giving a larger
mobility.

Finally let us consider the case a & 1. Using (4.18) and
(4.20) we find that, for T « iriy, pi is given by

T*=C(a)iri /Mqo, (4.22)

where C(a) is a monotonically decreasing function of the
friction a which approaches m. /3 as a~O and zero as
a~1 . In the low-friction limit, (4.22) can be written al-
ternatively as

X( T")=qo (4.23)

with A,(T)=fr/v'MT the particle's thermal de Broglie
wavelength. We emphasize that (4.22) and (4.23) are only
valid in the small corrugation limit; with increasing V we
expect that T' will increase.

The physics of this interesting crossover behavior may
be explained in the following way. At zero temperature
and a&1, the perturbation of the environment is suffi-
ciently weak to allow the particle to tunnel quantum
mechanically between neighboring minima in the periodic
potential (i.e., the particle is delocalized). However, with
increasing temperature the random fluctuations of the en-
vironment are more effective at destroying the quantum
coherence necessary for tunneling and consequently
reduce the mobility. We refer to this as thermally resisted
quantum tunneling. Thus, for T &T' the mobility is a

(4.21)

Thus, p~ approaches po with a power law as T~O. Since
p~ also approaches po in the opposite limit T~ 00, which
is described by (4.11), there must exist a crossover tem-
perature T' where pi(T) has a minimum. Below T' the
mobility is a decreasing function of temperature, whereas
above T' it is increasing with T. This behavior is shown
in Fig. 7, where for a= —, we have plotted the mobility as
a function of temperature by evaluating (4.19) numerical-
ly. %'e have determined the crossover temperature nu-
merically (and analytically for a~O) and find

I

0 5 &0 l.5 I Wy

FIR. 6. The solid line is the linear mobility for a= 2 corn-

puted numerically from (4.18) and (4.19). The vertica1 scale is
left in arbitrary units since the deviation of the solid line from 1

is proportional to the square of the corrugation strength V
which can be varied at will (so long as LM/po remains close to 1).
At T =0 the linear mobility vanishes identically. The dashed
line is an interpolation between these two results.

I

I

I

I

I

IT /%y
I I I I

l.O 2.0 5.0
FICz. 7. The linear mobility (solid line) for a= 4 computed

numerically from (4.18) and (4.19). The crossover temperature
T separates regimes dominated by thermally resisted quantum
tunneling and thermally assisted hopping.
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decreasing function of temperature. There is, of course,
an additional competing effect arising from transport. via
an "over-the'-barrier" thermally assisted hopping process.
%'hen T ~ T, the environment has suppressed quantum
tunneling and the assisted hopping mechanism becomes
dominant. For T & T the transport is thus enhanced by
the finite-temperature bath and becomes an increasing
function of temperature.

We emphasize that the crossover temperature decreases
with increasing friction. Thus, the quantum tunneling re-
gime ( T & T') is most accessible when the particle is only
weakly coupled to its environment.

A nonmonotonic temperature dependence in the dif-
fusive behavior of a Brownian particle has in fact been ob-
served recently in experiments on muons in metals.
In these experiments the diffusion is inferred indirectly by
observing the muon's spin relaxation. %e believe that the
crossover behavior present in the simplified Caldeira-

, I.eggett Hamiltonian describes the same physics as occurs
in these systems. It is not appropriate to compare our re-
sults with these experiments in a quantitative fashion,
however, since the model studied here offers at best an
idealized description. Nevertheless, we emphasize that
our results demonstrate certain generic features which
should be common to many systems. Specifically, for a
particle localized at T =0 the linear mobility is a mono-
tonically increasing function of temperature. When the
ground state is delocalized, on the other hand, pt(T) is
nonmonotonic with a minimum around T*, where the
transport crosses over from thermally constrained quan-
tum tunneling to thermally assisted hopping. In the
weak-corrugation and low-friction limit the crossover
temperature occurs when the thermal de Broglie wave-
length is roughly equal to qp, the lattice constant in the
periodic potential.
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APPENDIX A

In this appendix we use the formal result (3.21) for the
probability distribution P(x, t), to obtain the final expres-
sion for the mobility (3.30)—(3.32). It is convenient to in-
troduce a generating functional

P(A, ,t)= f dxe' P(x, t), (A 1)

which is normalized to 1, P(A, =O, t)=1, for all t The. n
the first moment (x(t)), used to obtain the mobility in
(3.3), may be calculated from

(A2)

To abbreviate the notation, we define an average by
n ' 'n'

i V —t' V

2' 2'n, n'=0
(n +n' even)

f dt& f dt2

tnAexp Qy

(A3)

with
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Then from (3.21) the generating function may be written
as

P(&,t)= f dx f dxo f dyo(xo+ 2yo IP(0) Ixo 2'yo)(—exp[i[A+(M/A)y(t)]x (i/R)Myo—xo) )
I

(A5)

Integrating over x gives a 5 function of argument
y(t)+RA, /M. This can be transformed into a 5 function
of argument yo, if we use the condition (3.25), which leads
to y(t)=y'o —yyo. Since yo from (3.28) is given by
yo = —yoe "'/d (t), we find 5(yo —A'Ad /M), with
d =d (t) The integra. l over yo can now be done, giving

fiAd AA, d
P{A,*t)= dxo xo+ p(0) xo—

2M 2M

the generating functional then becomes

(AS)

The average ( 1 )~ depends on I,, since the path y ( t ')
which occurs in the functional exp[Q{y)] is given by

y (t') = (1—e r" ' ')+y (t') . (A9)

Xexp(ik, e 'xo)(1)~ . (A6) For any initial distribution, which has zero average
momentum

po(yo)= f dxo&xo+ 2yo Ip(0) Ixo —~yo) * {A7)

For times t »y ' we may set exp(iver'xo) equ, al to 1,
and if we define (p(t =0))= iA — =0,&po(y)

By y p
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X [F——,
' (p+p')] (A 10)

where the average on the right-hand side is now defined
with y (t') replaced by yz(t') since A, =O. The contribution
which arises from exp[ —y(t —t')] is exponentially small
away from the right endpoint t'=t and does not scale
linearly with t. For yt —+ ao we find, therefore, that

(x(t) ) = t —J—d—t'[ , (p+—p']
E

(Al 1)

where we have used the fact that (1)~ o ——P(A, =O)=l.
According to (3.3), (x (t)) has to be divided by Ft to ob-
tain the physical mobility p. Remembering that po ——g
this gives precisely (3.30).

APPENDIX 8

there is no contribution to (x (t)) which depends on the
initial condition. Then, due to the normalization condi-
tion pa{0)= 1, the first term in (AS) may be replaced by 1.
The only contribution to (x ) then comes from differen-
tiating the first term in Q(y) with respect to A, . We obtain

t
[x(t)[=(1/g)( I dt [1—'exp[ y—(t —t')][

quantities: the times [ t; j, i = 1, . . . , 2m, at which the
hops take place, a set of integers IN;j, i =1, . . . , m,
which correspond to the position N~

——x, /qo that the ficti-
tious particle occupies during the ith sojourn, and a set
Ig;=+1, g;=+lj, i =1, . . . , m, specifying the types of
blips which separate the sojourns. Here m denotes the
number of blips in a given path. Since a blip can only
move the walker at most one unit along the main diago-
nal, we have that hN, =N~+[ N; =—0, +1. The summa-
tion over all allowed paths ean then be carried out in three
stages. First we consider a summation over the allowed
blips for a given set of sojourn positions tN; j and times
[t; j. There are two types of blips which can separate so-
journs with b,N=+1. We denote their total weight by
f+. Between sojourns with KN =0 four blips are possible
which carry a weight fo. Using the single-blip weight
factor (3.47), we find

f+(t)= „ga(g, +)
/=+1

p'2

2
cos[(et/aR)+(2/a)Q, (t)]

In this appendix we rederive our naive perturbation-
theory result (3.51) by summing an infinite class of terms
in the general expression (3.44). It is clearly impossible to
sum up the whole series (3.44) to all orders. In the follow-
ing we thus make two simplifying approxi. mations which
will enable us to sum the series. From the definition of
the influence phase 4 in (3.10) we see that the real part of
0 in (3.45) is proportional to y, . Thus, paths taken by the
walker which wander far away from the main diagonal

y, =O are largely suppressed. Moreover, a segment of a
path which starts on the main diagonal wanders out to,
say, y, =+nqp, and then returns to the diagonal con-
tributes at least a term of order V " in (3.44). Since we
are interested in the mobility to order V, we thus consid-
er only those paths which stay on the tridiagonal. These
restricted paths consist solely of sojourns, y, =O, and
blips, y, =+qo. In addition, as ean be seen from (3.47), a
blip of length t contains a contribution exp[ —(2/a)Qz(t)]
in its weight factor. Since Qq(t) grows large with time,
this factor suppresses long blips. The sojourns, on the
other hand, do not have such a suppression factor and as
a result will typically be much longer than the blips. It is
then appropriate to treat the system as a noninteracting
gas of blips separated by long sojourns. Within this ap-
proximation a given path is built up from successive blips,
and its weight is simply a product of the weights (3.46) of
the individual blips. Consequently, the entire series can be
summed. The consistency of this procedure must be
checked at the end of the calculation; in particular, the
typical blip times [which can be estimated from their
weights 8 in (3.47)] must be much smaller than the time
of a blip and its neighboring sojourn (which is the charac-
teristic time emerging from the calculation). This tech-
nique was originally applied to the two-state problem and
is referred to as the noninteracting-blip approximation.

All the possible paths on the tridiagonal elements of the
matrix in Fig. 5 can be conveniently labeled by three

Xexp[ —(2/a )Q2( t)], (B1)

2

fo(t) = — g &(g,g) = —f+(t) —f (t),V
7 + (B2)

where f0{A,) and f+(A, ) are Laplace transforms of fo(t)
and f+(t), respectively. The n+ and no are the number
of adjacent pairs of sojourns in the set IN; j which differ
in position by +1 or 0. Finally, we must perform a sum
over all possible sojourn sets [N; j, which can be generated
by the fictitious particle starting at the origin N =0 and
walking up and down the diagonal. To perform this final
summation it is convenient to introduce a generating
functional

G(s, t) = g s W~(t),
N= —Oo

(B4)

where Wn(t) is the weight for the sum over all paths [as
in (3.44)] which end at site N at time t. The average
(x,(t) ) then follows by differentiating G,

(x, (t) ) =q, (N(t)) =q, BG(s,t)
Bs

Since the final position N of a path is equal to n+ n-
the factor s in the generating function may be absorbed

where t is the length of the blip under consideration.
Next we integrate over the times It; j, i.e., the locations
and lengths of the blips, again for fixed tN; j. In the
noninteracting-blip approximation this can be easily done
by a Laplace transformation. For a given set of I N; j the
contribution to the Laplace transform of x, (t) then be-
comes

fo(&) ' f+(&) + f (&)

A,



QUANTUM BROWNIAN MOTION IN A PERIODIC POTENTIAL 6205

no, n+ =O

sf+(A, ) + f (A, )
X

which can be written in the simple final form

AG(s, A)=[A, —fo(A) —sf+(A) —f (A)/s] ' . (87)

Differentiating with respect to s and using (82) we find

(N(A, ) ) = +(A, )— (A, )
(8

If f+ (A, ) have well-defined limits as A, ~O, the Laplace in-
version is straightforward and gives

(x(t) &

t~ ce
=f+(A, =O) —f (A, =O) .

Using the definition of f+(t) in (81), it is easy to see that
this agrees precisely with (3.51). Thus, we have rederived
the naive perturbation-theory result by an explicit summa-
tion of all possible paths on the discrete density matrix
(see Fig. 5) restricted to the tridiagonal and within the
noninteracting-blip approximation.

A particularly simple interpretation of our result (87)
may be obtained by taking the limit A, ~O and defining
I' = —fo(A, =0) and I + =f+ (1,=0). Then the generating
function becomes identical to one for a nearest-neighbor
hopping model described by a master equation

in the weights of the trajectories by simply changing f+
into sf+ and f into f /s. The total number of trajec-
tories with given [no, n+] is

C=(no+n++n )!/n o!n +!n ! .

Thus the Laplace transform of the generating functional
is given by

We must now check the self-consistency of the
noninteracting-blip approximation, which requires that a
typical blip time be small compared to a blip and its
neighboring sojourn. The typical sojourn time is essential-
ly the mean residence time on a particular diagonal site,
and from (810) it is clear that this is equal to 1 '. An
average blip length (t ) can be obtained by taking the first
moment of the blip weight (3.47) or, equivalently, fo(t),

J, dttf,(t), gf, (A, )=[fo(~ =0)]
, dt fo(t) ~~ ~=o

Bfo(A, )

A, =O
(812)

Since, according to (82), we have fo —V2, it appears that
we can always satisfy the inequality (812) by choosing V
small enough. This is in fact the case except when a~ 1

and T =@=0, since then the integral multiplying V in
(812) is divergent. Thus, caution must be exercised in us-
ing (3.51) when a&1 and T and e are both tending to
zero.

Finally, we note that there is a detailed balance condi-
tion between forward and backward hopping
1+/I =exp(Pe). To prove this, we observe that the
function C(t)=Q2(t)+iQ~(t) can be analytically contin-
ued to the lower complex t plane and satisfies

C(t i') =—C'(t) =C( t) . —
Using this we may also express the final result (3.51) in
the alternate form

(x(t))
t~ oo

2

tanh(e/2a T )
Co V
a

(811)

The validity of the noninteracting-blip approximation re-
quires that (t ) « I or

I'x = —~I'x+ ~+I'x-]+~-I'x+ i (810)
X f dt cos(et/afi)cos[(2/a)Q&(t)]

with rates I + to the right or left and I =I ++I . The
I introduced in this way is in fact identical to the relaxa-
tion rate of a two-state system with Ohmic dissipation in
the regime where exponential relaxation holds. '

Xexp[ —(2/cr)Q&(t)] . (813)
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