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Diffusion in mixed A-B alloys in two and three dimensions
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Precision Monte Carlo simulations of labeled particle diffusion in mixed A-B alloys in two and
three dimensions are reported. A variety of concentrations and ratios of the hopping rates
J /J" =g are analyzed. Results are compared with those predicted by available theories. The va-

lidity of these theories is observed to be strictly limited to the region where g & 1/z (z is the lattice
coordination number).

I. INTRODUCTION

II. BRIEF REVIEW OF THE THEORY

Manning appears to have been the first to seriously ad-
dress the problem of tracer diffusion in a mixed, mul-
ticomponent alloy. His analysis dealt with an important
limiting situation where the vacancy concentration v is
vanishingly small. Accordingly, if the constituent atom
concentration for the species A, is c, his work applies to
the limit

u= 1 —pc~ ~0 . (2.1)

One of the traditional approaches to discussions of the
tracer diffusion correlation factor f, in single-component
alloys with vanishing vacancy concentration is to write

f =H/(H+2J ) for u =0.
Here, J is the hopping rate of the unique tracer and

H =JM,
M= —(1+(cos8))/(cos8) .

(2.2)

(2.3a}

(2.3b)

In the preceding paper' (henceforth to be referred to as
I), a detailed account of tracer diffusion in two-
dimensional isotropic and anisotropic lattices was given.
That presentation included an improved theory as well as
a variety of accurate, large effective grand-sample (GS)
precision simulations. One of the tidy features of that
work was the excellent correspondence between the theory
and the simulations.

Unfortunately, such a successful agreement cannot be
achieved for the mixed alloy system consisting of macro-
scopic concentrations of at least two varieties of atoms.
In this regard the fault, of course, lies with the theory.
The Monte Carlo simulations for the mixed system
present no essential difficulty.

In Sec. II, a brief review of the current status of the
various theories is given. The simulations in two dimen-
sions are described and the analyses of the data are dis-
cussed in Sec. III. The results for two dimensions are
presented next in Sec. IV. Sections V and VI deal with
the three-dimensional systems. A discussion of the results
and some final remarks are included in Sec. VII.

The background particles have hopping rate J and (cos8)
is the well-known geometrical parameter of the lattice
used in I.

For the multicomponent alloy, Manning's work
amounts to introducing an. ansatz for an effective single
hopping parameter J':

Jeff y Ji. ifA, y JA. i, (2 4)

To make the analysis self-consistent, Eqs. (2.2) and (2.3)
are rewritten in an "effective" form, ie.

f0 ~en/(~ett+2JD)

where

0eff MJeff

(2.5a)

(2.5b)

For an n-component alloy, Eqs. (2.5a) and (2.5b) consti-
tute a set of n +1 coupled equations in n + 1 unknowns

f and f". [Note, in this context Eq. (2.5a) can be rewrit-
ten a total of n additional times by designating the tracer
as one of the background atoms of, say, species A, where-
by, in Eq. (2.5a), f ~f and JD~J~. Similarly, if the
tracer happens to be identical to one of the n varieties of
atoms in the background, the set of equations (2.5a) and
(2.5b} has only n distinct members. ]

Although seemingly different, the viewpoint expressed
above is in substance entirely equivalent to that of Man-
ning. Moreover, it has the advantage that it identifies the
essence of the Manning ansatz in a form that lends itself
to useful further generalization. '

Manning's predictions were first tested in a detailed set
of Monte Carlo simulations on bcc and fcc lattices by De-
Bruin et al. , who arrived at two important conclusions.
First, they declared that "The agreement between results
by the simulation method and from Manning's calcula-
tions is excellent if the vacancy-atom exchange rates for
the (two) components do not differ by much more than
one order of magnitude. " Second, they stated that "The
Kikuchi-Sato model (Ref. 7), which was developed for or
dered alloys, is not very successful for calculating correla-
tion factors 'in random alloys. This is shown clearly by
the considerable deviations over the entire frequency
range and the incorrect values for self-diffusion correla-
tion factors. "
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In the present context, the above remarks may be inter-
preted as follows: For a two-component alloy consisting
of A and B atoms, Manning's theory is reliable as long as
the hopping rates are within the limits

J /J =q) 1/z . (2.6)

Here, J" and J are the hopping rates of the fast and the
slow atoms, respectively. [Note, any more precise con-
clusions than this ought not to be drawn from the simula-
tions reported in Ref. 4 where the sample sizes were in
general relatively small (i.e., between 5 X 5 )& 5 and
19 && 19& 19) and the effective grand-sample sizes were not
quite large enough (total vacancy jumps analyzed were
approximately half a million). j

Similar conclusions can again be drawn from a later
Monte Carlo work on a simple-cubic lattice by three of
the same authors. Here the effective sample sizes were
similar and the lattice sizes were 13 )& 13&& 13 and
19~19~19.

The Manning theory is thus seen to be relatively suc-
cessful in three dimensions. Even though in Refs. 4 and 8
only three-dimensional systems were analyzed, in view of
the fact that diffusion in two dimensions is not too dif-
ferent (note, however, the small logarithmic corrections),
the substance of the above remarks can be expected to ap-
ply also to two dimensions.

Despite this success, Manning's theory suffers from an
important limitation in that its applicability is restricted
to the case of vanishing vacancy concentration. In view
of the rapid changes in the dynamic characteristics of a
tracer near the v —+O,threshold, the v —+0 theory cannot
safely be applied even to the relatively small vacancy con-
centration limit of u ——,', . (This contrasts strongly with
the 1 —u =c~O limit results, which can often be applied,
after simple mean-field-like corrections, to the cases
c &0.25.)

An attempt to extend the Manning theory to finite va-
cancy concentration has been made by Tahir-Kheli. In
this work, the representation of Manning's final expres-
sions in the form given in Eqs. (2.4)—(2.5b) is exploited by
analogy with the single-component v~O work and its
finite vacancy concentration extension achieved by Tahir-
Kheli and Elliot (henceforth to be referred to as TKE).
The net result is that H' is transformed from its original
form (2.5b) into the following:

H'f=[M/(1 v)](uJ f +J' ) . — (2.7)

Clearly, for u~O, Eq. (2.6) reduces to Manning's result
(2.5b). Similarly, for arbitrary u, but for a single-
component background, Eqs. (2.5a) and (2.6) together
reduce to the TKE result [see Eq. (3.19) of Ref. 9].

Motivated as it is from the small-vacancy end, at the
opposite-concentration end, i.e., for small-particle concen-
trations (where c"« 1 for any A, and g&c"=c « 1), the
above self-consistent theory is incorrect in the leading or-
der c (of course, it is exact when c =0). On the other
hand, for the intermediate concentrations, it can be ex-
pected to be moderately accurate for the diffusion correla-
tion factor, especially that referring to the slow atoms.
However, outside the range (2.6), this theory cannot be ex-
pected to provide accurate results. Such should especially

be the case for the diffusion characteristics of the faster
atoms. (For easy reference, henceforth this theory will be
referred to as TK1.)

Another treatment, based on an extension of the TKE,
but motivated from the opposite end of the concentration
scale (namely, the small particle concentration c—+0), also
suffers from similar problems. This theory (to be called
TK2) is based on an equations-of-motion treatment whose
truncations become increasingly inaccurate outside the
range

~0 Jmin (2.8)

where J '" is the smallest hopping rate. For most physi-
cal systems that one ordinarily deals with, the specified
range of hopping rates may be wide enough to be useful.
However, for situations where the hopping rates of the
various components are vastly different, the TK2 cannot
be expected to be satisfactory.

While the reader is best referred to the original for de-
tails, it is convenient to give below the final results ob-
tained in TK2. The tracer diffusion correlation factor f
in a mixed A Bsystem -is given as follows:

f =[1+2Jpol(M&o)l

where M is as defin'ed in (2.3b) and

po
——vJ (c +c )J +c (1—c )J —c"c~(J"+J~),

(2.9a)

(2.9b)

III. SIMULATIONS AND ANALYSIS OF DATA
IN TWO DIMENSIONS

A. Simulation procedure

The simulation routine for calculating tracer diffusion
in a two-dimensional A-B alloy is carried out by a simple
generalization of the routine given for the one-
dimensional system (see the succeeding paper, ' hence-
forth to be referred as III). This generalization parallels
closely that which is implicit in going from the one-
dimensional one-component system ' to the two-
dimensional one-component system (see I). Consequently,
to save space we shall not describe this routine in these
pages.

In the two-dimensional square lattice, z =4. Accord-
ingly, in the following our attention will be focused on
those relative sizes of the hopping rates J and J"where
the slower one lies between 100% to 10% of the faster
one. In other words, the lowest value of the ratio g that
we shall analyze is —,0. Clearly, such an g is just below
the 1 jz limit which, as mentioned earlier, is the natural
lower limit of the theories described in Sec. II.

Two different types of samples were used. These
comprised 100& 100 and 150X 150 site networks and wer'e
used when c& —,'. For c& ~, larger networks, namely,

vo ——[uJ +(1 c)J"][—uJ +(1 c")J—] cc~J"J~—.
(2.9c)
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TABLE I. The diffusion correlation factors f" and f of the A atoms (fast particles) and the 8
atoms (slow particles) are listed for a two-dimensional square lattice. Here J /J =g=0.5. The first
column represents the concentration of 2 atoms, c", and the second column gives c . The third
column shows our numerical results obtained by simulating grand samples, each consisting of an effec-
tive number KG=10 particles. The fourth and fifth columns display the theoretical values of f"
predicted by theories TK2 and TK1, respectively. The last three columns follow the same sequence but
refer instead to f .

0.60
0.15
0.10
0.40
0.20
0.20
0.25

CB

0.2
0.15
0.20
0.40
0.60
0.10
0.25

Simulation
results

0.512+0.002
0.788+0.005
0.784+0.005
0.471+0.002
0.427+0.002
0.803+0.005
0.655+0.003

Theory
TK2

0.5099
0.7906
0.7783
0.4692
0.4279
Q.8018
0.6487

Theory
TK1

0.5339
0.8051
0.7960
0.5003
0.4669
0.8141
0.6802

Simulation
results

0.664+0.003
0.850+0.008
0.847 +0.008
0.620+0.003
0.585+0.002
0.866+0.008
0.752+0.006

Theory
TK2

0.6671
0.8587
0.8478
0.6297
0.5897
0.8682
0.7633

Theory
TK1

0.6715
0.8598
0.8506
0.6366
0.6021
0.8689
0.7689

150X 150 and 200X200 sites were utilized. As in Ref. 1,
the overall differences between the results provided by
grand samples (GS's) of NG & 10 particles each (obtained
from the two different types of networks) were generally
similar to the fluctuations within each of these grand
samples.

To obtain reasonable long-time statistics, these simula-
tions were run for ~=2500 Monte Carlo steps per particle
(MCS/p) each. Generally speaking, for g= —,', the long-
time behavior had adequately set in for times ~-250
MCS/p. For g= —,', , however, the earliest time for which
this behavior was assumed to be in place was 500 MCS/p.

B. Analysis

the execution of these runs, they are found to be a useful
supplement to the precision results (given in Tables I and
II and shown in solid circles in Figs. 1—3) which were ob-
tained from costly and time-consuming runs.

V. SIMULATIONS AND ANALYSIS OF DATA
IN THREE DIMENSIONS

A. Simulation procedure

Monte Carlo simulations in three-dimensional minimal-
ly interacting systems have been described by many au-
thors. ' ' The new feature of problem being discussed

The analysis of the two-dimensional A-8 alloy followed
the pattern already set for the corresponding one-
cornponent system studied in I. The only difference be-
tween I and the present work is that here we have two
separate sets of data: one relating to the mean-square dis-
placement of the 2 atoms, i.e., (~q ) ~,), and the other to
that of the B atoms, i.e., (~z )~,). As a consequence, we
analyze these cases separately, albeit identically, to the
one-component case described in I. This process yields
two separate diffusion correlation factors, namely, f" and
f . These correlation factors are dependent, however, not
only on the two concentrations c" and c, they are also
functions of the hopping rates ratio g.

IV. RESULTS IN TWO DIMENSIONS

0.9—

0.7
A

0.5

"I= 0.5

g.6

Several large GS simulations on effective sample sizes
of NG ~ 1 million particles each were used to obtain esti-
mates for the diffusion correlation factors f and f in
an isotropic square lattice with g =0.5 and 0.1. (Compare
also the results for g= 1 given in paper I.) These esti-
mates are expected to be accurate to within 2—5 parts per
thousand. (See Tables I and II.)

In addition to the large-sample precision results, we
also report several mini-grand-sample runs which aver-
aged over only 70 000 particles each. These results
(displayed as crosses in Figs. 1—3) incur much larger
errors —between I%%uo and 10%%uo—but in view of the ease of

I

O. 5 0.7
l.O

0.9

FIG. 1. Correlation factors f" and f~ for the fast and the
slow particles in two-dimensional quadratic lattices are plotted
for g=0.5 as a function of the total concentration of A and 8
atoms. , i.e., c =c +c~=2c". The solid curves represent the
theoretical results of theories TK1 and TK2 (indicated by in-
dices I and II, respectively). The scale on the right refers to f~
and the one on the left corresponds to f". The solid circles
represent the precision simulation results given in Table I. Simi-
larly, the crosses indicate the simulation estimates obtained
from the smaller, 70000-particle samples.
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0.9—
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0.7
A

0.6 0.8 0.8

0.5
0.7 0.9

I

0.3 0. 5 0.7
, &.0

09

FIG. 2. Same as Fig. 1, except for g, which is ( ~
)'

I

Q, 7

FIG. 4. Similar to Fig. 1 with two differences. First, this fig-
ure refers to a three-dimensional simple-cubic lattice. Second,
here ihe ratio is g =( 2

)'

here is that systems with macroscopic concentrations of
two different varieties of atoms are being treated (compare
also Ref. 12). However, this feature is readily incorporat-
ed into the simulation routine. (See the succeeding paper
III for details. )

Simulations were run for up to 500 MCS/p for
rI=( —,')'~ and c"=c =c& —,'. For rI= —,

' and c& —,',
they were run for 660 MCS/p. For c & —,, or 7l =+~, the
runs were carried through to 1000 MCS/p while for c & —,

'

and y =+, the time limit was set at 2500 MCS/p. As be-
fore, two different sets of network sizes were utilized.
When the maximum MCS/p used was 660 or less,
simple-cubic networks of 20X20X20 and 26X26X26
sites each were used. For systems where the maximum
time span was 1000 MCS/p, or longer, the networks were
larger, i.e., 26&26&&26 and 30&30&(30.

As in two dimensions, both large effective systems (GS
sizes of NG & 10 atoms each) and small systems (mini-GS
sizes of NG-70000 particles each) were used. The accu-

racy obtainable from the smaller systems is approximately
3—S times worse. However, because the computer time
used in the simulations is proportional to the overall sys-
tem size, the mini-GS's werc proportionately 15 times less
costly to simulate. Their results are, nevertheless, only of
qualitative value.

B. Analysis

Monte Carlo simulations in three-dimensional sys-
tems' ' have . usually relied on achieving the "long-
time" limit. Therefore, the Einstein proportionality for-
mula, relating the mean-square displacement along a
given axis to the diffusion coefficient D and the time
elapsed v, is used.

In practice, however, the relevant (MCS/p) time r can-
not be inordinately long. As a result, the standard Ein-
stein formula needs to be supplemented with additional
terms, i.e.,

h~(v) =2J f U r+ const+ 0 (J ~) (5.1)

O.p

Here, b,~(~) is the mean-square displacement after time v

of a particle of variety A, measured along one of the three

0, 7

0.9 0.6

0.5 'A
0.8 0.7

0.3

0.3
I

Q.5
I

0.7
I

0.9

0.6

0.5
0.3

l

0.5
l

0.7
l

0.9

0.9

FICx. 3. Similar to Fig. 1, with the following changes: Here

g =0.1, and the left-hand scale refers to both f" and f . FIG. 5. Same as Fig. 4, with the difference that here g =
3 .
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0.2»
E)

0.325

p.9

0.6
0.8 0.8

Bp

0.6 o.6

0.5 0.8

0.4 I

0.25 0.35
A

C

p 45 p.55 O. 65

0.3
I

0.7
I

0.9O. g 0.5
C

1FIG. 6. Same as Fig. 4, except that now g = —,0,

I.O

L ~«»ro) =~drt) ~dro)

2JAf kU ( )

+O[(1/J')(1/r, )'~' (1/ro) ~ ] .

Then look for the slope S~ from the relationship

Cartesian axes (for best statistics, b,~ is computed along
all three axes and an average is then taken). The corre-
spon ing oppingd' h ing rate (assumed to be spatially isotropic
is J, U is the vacancy concentration and f is the dk-
fusion correlation factor of interest. Clearly, the un-
known constant appearing in Eq. ', 5.1~

particular importance. On the other hand, its absolute
size is usually of order 0.1—1, and thus its neglect can
cause errors of order 1% or so when the longest times
used are of order 100—500. Accordingly, it is unwise to
ignore the constant in Eq. (5.1).

Therefore, in analogy with the description given in I, .

we proceed as follows: Choose an initial time rp, which is
long enough for the long-time behavior to have set in.
(More will'be said regarding this point later. ) For a time
~& &~o, write

FIG. 7. Simple-cubic lattice correlation factors f" and f are
plotted as functions of c (or c ). Here g=A 8 =0. 1 and c =2e .
The solid curves represent the theoretical results of TK1 (shown
as I) and TK2 (shown as II). The crosses indicate small-sample
simulation results utilizing 70 000 particles.

The quantity 5$~/(2J"u)=5~ provides a workable mea-
sure of the inaccuracy to be expected. It is interesting
that generally speaking 5~ is also similar to the magnitude
of the discrepancy between the two f~'s computed from
the arge an"1 " d the "small" network sizes mentione ear-
lier. Therefore, in what follows, we shall refer to 5~ as e-

ing a meaningful estimate of the error in f~.

VI. RESULTS IN THREE DEMENSIIONS

For a three-dimensional, simple-cubic lattice, di usion
correlation factors f" and f for a binary 2-B alloy with

d — 1' d' T bl III, IV, dV,2 & 3& 10

respectively. These precision results were obtained from
large GS's with 2VG & 10 particles each. For ready refer-
ence, the corresponding predictions of both the theories
TK1 and TK2 are also included. These simulations are
expected to be accurate to within 2—6 parts per thousand.
To aid the perusal of the tables, most of these results are
also displayed in the form of figures, Figs. 4—8.

(5.2)~~(&I &o) =L ~(rI —ro)/(rt —ro)+& .

It is clear that the remainder R on the right-hand side
of Eq. (5.2) is of order (wort)

' . For large enough rp
and ~I, this is obviously much smaller than the constant
occurring in q.E (5 1) and can therefore more safely be ig-
nored.

d~ it8 se S is in general a function of both 7o an 7), 1

f such slo esis best to take an average over the ensemble of suc p
that are obtained for all 1p and r) so that the maximum
value of w~ is at least 200 MCS/p smaller than the max-
imum length of the run. (This is to make sure that the
last interval over which the slope is measured is at lease
200 MCS/p wide. ) Both the average S~ and its root-
mean-square deviation 6S~ are recorded.

~ ~

d. The diffusion
correlation ac or1 f t ~~ is now readily obtained from the re-
lation

o.8

0.6

p, g

0. l25
I

I

0.5

A
C

0.2
I

O.275
l

0.55

0.32 5

p, 65

f~ =~~/(2J'U) (5.3)
FIG. 8. Similar to Fig. 7, with the difference that here

8 2
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TABLE II. Similar to Table I, but here the ratio is g =0.1.

c A

0.2
0.4

1

0.1

0.25
0.6

1

6

0.15

c B

0.6
0.4

6

0.2
0.25
0.2

3

0.15

Simulation
results

0.186+0.002
0.284+0.002
0.589+0.003
0.693+0.007
0.528+0.004
0.415+0.002
0.455 +0.005

0.727 +0.007

Theory
TK2

0.1910
0.3124
0.6184
0.7127
0.5599
0.4448
0.4876
0.7492

Theory
TK1

0.3249
0.4041
0.6524

0.7438
0.6169
0.4851
0.5818
0.7957

Simulation
results

0.635+0.003
0.722+0.003
0.867+0.005
0.876+0.008
0.826+0.005
0.820+0.004
0.787+0.005
0.897+0.008

Theory
TK2

0.6765
0.8014
0.9206
0.9238
0.8958
0.8749
0.8571
0.9428

Theory
TK1

0.6524
0.7389
0.8723
0.8774
0.8348
0.8274
0.7977
0.9001

TABLE III. Diffusion correlation factors f" and f are listed for a three-dimensional, simple-cubic
lattice for the case c"=c and g=( 2

)' . Excepting the two samples marked with asterisks (see the

first column), these are the precision simulation results obtained from large GS's with effective particle
numbers XG & 10 each. The two values with asterisks are less accurate mini-GS's with 70000 particles
each.

A

Precision
simulation TK2 TK1

Precision
simulation TK2 TK1

0.475*
0.450
0.400
0.350
0.300
0.250
0.200
0.150
0.100

0.637*
0.655
0.700
0.745
0.789
0.828
0.868
0.904
0.929*

+0.010
+0.003
+0.003
+0.003
+0.004
+0.004
+0.004
+0.006
+0.015

0.6348
0.6560
0.6991
0.7424
0.7850
0.8264
0.8658
0.9031
0.9379

0.6387
0.6634
0.7103
0.7544
0.7958
0.8348
0.8716
0.9063
0.9392

0.716*+0.015
0.727 +0.003
0.758 +0.003
0.796 +0.003
0.827 +0.003
0.860 +0.003
0.891 +0.005
0.919 +0.007
0.946*+0.015

0.7093
0.7264
0.7607
0.7946
0.8279
0.8601
0.8911
0.9207
0.9487

0.7104
0.7293
0.7656
0.8001
0.8328
0.8640
0.8938
0.9222
0.9493

TABLE IV. Similar to Table III, except that here q =
3 .

A

0.475*
0.450
0.400
0.350
0.300
0.250
0.200
0.150
0.100*

Precision
simulation

0.540*+0.0100
0.571 +0.0025
0.625 +0.0025
0.688 +0.003
0.741 +0.003
0.791 +0.004
0.843 +0.004
0.886 +0.005
0.945 +0.015

0.5583
0.5847
0.6388
0.6933
0.7465
0.7974
0.8451
0.8892
0.9297

TK1

0.5630
0.5942
0.6531
0.7077
0.7583
0.8055
0.8496
0.8908
0.9295

Precision
simulation

0.760*+0.015
0.782 +0.004
0.807 +0.004
0.839 +0.004
0.865 +0.004
0.888 ~0.004
0.911 +0.004
0.936 +0.005
0.959*+0.015

0.7874
0.8010
0.8274
0.8527
0.8769
0.9000
0.9219
0.9429
0.9628

TK1

0.7728
0.7870
0.8146
0.8410
0.8664
0.8908
0.9143
0.9369
0.9587
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TABLE V. Similar to Table III, except that here g= —,0 .

Precision
simulation TK2 . TK1

Precision
simulation TK2 TK1

0.475
0.450
0.400
0.350
0.300
0.250
0.200
0.150
0.100*

0.400~
0.453
0.522
0.598
0.675
0.746
0.807
0.865
0.920*

+0.010
+0.002
+0.002
+0.002
+0.002
+0.0025
+0.003
+0.003
+0.01

0.4598
0.4953
0.5677
0.6391
0.7069
0.7695
0.8264
0.8774
0.9231

0.4819
0.5207
0.5931
0.6593
0.7200
0.7759
0.$275

. 0.8754
0.9199

0.830 +0.015
0.859 +0.004
0.851 +0.004
0.874 +0.004
0.895 +0.004
0.915 %0.004
0.931 +0.005
0.950 +0.005
0.966 +0.015

0.8906
0.8996
0.9159
0.9301
0.9426
0.9539
0.9643
0.9739
0.9830

0.8233
0.8386
0.8588
0.8784
0.8973
0.9157
0.9335
0.9509
0.9677

TABLE VI. Small sample (N~-70000 particles each) simulation results for diffusion correlation
factors f"and f in a simple-cubic system with g= —,0, with c"=2c .

0.650
0.550
0.500
0.450
0.400
0.350
0.300
0.250
0.200
0,150

Small-sample
simulation

0.462+0.015
0.568+0.012
0.617+0.015
0.685+0.015
0.723+0.015
0.777+0.020
0.813+0.020
0.854+0.030
0.893+0.030
0.925+0.030

TK2

0.5359
0.6226
0.6658
0.7079
0.7486
0.7874
0.8242
0.8588
0.8912
0.9214

TK1

0.5353
0.6301
0.6734
0.7143
0.7530
0.7896
0.8243
0.8573
0.8886
0.9185

Small-sample
simulation

0.878+0.035
0.875 +0.03
0.881+0.025
0.902+0.02
0.874+0.02
0.904+0.025
0.951+0.030
0.952+0.035
0.970+0.05
0.961+0.07

TK2

0.9180
0.9350
0.9423
0.9492
0.9557
0.9619
0.9679
0.9736
0.9792
0.9846

TK1

0.8687
0.8908
0.9016
0.9122
0.9226
0.9329
0.9429
0.9529
0.9626
0.9722

TABLE VII. Same as Table VI, except that here 2c"=c .

CA

0.650
0.600
0.550
0.500
0.450
0.400
0.350
0.300
0.250
0.200
0.150

Small-sample
simulation

0.281 +0.020
0.338+0.015
0.415+0.012
0.493+0.012
0.538+0.015
0.621+0.015
0.661+0.02
0.712+0.02
0.799+0.02
0.839+0.03
0.928+0.04

TK2

0.3332
0.3911
0.4548
0.5215
0.5878
0.6515
0.7110
0.7656
0.8152
0.8601
0.9006

TK1

0.3813
0.4519
0.5170
0.5773
0.6333
0.6853
0.7339
0.7793
0.8219
0.8619
0.8995

Small-sample
simulation

0.796+0.035
0.788+0.030
0.815+0.025
0.817+0.020
0.846+0.020
0.876+0.025
0.867+0.020
0.876+0.025
0.905+0.025
0.938+0.035
0.945 +0.035

TK.2

0.8298
0.8526
0.8730
0.8911
0.9070
0.9211
0.9337
0.9451
0.9556
0.9654
0.9747

TK1

0.7741
0.7947
0.8146
0.8339
0.8527
0.8709
0.8886
0.9059
0.9226
0.9389
0.9548
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VII. DISCUSSION AND CONCLUDING
REMARKS

It is clear from Tables I—VII that for the larger ratios
g, i.e., for ri )—,', both the theories TK1 and TK2 are ade-
quate. In particular, TK2 works well over the entire
range of concentrations and its accuracy is roughly com-
parable to that of the simulation "experiment" itself.

The self-consistent theory TK1, on the other hand,
works satisfactorily only for the diffusion correlation fac-
tor relating to the slow atoms (which means, in the
present case, f ). This feature of the theory though is not
entirely unexpected. What is quite surprising, however, is
the degree to which the TK1 predictions for f" (namely,
the correlation factor for the fast atoms) are in error. It is
observed that even for g= —,', which is well within the
range (2.6), the TK1 estimates for f" are in error by
2—5 % over a wide range of concentration. (They are sys-
tematically too high See. Figs. 1—8.)

For g= ]p we are already outside the range where
these theories are expected to be adequate. A perusal of
Tables II and V—VII and a look at Figs. 3 and 6—8 con-
firm this expectation: for g ——,'0, even TK2 is seen to be
in error by approximately 3—10%. Qualitatively speak-
ing, however, the predictions of TK2 are not unreason-
able. Nevertheless, it is abundantly clear that the inequal-
ity (2.8) does indeed provide a realistic definition of the al-
lowed range of hopping rates outside which the present
theories have marginal applicability.

An interesting and unanticipated observation that
emerges from these simulations is a new type of com-
plementarity between the theories TK1 and TK2. What
we mean here is that while on general grounds a certain
complementarity between the two theories was indeed ex-

pected, it referred only to the concentration ranges, name-
ly, that TK1 is a theory derived from the U~O limit,
whereas TK2 is an outgrowth of the c «1 decouplings.
What has emerged, however, is different. TK2 is found to
be better overall, including the intermediate concentration
regime, but it is especially so for the diffusion characteris-
tics of the fast atoms, i.e., for f". On the other hand,
TK1, despite its intrinsic self-consistency, is inferior
overall. Nevertheless, TK1 does moderately well for the
slow atoms. With this empirical observation in hand, one
can perhaps use TK1 and TK2 in combination to make
predictions outside the range specified by the inequality
(2.8).

To sum up, the existing theories for the labeled particle
diffusion in the mixed, random dynamic alloys in two and
three dimensions are qualitatively useful within the range
specified by the inequalities (2.6) and (2.8). Outside this
range, the theories can only be used as empirical aids in
interpreting the data. When this is done, TK1 should be
used for the slow atoms and TK2 for the fast ones.

Note added in proof. A proper self-consistent theory
has now been worked out [see R. A. Tahir-Kheli, Philos.
Mag. (to be published)] which satisfactorily explains all
the Monte Carlo data [also see P. Holdsworth and R. J.
Elliott, Philos. Mag. (to be published)].
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