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This paper presents a study of the transmission properties of noninteracting electrons in the pres-
ence of different types of disordered potentials along a line, in a constant electric field F. We start
by considering the case of random rectangular potentials. We use the transfer-matrix method to cal-
culate numerically the transmission coefficient as a function of energy E, field F, length L of the
sample, and the amount and type of disorder. An asymptotic analytic approach, based on different
physical approximations, is shown to lead to good qualitative explanations of the numerical results.
Armed with the analytic understanding of the numerical results as applied to the rectangular poten-
tial, we extend the logic to the cases of 5-function and continuous random potentials. We find that
the results can be separated in two qualitatively different regimes. In the case where X =FL /E & 1,
the results for all different types of potentials considered are qualitatively the same, i.e., the states
are localized and lead to a linear correction in the resistance as a function of the current. In the case
when X & 1, the situation is different: In the 5-function-potential case, and for small values of the
field, the states remain localized but with a power-law decay for large L, as found previously. In
the rectangular and smooth potential cases considered, we find a transition from localized to extend-
ed states as we vary the sample size L. The extended states are unusual in that they have a
transmission coefficient which is nonlinear in F for large L. Possible consequences of these results
to experiments with wires in metal-oxide-semiconductor field-effect transistors are also discussed.

I. INTRODUCTION

In this equation, T represents the total transmission
coefficient of the disordered scattering region and R is the
dimensionless resistance. In a one-dimensional, one-
channel model, at zero temperature, the resistance changes
with the size of the system L as

R=e —1, (1.2)

where a plays the role of an inverse localization length
and is dependent on the type of potential variations inside
the disordered region, and is independent of L,. Several
subtleties associated with the validity of Eq. (1.1) have
been discussed in the literature. Here we will not be con-
cerned with those problems since they seem to have been

The nature of the spectrum of a noninteracting electron
in a one-dimensional (1D) system in the presence of a ran-
dom potential, at zero temperature, is by riow well under-
stood. The wave functions are exponentially localized and
the spectrum is pure point and dense. ' These results
are mathematical and formal in nature. Landauer has
given a way to relate these results to the measurable trans-
port properties of experimentally realizable wires. ~ s

Landauer's approach is based on the scattering properties
of an electron current incident on a disordered conductor.
He finds a connection between the transmission properties
of the scattering region and the resistance, which is now
known as the Landauer formula,

R=T ' —1.

settled to a large extent. Equation (1.2) reduces to the ap-
propriate limits: When a &~1, i.e., in the weak localiza-
tion regime, one recovers Ohm's law, whereas for a && I,
the strong localization case, one has the exponential in-
crease in R as the system size increases.

The facts mentioned above are fairly well established by
now. Less understood, however, are the effects of nonzero
fields on the states of free electrons propagating in a ran-
dom potential. Recently, several studies have begun to
treat this problem when the external field is a constant
electric field applied along the chain. ' In all these
studies, except Ref. 7, that considered a white noise poten-
tial, the model considered is a random-5 potential. There
are several interesting results that have emerged from
these studies, and one would like to know how potential
dependent are these results.

The purpose of this paper is to extend the study of the
effects of an electric field on the nature of the electronic
states, when the potentials are random but not 5-function
like. As we will show there are in fact important differ-
ences, mainly in the large-I. limit, in which a transition
between localized to extended states is achieved, even in
the case of a small field.

With the intent of completeness, we will consider also
the 5-function-potential case, to make comparisons to the
results for all the other potentials studied in this paper.
Our approach will be numerically exact for the case of a
random symmetric rectangular potential. We develop an
asymptotic analytic understanding of the results obtained
in this case. We then proceed to consider the 5-function-
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potential problem, in which the analytic approach is even
quantitatively correct. Following the same logic as
described above, we consider analytically the case of a
smooth potential in the different limits of interest. Final-
ly, we collect and compare the results obtained for the dif-
ferent random potentials studied. A previous mathemati-
cal analysis of a sufficiently smooth random potential
problem in an electric field has been given in Ref. 14.
There the authors show that in the infinite-volume limit
all states are extended. Here we are interested in the
length dependence of the scattering properties of these
problems and their connection to their transport proper-
ties.

The outline of the paper is the following. In Sec. II we
introduce the different potentials considered in the paper.
In Sec. III the numerical analysis of the rectangular po-
tential problem is presented. Here we replace the ramp
potential produced by the electric field by a ladder poten-
tial. We show explicitly, however, that the results ob-
tained by using an accurate algorithm to calculate Airy
functions of large arguments lead to results which are of
the same order of accuracy as the results obtained with
the ladder potential, except that the latter are less com-
puting intensive. In order to differentiate between results
which depend on the periodic arrangement of the poten-
tials, we consider two types of disorder. Randomness in
the heights, and randomness in the positions with con-
stant height and width for the potential. In Sec. III we
give the results for the average transmission coefficient,
together with its statistical properties, as a function of
field, disorder, energy, and length of the sample, and type
of randomness in the potential. In Sec. IV we present the
bulk of our analytic results. For the rectangular and 5-
function potential we make explicit comparison to the nu-
merical results. In Sec. IV we extend the analytic treat-
ment to a smooth random potential, where numerical re-
sults can be much more cumbersome. In Sec. V we dis-
cuss the. consequences from the numerical and analytic re-
sults. In particular, we see that the problems divide clear-
ly into two regimes in terms of the scale X=FL/E.
When X&1, the states are localized. These localized
states depend on F, and lead to a linear correction in F to
the resistance. The coefficient of the correction term, al-

though small in realistic samples, may be detectable ex-
perimentally. In the X&1 regime, the type of potential
considered becomes important. We find important differ-
ences between the 5-function potential and potentials with
a finite height. In the former case, for large L's the elec-
tronic states are power-law localized, ' ' and therefore
have zero conductance in the thermodynamic limit. In
contrast, for the finite-height potentials for large L's, the
electronic states are extended even for small F's. These
extended states have, however, a nonlinear transmission
coefficient as a function of F. Finally, we discuss briefly
the possible connection of the results derived in this paper
to experiments with wires in MOSFET s (metal-oxide-
semiconductor field-effect transistors).

satisfying the time-independent Schrodinger equation,

d2
+ U (x) Fx—4=E%' .

8x
(2.1)

Here E is the energy of the electron measured in atomic
units, and 4 is the wave function. The electrostatic po-
tential is given by the Fx—term in Eq. (2.1), with E =ee,
e denoting the electronic charge, and e the electric field
strength. The potential U(x) is random and has the gen-
eral form

U(x)= g V„(x —x„),
n=1

(2.2)

where V„(x —x„) denotes the on-site potential with center
at x„, and X is the total number of potential barriers in a
chain of length L. The bulk of our numerical results refer
to a periodic array of rectangular on-site potentials
separated by a fixed distance a, width fixed with b
(b &a), and heights V„(Fig. 1),

0, ~x —(n —1)a
~

+b/2,
V„, i

x (n ——1)a
i

& b/2 .

x =(n —1)a +(s —0.5) W, g.4)

with s a uniformly distributed random number of width
8' & b, so that the rectangles do not overlap.

As we mentioned in the Introduction, apart from the
models defined above, we study analytically a random 5-
function potential and a continuous random potential.
The 5-function potential is defined as

{aj

The variables V„are taken to obey a uniform probability
law P ( V„)= 1/ W, and C —W/2 & V„&C + W/2, with C
fixed.

In order to separate the effects that depend on the
periodic nature of the lattice, from those which are only
related to the effect of F, we also consider the case where
V„ is the same for all n, but the locations of the potentials
are random. We take V„(x —x„)=Vo, the width of the
potential is fixed at b and the average separation between
barriers is a. The location of the barriers is a random
variable chosen as

II. MODELS

In this section we define the models to be studied in this
paper. %'e consider a system of noninteracting electrons,

FIG. 1. Rectangular random potential in an electric field: (a)
with a ramp —Fx potential; (b) with its ladder approximation.
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(2.5)V„=P„5(x—na), f(z) g(z)
f'() '( )

(3.7)with P„a uniformly distributed random variable centered
in zero and width W and a fixed. For this model we
rederive the results reported in Refs. 9 and 10 even quan-
titatively. Finally, since the rectangular potential has a
discontinuity in its first derivative, we also consider
smooth potentials.

It is of interest to consider short-range smooth poten-
tials V„, clearly separated from each other. In this case a
small E will only shift slightly the "wings" of the poten-
tial. With these types of potentials in mind we can write
the transfer matrix for each potential explicitly. A typical
example of a potential with these properties is

where the prime stands for differentiation with respect to
x. Here, (F,f) are Ai functions and (G,g) are Bi func-
tions. See Ref. 15 for the definition of these functions.
For a chain of length L with Ã potential barriers in be-
tween, M reads

M = ff m(ia) . (3.8)

In the numerical evaluation of M we need to generate
Airy functions of large argument with precision. There is
a very accurate algorithm to generate the Airy's of arbi-
trary argument based on Chebyshev's series approxima-
tion. ' We use that method in our calculations.

An equivalent way to represent the effect of the electro-
static potential is to replace the U(x) Fx pot—ential by a
ladder (Fig. 2). Specifically, we write the potential as

V„—F(n —1)a, 0&x (n —1)a &—bU(x) Fx =. " — '
(3 9)—F(n —1)a, otherwise .

(2.6)V„=Vo/cosh (x„/A, ) .

III. NUMERICAL TRANSFER MATRIX RESULTS
FOR RECTANGULAR POTENTIALS

In this section we use the transfer-matrix (TM) method
to calculate the ensemble averaged transmission coeffi-
cient for the rectangular models defined in the preceding
section. The basic equation satisfied by the transfer ma-
trix M reads

The advantage of taking this potential instead of the
U(x) Fx poten—tial is that in the former case the transfer
matrix takes the following, relatively simpler form (see
Fig. 3 for the definition of the cell potential),

q„(x =L)=Me, (x =0), (3.1)
k) ik2b & 'k2b i (k &3na —k &3b/2)

Mi 1
— (cxzicx32e +a21a32e )e

4k3
(3.10)1, ik~b —ik~b i (k)3na —k )3b/2)

M12 4 (+21+32e +&21&32e )e
3

(3.1 1)

Here we defined a21 ——1+k2/ki, a32 ——1+k3/k2,
z = F'~ [x+—(E —V)/F], (3.2)

leading to the standard Airy-equation representation,

d 4'
, +z%=0. (3.3)

where qli is the wave function on the left of the disordered
region and 4„ is its value on the right of the sample. The
matrix M is a 2&2 matrix with elements that depend on
the specific form of the potential. The matrix elements of
M satisfy the identities, M22 ——Mii ——M21. For the Fx-
potential, it is convenient to transform Eq. (2.1) using the
change of variables

The solution to this equation in the nth cell can be writ-
ten in general as

4'„=a„Ai(z) +b„Bi(z) . (3.4)

Here the Ai(z) and Bi(z) are the Airy functions and
(a„,b„) are constants. The construction of the transfer
matrix is done by imposing the continuity of the wave
function and its derivative at the points of discontinuity
of the potential. Explicitly, for a given potential barrier,
as shown in Fig. 1, one gets

M(na) = T '(na +b/2)S(na +b/2)

With

and

&&S '(na b /2) T (na b /2), — —

F(z) G(z)

(3.5)

(3.6)

4 5
L( ~~)

FIG. 2. Ensemble averaged lnT vs L for different values of
the field F. &(, F=O; G, F=0.001; +, F=0.004;
F=0.008; Q, F=0.02. Here we took E=4, C= 1, and W=2.
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x X X X X X8 x x F=0.008
Ladder

approximation
Exact

(Airy functions)

TABLE I. Comparisons of the results for —(lnT) of the
ramp potential, in terms of Airy functions, and that of the
ladder potential for the parameter values given in the table, with
E=4, C=1, and W=2.

b
o 1000

2000
3000
4000
5000

0.001 271 44
0.000 660 13
0.000 627 40
0.000 474 92
0.000 380 78

0.001 241 41
0.000 644 35
0.000 609 57
0.000 462 13
0.000 370 25

34 3.I
log I.

3.8 4

FIG. 3. logo. vs logL with the same parameter values as in
Fig. 2.

1000
2000
3000
4000
5000

F=0.5
Ladder

approximation

0.000 064 51
0.000 032 66
0.000 022 37
0.000016 86
0.000 1367

Exact
(Airy functions)

0.000 092 98
0.000 047 13
0.000 031 63
0.000 023 46
0.000 018 74

k2 = [E—Vn +F(na —b/2)]'~

k3 [E+F(na ——+b /2)]'

(3.12)

Calculating M in this case entails evaluations of plane-
wave —like functions and is therefore more efficient com-
putationally. The results from using either the ramp or
ladder representation compare quite well. In Table I, we
give some results obtained with both potentials for two
values of F. For small values of F we see that the results
differ only in the fifth significant figure. The difference
is of the same order but more significant for larger values
of F as expected. Thus the results presented below were
obtained using the ladder potential and transfer matrices
given in Eqs. (3.11) and (3.10).

We obtain the transmission coefficient T from the ex-
pression

~r2i ——1 k2/ki, —a32=1 —k3/k2, ki3 ——ki+k3, and
k i3 —k i —k3 ~ The k's represent the momentum in the
mth cell and in the case shown in Fig. 3 they are given by

k i [E+F (na——b/2)]—'i

In the case F=O, we get a straight line with slope close to
——,, as expected from the standard central-limit theorem.
When F&0, on the other hand, we get a straight line but
the slope is larger the larger F is.

In Fig. 2 we show the results for —(lnT) versus L for
a fixed value of the disorder and energy, and different
values of the field. First, as expected, we see that for
F=O the curve is a straight line indicating exponential lo-
calization. When F&0, on the other hand, we notice two
types of behavior. For small L's the —(lnT)-versus-L
curve is close to a straight line. However, for larger L's

T =ko/(k, alii i ), (3.13)

with ko VE, the m——omentum of the incident electronic
wave, and k„=V'E+FL, that of the emerging wave. We
are interested in calculating ensemble-averaged quantities.
As in the F=O case we calculate the ensemble average of
—lnT. As usual, we generate an ensemble of chains for a
given length and average the natural log of their transmis-
sion coefficients. To check that this is indeed the right
statistical variable in this problem, in Fig. 4 we show a-
plot of, lno. versus InL„where o. is the standard deviation
of —(lnT)/L, defined as

((1nT —(lnT)) )
L 2

I I

4 5
L ( 10')

FIG. 4. Same as in Fig. 2 for the case where the rectangular
potentials are randomly located with fixed shape. Here we took
E=4 and W=1, and 8, F=0.001; 4, F=0.008.
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the curve saturates to essentially a constant value. The
points at which the curves change from straight to flat is
for X =FL/E of order unity. This is easy to understand
physically. For X&&1, the kinetic energy gained by the
electron from the field is small compared to its incoming
energy and, therefore, the random potential is dominant.
When X»1 the electron gains sufficient kinetic energy
from the field that the potential becomes a small pertur-
bation. For this reason, X is the important scale in these
problems. Notice in Fig. 2 that the value of saturation for
—(inT) for large L's changes considerably for relatively
small changes in F. Also, we see from Figs. 2 and 3 that
the curves have a noticeable jump for values of X=4. We
believe that this is due to the periodic nature of the poten-
tial. To test that this is indeed the case, we show in Figs.
4 and 5 the results obtained when using the rectangular
potential with random locations. There is no noticeable
jump in these curves and therefore the abrupt changes
seen in Figs. 2 and 3 should be related to the periodic lat-
tice structure of the random potentials. The jump may be
either related to Zener tunneling or due to the special
"delocalization" points that can be found in the spec-
trum '7

From the F=O calculation we can-extract the localiza-
tion length l„as the inverse of the slope of the straight
line. Using this value for l, we can plot —l, (lnT)/2L
versus X. The resulting plot is shown in Fig. 6. In this
figure we show results for different values of F and W for
a fixed value of E. The choice of parameters was made
carefully such that the energy was not in a gap of a given
potential distribution. We see that all the results change
in qualitatively the same way. These curves are the ana-
log of the universal curve found in the 5-function-
potential case. We find different curves here because we
are essentially comparing random potentials with dif-
ferent average heights. In the next section we will derive
analytically the curve that fits qualitatively our numerical

X

X

l

l

l

I

I

!

lc

-c $

C3 F= -02 +~2
F= .00 I Q.=l ~ 5

~ F=.OI 0;—I

results and is shown as a broken line in Fig. 6.
Notice. that, apart from the jump due to Zener tunnel-

ing, there is no abrupt change in the —(inT)-versus-L
curves when going from localized to extended states. We
will discuss in more detail the results given above in terms
of the analytic treatment given next.

IV. ANALYTIC, ASYMPTOTIC,
HEURISTIC APPROACH

In this section we give a heuristic explanation of our
numerical results pertaining to the rectangular random po-
tentials. ' We extend our analytic treatment to treat also
the 5-function-potential case and find even quantitative
agreement with the numerical results given in Ref. 9. Fi-
nally, we consider the potential defined in Eq. (2.6) using
the same methods and obtain explicit expressions for the
averaged transmission coefficient in the small- and large-
X regimes.

A. Rectangular potential

A

5 1815 20 25
F L/E

FIG. 6. Plot of different calculations of —(l, lnT)/2L vs
X =FL/E for the parameters shown in the inset. The discon-
tinuous line corresponds to the theoretical result 1/(X+ 1).

3
I

3.2 34 3.$

lOglo L

I

3.8

To calculate the average transmission coefficient of a
periodic array of random-height rectangular potential bar-
riers, we will consider the following two different physical
cases: When the energy of the wave is below the height of
the first potential barrier, and when it is above the highest
of the potential barriers in the chain. In the first case the
wave will be strongly reflected, and the transmission coef-
ficient will be small. If E is smaller than the mean height
of the potential barriers, we can calculate the net
transmission coefficient of the set of barriers for which
the above condition is satisfied as

FICx. 5. Same as in Fig. 3 for the same system and parameter
values of Fig. 4.

(4.1)
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where t„ is the transmission coefficient of the nth barrier.
In this equation we have neglected the effect of multiple
reflections. We can calculate the value of t„by using the
WKB approximation, leading to

T= Q exp[ 2b—[(V„) (E+—Fn)]' I

=exp b I—[(Vo) (E+—Fx)]'i dx (4.2)

Here we are neglecting logarithmic corrections in the ex-
ponent that would come from an evaluation of the coeffi-
cient in front of the exponential. We have also changed
the sum over n by an integral over x, since we are consid-
ering many potentials and the —Fx potential changes
slowly. Also we have taken for the potential barrier
height the mean value of ( V„). After carrying out the in-
tegration we can write —lnT as

3/2

—lnT =— (b.E) 1 ——1—4 5 3' FL,

3 F hE
(4.3)

where we defined b,E= Vo E. We—notice that in the
F=O limit we recover the result of exponential localiza-
tion, with localization length

I =f (aE)'" . (4 4)

The next order contributions to —lnT can be calculated
directly from Eq. (4.3) obtaining

2I. 1 FL
l, 46E (4.5)

T:Q(1 r„)=—exp —g r„— (4.6)

As long as the total energy of the electron does not
exceed the maximum height of the potential barriers the
results described above will hold. This will be true partic-
ularly for very small F's and not overly large L's.

Since the wave continuously gains energy as it travels
along the chain, eventually a crossover from E below to E
above the barrier takes place. In the last case, the reflec-
tion coefficient r„ is small and we can write

F=O limit, which is

l
16E

(4 9)

For the calculations presented in the previous section
with E=4, 8'=2, and C=1 we see that l, =194.932,
whereas the analytic result gives l, =191.554. This result
is quite good taking into account the approximations
made.

We return to Eq. (4.8) when F&0. For X small we can
expand —ln T, giving,

—lnT = [1—X+X'+O(X')] .
l,

(4.10)

This is an important result since we see that the leading
correction to the standard exponential decay of T with L
is linear in F, and in turn it leads to a linear correction in
the resistance [Eq. (2.2)]. We shall discuss this point fur-
ther in the next section. When X is large, —lnT becomes

—lnT = [1—X '+X +O(X )] .
l,F (4.11)

Thus, as L, tends to infinity, —lnT reaches a constant
value. Equivalently, the states tend to become extended.
These extended states are not of the same type one finds
in a periodic solid since T is a highly nonlinear function
of F with an essential singularity for F=O. This result
also agrees with our numerical results. This can be seen
from looking at Figs. 2 and 4, which are qualitatively
described by the result given in Eq. (4.8).

In order to carry out quantitative comparisons we have
to be in the very large I. limit, or equivalently large X re-
gime. We see that the heuristic analysis gives qualitative-
ly the correct behavior of —lnT in the asymptotic limits
of X«1 or X»1 and we connect these two regimes
with the numerical results.

For a potential that has other types of discontinuities in
its derivatives, as for example V-(x —xo)" for some xo
along the chain, and that leads to r-1/E for E's above
the height of the barrier and with v 2, the analysis given
above yields

This result is again obtained within the approximation
of neglecting multiple reflections. We can estimate the
value of r„easily from the exact calculation of the
transmission coefficient for a rectangular barrier or from
the WKB approximation for reflection above a barrier. 's

The result for T becomes

—lnT = L [1——,vX+0(X )], (4.12)

for X~&1. Here C is a constant that depends on the po-
tential and the mean of its random fluctuations. In the
X»1 limit we get

T=exp (E+Fn)

=exp ~
dx

(E+Fx)
(4.7)

which leads to

( v,')—lnT =- I. 1+
8E

(4.8)

We can define a localization length in this case for the

C—lnT = "
[1—X- +'+(v —1)X-"+ ] .Ev—1F(v—1)

(4.13)

The results written above reduce, as they should, to the
rectangular case results for v=2, and are qualitatively
equivalent to them. Notice that v is not necessarily an in-
teger (in fact, v is related to the nature of the reflection
point in the complex phase plane of the WKB analysis),
and thus Eqs. (4.12) and (4.13) imply a continuum varia-
tion of T as a function of the "critical exponent" v.
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S. 5-function potential

As we mentioned in the Introduction, most of the stud-
ies of electronic states in electrified chains have been car-
ried out assuming a distribution of random-5-function po-
tentials. Here we reconsider this problem for complete-
ness, following the line of thought used in Sec. IV A. The
model is defined by Eqs. (2.1), (2.2), and (2.5). The
transmission coefficient of a single 5-function potential is

t =(1+P'/4E)

In this case, the analogue of barrier height is the
strength of the potential p. Therefore, the limits p &E
and p &E correspond to "above" and "below" the barrier.
Sirice for F&0, E goes to E+Fx, the case of interest cor-
responds to E above the "barrier. " In this limit, the re-
flection coefficient r —1!E, and the total transmission
coefficient for a chain of length L can be approximated
by

t-exp[ —2m. A,( Vo E'/—)], (4.19)

where we have taken the limit 1 & A.. Given the approxi-
mation of Eq. (4.1), we get for T the expression

3/2

—lnT=2~A, Vo L+ — 1 — 1+2 E FL,
3 F E

merical calculations for smooth potentials are much more
cumbersome to perform. On the other hand, we can fol-
low the same logic as expounded in this section to get re-
sults that should be valid asymptotically. Here we consid-
er the potential given in Eq. (2.6) explicitly, but the results
for other continuous potentials clearly separated from
each other are qualitatively the same. We will use the
WKB method to calculate the reflection and transmission
coefficients for a wave with energy E above and below the
barrier. For E « Vo&, the transmission coefficient is
given by

N
& p'&T- Q (1 r„)-exp- dx

4(E +Fx) In the limit where X« 1, this result reduces to

(4.20)

=exp ln(1+x)
—

& p'&
4F

(4.14)
—lnT =2wA, ( Vo E'/ )L 1———

4 E
E1/2

y1/2 E1/2
0

In the limit X=O, we recover the exponential localization
result,

T =exp — L,
4E

(4.15)

It is interesting to notice that if we take P uniformly dis-
tributed between —W/2 and W/2, we obtain the locali-
zation length

96E
8 (4.16)

which is exactly the same result as the one obtained by a
more detailed analytic study. ' The next-order corrections
to T as a function of X gives

—lnT = [1—X/2+X /3+0(X )] .
l,

(4.17)

As shown in Ref. 9, this result leads to a linear correction
in F to the resistance. We shall discuss this result further
in the next section. In the limit where X& 1 we get from
Eq. (4.14),

T (F/E) —(P )/4FL —(P )/4F (4.18)

This is the power-law localization result confirmed nu-
merically and theoretically in Ref. 9. The consequences
from this result are given in Ref. 9, and we will compare
them to the results obtained for other potentials in the
next section.

C. Continuous potential

The results given in Secs. IIA and II 8 apply to poten-
tials that have different types of discontinuities. It is
natural to ask if the results should change significantly if
the potentials are smooth rather than discontinuous. Nu-

(4.21)

again of the same form as the results obtained in Eqs.
(4.10), (4.15), and (4.16). In the important limit where the
energy E is far a'bove Vo, using the WKB approximation
one gets the reflection coefficient'

—2~X~E (4.22)

Using the approximation given in Eq. (4.12), we get for

—lnT =Le [1—
4 (4+k,v E +1)X+O(X )],

(4.23)

good to lowest order in X, and

—lnT = [(2K/~@ + 1')/2~2/2F]e —2~2. E

1/2

e
L 1 —2 i,vol.
F A,m

(4.24)

for X»1. In the X« 1 limit we see, once more, that the
general structure of the result is the same as for all the
other potentials considered in this paper, thus one could
conclude that the behavior of T for small X is in fact ge-
neric. In the X»1 limit, we notice from Eq. (4.24) that
in the limit of large L's, T tends to a constant value
which is nonlinear in 1/F. The approach to the L = ao

limit is, however, exponentially faster than in the case
where the potentials are discontinuous. The general
characteristics of the results for the potential given in Eq.
(2.6) will prevail for other types of smooth potentials for
which r —e ' . An example of other types of smooth
potentials for which this is true is V(x)
= Voexp( —x /A, ), where v=1.

From all the results derived in this section we can con-
clude that the transmission coefficient, in the limit of
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small X's, behaves in qualitatively the same way for all
possible types of potentials. In contrast, for X»1 there
is a clear difference between the 5-function potential and
any other potential with finite heights. The possible ex-
perimental consequences of the results described above
will be given next.

V. CONCLUSIONS AND POSSIBLE
EXPERIMENTAL CONSEQUENCES

OF THE RESULTS

In this section we express the results obtained in the
previous sections in terms of the conductivity properties
of a random chain in an electric field, for different ran-
dom potentials. As we have learned, the important scales
in this problem are the localization length and
X =FL/E. ' In the limit of small X we can use the Lan-
dauer formula (2.1) to obtain the corrections to the resis-
tance due to the presence of a nonzero F. For all the po-
tentials considered here in the limit when X && 1 the resis-
tance can be written as

g 1 E 2 E2

where a~ and u2 are dimensionless constants and V=EL
is the potential energy difference between the ends of the
sample. The values of the constants depend on the form
of the potential and were given in the preceding section.
Thus, we conclude that the effect of F in a random chain,
in the limit of small X's, is qualitatively the same for all
the potentials considered here. It leads to a linear correc-
tion in

~

V
~

which is different from the usual Joule heat-
ing correction which goes as V . This result was obtained
in Ref. 9, for the 5 potential, and it is shown here that it is
qualitatively the same for other types of potentials. Since
the V correction is obtained from considerations of
analyticity of R as a. function of V, one is led to conclude
that even in the small-X limit the expansion in powers of
V is nonanalytic.

The difference in the results arises in the regime X» 1.
In this limit, we showed that in the discontinuous poten-
tials as well as in the smooth potential cases, there is a
transition to quasi-extended states for large L's with the
rather unusual characteristic of having a transmission
coefficient that is exponential in —1/F. In this limit, the
electrostatic field dominates the effects of the random po-
tential, and since the height of the potentials is finite, as
the waves gain more and more kinetic energy they essen-
tially behave as free particles in a ramp potential. The 5-
function-potential case is different in that the potential re-
flects at all energies since the height is essentially infinite.
A connection between this result for T in terms of the
resistance cannot be given in terms of the Landauer for-
mula since this is believed to be true in the limit of small
E's.

In this paper we have considered the effect of an arbi-
trary electric field on the nature of the electronic states in
a chain with arbitrary random potentials. It is possible
that some of the predictions made here can be seen experi-
mentally, especially the linear correction in

~

V
~

of the
nonlinear resistance. Our calculations have considered a
free-electron model, as in most localization studies, in the
presence of a constant electric field. We have left out two
rather important physical effects in our analysis. The ef-
fects of temperature and the Coulomb interaction between
electrons that lead to screening. It is not clear how to in-
clude these effects at the same level of rigor of the numer-
ical results presented here.

Physically, at finite 1s, the kinetic energy gained by
the electron due to the field is FL, with L replaced by ei-
ther 1;„(inelastic mean free path) or lr ——(1;„l,i)' (the
Thouless length). After the electron travels a distance L
it loses its energy to the phonons, and its energy goes back
to the value of the electrostatic potential at distance x
along the chain. The process is repeated again for dis-
tance x +L, etc.

If we take E as the Fermi energy of the electrons we see
that the correction term on Eq. (5.1) is rather small in
metals but not so small in semiconductors, since E~ is
several orders of magnitude smaller in semiconductors
than in metals. Experiments in MOSFET's (Refs. 22 and
23) may be appropriate to see the effects described in this
paper. In those experiments it is found that the conduc-
tance is a rapidly varying function of gate voltage or,
equivalently, E. The behavior of the maxima in the con-
ductance as a function of temperature is found to follow
the Mott law -exp —(To/T)'~ . This is typical of vari-
able range hopping with To —1/li (E), where li„ is the
localization length. The experimental results as a func-
tion of E are fitted with a function To-e ' . This
behavior may be accounted for by the result given in Eq.
(4.23), and therefore implies that the appropriate models
to describe these experiments are the continuous potentials
studied in Sec. IV. At finite T, the quantity y =FL /kii T,
with kz Boltzmann's constant, becomes the relevant scale
in the problem. In the large-y limit the results given in
Eq. (4.24) may be seen in the 1D MOSFET's, in the mil-
lidegree temperature range, particularly in, the strong
nonlinear behavior of the. conductance with F.
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