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Analysis of the electronic pressure in transition and noble metals
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Particularly with transition and noble metals in mind, we analyze the pressure in a solid in terms
of the (bulk) wave functions evaluated at the surface of the atomic (Wigner-Seitz) sphere. The par-
tial pressures (angular-momentum decomposed) are further split into a number of terms to which
some physical significance can be attributed. Calculations within the local-density scheme are
presented for copper, silver, and gold over a large range of volumes. It is argued that one term
represents a strong pairwise repulsion between full d shells, balanced (at equilibrium) by a strong in-
ward pressure due to the sp electrons. The latter is interpreted as a volume force driven by the
atomic pseudopotential including the sp hybridization with the d states. The application of this pic-
ture to the understanding of surface instabilities in these metals is mentioned, but details of such in-
vestigations are given elsewhere. Also the observation that Cu, Ag, and Au in compounds where the
d shells are kept out of contact tend to have substantially smaller volumes is understood from the
present analysis.

INTRODUCTION AND SUMMARY
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FIG. 1. Bulk modulus 8 (observed) of transition metals.

A physical understanding of the trends of the observed
cohesive and elastic properties through the transition-
metal series can be obtained from the effects of the gradu-
al filling of the electronic d states. This was, for example,
clearly demonstrated by the analysis of band-structure cal-
culations by Pettifor' and by Moruzzi et al. As an exam-
ple of such trends, let us consider the bulk moduli B of
the 3d, 4d, and Sd series as presented in Fig. 1. Going
from the low-Z end towards the middle of a series, the
lowest lying, bonding d states are gradually being filled,
providing a numerically increasing negative partial pres-
sure, i.e., leading to a contraction of the crystal. This
simultaneously causes s and p electrons to be expelled into
the outer parts of the Wigner-Seitz cell which hardens the
solid, i.e., leads to an increase in B. Proceeding from the
middle of a series towards the upper end, the noble met-
als, the d bands, become filled, i.e., also the antibonding
states are occupied. Consequently, the d pressures de-

crease again in magnitude, the lattice relaxes, and the in-
terstitial electron density is simultaneously reduced. This
explains the drop in magnitude of the bulk moduli in the
high-Z end of the transition series (Fig. I).

The classical works ' by Fuchs were probably the first
to stress the importance of understanding the closed-shell
interactions in order to be able to arrive at a physical pic-
ture of the cohesive properties of the noble metals. He '

viewed the forces between the closed shells as composed
of an "attractive van der Waals force and a repulsive force
due to the overlapping of the closed shells. " The latter he
treated as additive central forces. Later, total-energy cal-
culations, using ' expressions which to some extent are
parametrized, were able to reproduce well the experimen-
tal results. Physical models based on detailed band-
structure models ' have appeared since the pioneering
work by Deegan. The parametric approaches have some-
times assumed that the interaction between the d electrons
in the noble metals could be described as a Born-Mayer
type of repulsive term, ignoring the substantial' van der
Waals attraction and the attractive effect of sp-d hybridi-
zation. Note that at the interatomic distances considered
here, the "van der %'aals" interaction is no longer simply
that due to induced dipole fluctuations but more generally
due to electron correlation around the atomic overlap and
is indeed quite well given' by self-consistent band-
structure calculations in conjunction with the local-
density approximation' ' (LDA). Thus Kollar and
Solt' concluded for copper that the d shells give a small
net attraction at equilibrium, in agreement with Fuchs, '

rapidly becoming repulsive at a s'mailer lattice constant.
We agree with this picture but only if the d pressure is
taken to include the effect of sp-d hybridization on the d
shells.

The perspective of the present work is somewhat dif-
ferent. It is to analyze the interaction in the noble metals
as a balance between pairwise and volume forces in order
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to understand the structural rearrangements' ' found at
the surfaces of the noble metals, particularly gold, where
this balancing is destroyed. ' ' By a "volume" force in
this context we have in mind the effect of the sp-electron
density (which is determined by an environment of several
atoms) interacting with the one-atom pseudopotential.
We shall argue that the total effect of sp-d hybridization
is to a very good approximation a one-atom "volume"
force in the above sense and hence is to be included for
our purposes with the volume force of the sp electrons.
We then find that the total Uolume force is strongly at
tractive, balanced in the bulk noble metals by a strong net
pairwise repulsion from the full d shells.

A more direct application of this model can be made in
an analysis of the data on metal —noble-metal (MN) alloys
as noted by Nevitt. He pointed out that in compounds
where the d shells are kept out of "contact, " Cu, Ag, and
Au tend to have a smaller atomic volume. He analyzed
the volumes of MN alloys with the CsC1 structure and
found that the molecular volumes 0 can be fitted quite
well by

Q=Q~+QM, (1)

where QM is the atomic volume of the pure metal M and
Qz is an apparent volume of the noble-metal N atom in
the alloy. This, Q&, turns out ' to be approximately the
same for a given noble metal in many alloys and smaller
than the atomic volume Q~ of the noble metal. It was
found that Q~ —Q~ is about 1.8, 1.2, and 3 A for Cu,
Ag, and Au, respectively. The part of the d partial pres-
sure which we identify as the d-shell pairwise interaction
will later be referred to as P, i(d). By calculating, as a
function of volume, the difference P«, P, &(d), we are-
able to estimate Q~ —Q~, and we shall see that our re-
sults agree with Nevitt's conclusion.

Clearly, in order to understand volume and pairwise
forces from the band structure due to the different elec-
trons, it is necessary first to decompose the total pressure
P into different l components Pi, and then analyze these
further into separate physical effects. The paper is there-
fore organized as follows. In Sec. II we discuss the slight-
ly thorny subject of the formulas for total pressure (Sec.
IIA) and partial pressures Pi (Sec. IIB), including the
sense in which such a decomposition is physically mean-
ingful. Quantitative results for the various components
are given in Sec. III, while Sec. IV discusses the results,
including the volume (one-atom) nature of the hybridiza-
tion. Section IV also contains a calculation of the
"noble-metal contraction" in the MN alloys in the sense
discussed above in connection with Eq. (1). Here good
agreement with experiment ' ' adds conclusiveness to
the work.

/

gaining some insight into bonding characteristics. Also
known is the derivation of these equations by the elegant
method based on Andersen's "force theorem. "

Nevertheless, we find it appropriate here to review their
derivation briefly (Sec. IIA). This serves to define the pa-
rameters that enter our calculations, and to state clearly
what we mean here by an "lpartial pressure, " distinguish-
ing it from what we consider as an unphysical decomposi-
tion based on a meaningless separation of the total energy
into "l components. " Then in Sec. IIB we present ap-
proximate pressure relations which can be broken up into
terms to which we can attribute physical significance.
Again the formulas are not claimed to be new, but the
literature is rather confusing due to various identities and
alternatives, so that it would be cumbersome for the
reader to fit the jigsaw puzzle together from the original
sources. Furthermore, our discussion of the relations
between the different formulations and of the physical
significance of the terms is much more complete than pre-
viously, as is essential for our ultimate goal of identifying
and calculating the volume and pairwise interactions.

A. Definitions

5 U =5 f EN(E)dE, (2)

where N(E) is the density-of-states function obtained
from the one-particle energy spectrum. The right-hand
side, the change in one-particle energy sum, is assumed to
be evaluated by the so-called "frozen-potential" ap-
proach. ' If we had not assumed the ASA, Eq. (2)
would have an extra term, a change in electrostatic in-
teraction between the "cells" which are cut loose and
moved to their new positions during the virtual displace-
ment as described in connection with the derivation of the
FT 26

The change in total energy following an expansion,
where the Wigner-Seitz radius is changed from S to
S+5S, is (per atom)

We consider the simplest possible solid, a crystal with
only one kind of atom per lattice site, i.e., an elemental
solid. This means that we avoid complications to our def-
initions of partial pressures arising from Madelung contri-
butions. Further, we assume that we can apply the
atomic-sphere approximation (ASA), i.e., the Wigner-
Seitz cells are replaced by (neutral) spheres inside which
the electron density and the potential are made spherically
symmetric. In this case the force theorem (FT) states
that a distortion of the system (expansion or other change
of atomic positions) causes a change in the total energy
which to first order (see also Refs. 30—32) can be calculat-
ed as

II. PARTIAL PRESSURES
5 U = 4n.PS 5S= —3PQ—5 lnS, (3)

The formulas for electronic pressures in solids by
Niemenen and Hodges and Pettifor are well known
and widely used in connection with local-density calcula-
tions. They are often applied in theoretical predictions of
equilibrium volumes, and further, via orbital decomposi-
tions into "partial pressures, " they offer possibilities of

3PQ = — J EN(E)dE . (4)

In terms of the number of states, n(E) [integral of N(E)],
this is

where P is the pressure and Q the cell volume. This gives,
with (2),
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5EF 5n (EF )

5 lnS 5 lnS

6EF
5 lnS

5n(E) dE

~F 5N(E) d-- 51~d

53PQ= — EFn(EF) —f n(E)dE (LDA) evaluated for the electron density of the sphere
surface and e„,(S) is the LDA exchange-correlation ener-

gy at r =S. Equations (8)—(10) specify how we have cal-
culated the partial pressure when we refer to it in the fol-
lowing sections.

We shall now, on the other hand, specify what we do
not consider as a proper definition of partial pressures. Of
course N(E) = g&Nl(E) and thus

6 E
y3P, Q= „yf EN, (E)dE .

l

dnl(E)
Nl(E) = BN(D)

BDI
D (6a)

We have used the fact that 5n(EF ) =0, following the defi-
nition of the Fermi level. Now, let D denote the logarith-
mic derivatives IDl(E)I (l is the angular momentum).
The total number of states n is a canonical function of D
in the sense that the functional dependence of n on Do,
D~, . . . , is given entirely by the structure constants in the
canonical band theory. This means we can write the
nontrivial formula for the partial density of states Nl(E)

However, a quantity PI* defined through

E
3Pl*Q = — f ENl(E)dE

6
EFnl(EF ) f—

5nl(EF ) FF 5nl
EF

61nS —~ 6lnS

(12)

(13)

where Dl is the energy derivative of Dl Note h. ow this
formula differs from the more obvious (and also correct)
result of total differentiation

is not identical to Pl given in (9), as can be shown numeri-
cally or analytically. Thus we have Pl'&Pl, but of course
the "sum rules"

d B l dDl

dE l, dDl dE
(6b)

QPt'Q= gP, Q, /5«(EF)=0
1 I l

which mixes l and l' We can. transform (6a) further into apply. Incidentally, we wish to point out that the relation

Bn(D)
Nl(E) = Dl —— Bn

DI

1

Sgl(E,S)
5nl(EF )

3(Pl* Pl ) V= —E—F 5 lnS
(15)

where we have used the relation given in Ref. 29 to ex-

press DI in terms of the radial partial wave amplitude,
pl(E, S) at the sphere surface, r =S. Thus we have

3PQ= f dE
5 lnS

EF 5Dl(E)= g f Nl(E)SPl(E, S) — dE
1

(8a)

or

3PQ= g 3PlQ, (8b)

where the l partia/ pressure Pl is defined through

EF 5Dl(E)
3PlQ= f Nl(E)SPl(E, S) — dE . (9)

+S [E—E„,(S)+p„,(S)—V(S)]I,
where V(S) is the ASA potential at r =S. Also,
p„,(S)=p,(p(S)) is the exchange-correlation potential

Using the (radial) Schrodinger equation one easily shows
that

5DI

5 I~ =
I (Dl«)+l+ 1 llDl«) ll—

5U= g Pl'5Q=5 f E—QNl(E)dE= +5Ul,
I I 1

(16)

from which one might be tempted to identify "angular-
momentum components of the total energy" as
Ul= f ENl(E)dE. The introduction of such a quantity
does not make any sense due to electron-electron interac-
tions, and even if it did make sense the definition (16)
from Pl* would be incorrect because it neglects the l, l'
mixing in (6b).

To what extent can the l decomposition of the total
pressure be physically significant? The interaction energy
between energy carriers or modes is by definition due to
their mutuality and not ascribable to one or another. The
same must in some sense be true of the pressure viewed as
the volume derivative of the energy. Certainly the radial
wave function for one l contributes to the self-consistent
potential in the Schrodinger equation for another l' and
hence to P~ . But in the case of pressure one has the alter-
native kinetic viewpoint in which the pressure is physi-
cally due to particles hitting the boundary, their momen-
tum being influenced by and, hence, containing implicit
information about the potential forces acting on them.

which might appear plausible from (8a) and (13) also does
not hold: it corresponds to forgetting the 1'+l terms in
(6b). If we had considered Pl* as the partial pressure, Eq.
(12) would have been rewritten as
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The pressure in this formulation contains three terms in
general, the first being the one-particle kinetic pressure
which can be decomposed with respect to I, and the
second an electrostatic long-range term which is zero for
neutral atomic spheres. The third term corresponding to
the last part of (10) comes from exchange and correlation
which are Coulomb interaction effects, but even here we
see from (9) that the term is proportional to the density

&(E I E,S dE

of l electrons at the sphere radius, so that we picture the
exchange and correlation hole as "dressing" the electron
into a quasiparticle (which in LDA has zero spatial ex-
tent) and the third pressure term as dressing the first term
to turn it into the momentum pressure due to quasiparti-
cles. The sp-d hybridization does not affect the l decom-
position as discussed below.

To make the legitimacy of a pressure decomposition
even clearer, we refer to a perfect gas of molecules which
have internal rotational and vibrational degrees of free-
dom. The pressure is due purely to the kinetic momen-
tum, but as we compress the gas adiabatically, part of the
work pumped directly into the kinetic energy is
transferred continuously into rotational and vibrational
energy. Thus it would be quite incorrect to integrate the
kinetic pressure and call that the kinetic energy.

B. Approximate pressure equations

This section gives two sets of simplified pressure rela-
tions which do not possess the same accuracy as Eqs.
(8)—(10) but are useful for interpretating the calculated
quantities in the case of tight-binding and nearly-free-
electron bands, respectively. We shall also define here
what later will be referred to as "central pressures" and
"tail pressures. "

It was mentioned in Sec. II A that the number of states
n = n (D) is a canonical function of D = I DI I. We can, of
course, equally well consider it as a canonical functional
n =n ( H ), H = I H i I of the potential functions

Di(E) +1+1
Hi(E) =2(2l+ 1)

Di E —I

~i(E)=,
, SX—i(E,S)

(19)

=(E Ci)(S—pi), (20)

where pi is the (central) l-band mass parameter. 9 The
bandwidth parameter 8'I is inversely proportional to pI
(see Ref. 29):

1wi~
pgS

(21)

The approximation (20) suffices in the neighborhood of a
tight-binding (TB) band, i.e., for the d pressures in the no-
ble metals in the present work and for the 5p states in
compressed Xe.' However, approximation (20) is not
adequate for nearly-free-electron (NFE) bands and for the
high-I tails from orbitals on neighboring atoms, in both
cases the radial wave function for pseudowave function
being nearly the spherical Bessel function. We then ex-
pand around the energy corresponding to the "square-
well pseudopotential, "

V~.

i(E)=(E Vi) ~i( Vi) .—

Again we use (19), but with

AS (E—Vi)
, SXi(E,S )=—

2(2l+1) (21+3)
(23)

1.e.,

where Xi(E,r) is the radial part of the muffin-tin orbi-
tal. The band center, Ci is the energy ' where HI(E)
is zero, i.e., where from Eq. (17), Di(E) =Di(Ci) = —l —1.
For energies in the neighborhood of Ci, we may use the
first-order expansion

Hi(E)=(E Ci) H—i(Ci )

1=(E Ci)—,
—,SXi(Ci,S)

=(E Ci),— 1

2 Ski(Ci, S)

to derive alternative pressure formulas. For the energy
derivative of DI we had

2(21+1) (2l+3) 1

S'~I
(24)

DI(E) =
Sgi(E,S)

A similar relation for P'i is

where ~i is the "band-bottom mass parameter. " It fol-
lows that the change in the single-particle energy sum
[Eq. (2)] which enters in the pressure equation [Eq. (4)]
can, approximately, be written as

5 f EK(E)dE= —f 5n(E)dE= —g &~ 5&idE= g nI(EF)[5'+((E)&—C&)51nWi]
I Iel, \

(central )

+ g ill(EF)[5VI ( (E )i +j ) 5(1npr')] . (25)
Icl,
(tail)
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where

5Ci 51nWr
3P, (l)Q= —ni +((E)i—Ci) (27)

5Vi 51n(rrS )
3P,(1)Q=—nr —( (E ) i —Vi ) (28)

Note that here and elsewhere the differentiation with
respect to 1nS has to be carried out according to the
prescription of the force theorem. Each of the relations
(27) and (28) can be broken into three terms giving three
central pressures P, ~, P,2, and P, 3 and three tail pressures
P, ~, P,2, and P,3. This division is made by applying the
relations (perturbation theory) given as (79) in Ref. 26.
The three central pressures are

Cr
3P, &(l }Q= nr—

2' ~
[Cr —V(S)+intr „,(S)—e„,(S)],

PI

3P, (1z)Q=n [(rE) —
r Ci] 21+1+ 2

PI
(29b)

2S
3P,3(1)Q= nr( (E ) i —Ci )—

D. +l+1
X I [Ci—V(S)+p„,(S)—e„,(S)]I .

The tail pressures P, ~, P,2, and P, 3 are given by

VI
3P„(1)Q= nr—

5 1nS'

=nr [Vi —V(S)+p,„,(S)—E„,(S)],2l +3
I

(29c)

3P,2(1)Q=ni( 1E ) r
—Vi ) —(21+ 1)+ 2l+3

+1
(30b)

3P,3(1)Q=—nr( iE)r —Vi)

2S
X [Vr —V(S)+p„,(S)—e„,(S)]

(30c)

Here, (E ) r means the center of gravity of the occupied
part of the 1 band. In the first sum, 1 takes only the
values 1 ( &1,) for TB bands where we can use the central
expansion [Eq. (20)]; in the second sum only those values 1

( C1,} for the NFE bands and high-1 tails where the "tail"
expansion [Eq. (24)] is used. Thus, for a noble metal, we
would have 1,= I 2 I, 1,= IO, 1,3, . . . I.

The approximate pressure relations thus lead to a
decomposition into "central pressures" P, and "tail pres-
sures" P, :

(26)

Here, D. is the logarithmic derivative of the energy
derivative of the partial wave P„r (see Ref. 29).

We turn now to the physical significance and signs of
the terms in (29). The partial pressure contribution P, &,

Eq. (29a), is clearly related to the shift in energy position
of the 1 band as a whole when the crystal volume is
changed, i.e., the "center-motion term. " At short dis-
tances it is positive due to the exclusion principle as the
neighboring shells overlap, while at larger distances it is
negative due to the van der Waals interaction in the sense
discussed in Sec. I. The other two central pressures (29b)
and (29c) may be named band-filling terms since they
both are proportional to (E)r —Cr, i.e., the difference be-
tween the actual center of gravity (E ) r of the band (the
occupied part) and the canonical center Cr. The P, 2 and
P 3 necessarily have opposite signs since the postfactors in
large parentheses in (29b) and in curly brackets in (29c)
are positive (as is D ). The .P, 3 is an exchange and corre-
lation dressing in the sense discussed and is usually con-
siderably smaller than P,2. For an isolated canonical
band, Cr is the center of the band so that for a filled ideal
band we would have (,E)r —Cr ——0. For a partially filled
TB band (E)r —Cr is negative corresponding to the
filling of the bonding states more than the antibonding
ones, giving a strong negative P,p+Pg3 Two further ef-
fects in (E)r —Cr and hence in P,2+P, 3 may be seen
which can become important, particularly in the case of
full TB bands, as for the noble-metal d shells. Firstly,
bonding in a TB interpretation implies that the tails of the
atomic orbitals overlap the atomic spheres of neighboring
atoms, and in our formalism get expanded about the
centers of those other atoms to yield small partial densities
of states of all angular momenta. Thus there is a small
loss of weight from the full 1 band into all other 1' which
we call the bonding redistribution. Bonding states at the
bottom of the band have a longer range (larger amplitude
for r =S) than the antibonding states at the top where an
ideal antibonding state has a node at r =S. We therefore
expect (,E)r —Cr )0 from this effect, yielding a positive
P,2+P, 3. The second effect is that of hybridization. The
mixing of the 1-band orbitals with other TB or NFE
bands results in a nonzero (essentially positive) 1 partial
density of states Nr(E) for all E where there are occupied
states below the Fermi level. Conversely, Nr (E) for 1'&l
will be nonzero in the energy range, of the TB 1 band. In
addition, the energies of the bands will be shifted. Conse-
quently, (E)r —Cr may have either sign from hybridiza-
tion, and since energy level from l and l' bands mutually
repel, we may expect a large measure of cancellation be-
tween the 1 and 1' partial pressures for 11' hybridization.
In the extreme limit of two filled ideal TB bands, their
P,2+P, 3 contributions must cancel exactly.

A siinilar analysis can be made for the tail partial
pressures (30). Here, Vr represents the mean pseudopoten-
tial felt by the electrons, i.e., the bottom of the band for
the relevant 1, and thus P, ~ contains the movement of the
band as a rigid whole with variation in atomic-sphere ra-
dius as seen from the first form in (30a). It also contains
the exchange and correlation energy as is evident from the
second form in (30a) which arises, as already remarked, by
differentiating Vr in the manner of the force theorem.
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The P,2+P, 3 together give for a free-electron gas the ki-
netic Fermi pressure as is most easily seen from the
second term of (28), and indeed P,2+P, 3 are probably al-
ways best considered combined.

We now give an order-of-magnitude discussion of the
pressures for the noble metals to illustrate the above re-
marks and set the general picture. The characteristic,
common features of their band structures at equilibrium
are well known. The filled d bands are crossed by and
hybridize with a NFE sp band containing approximately
one electron distributed roughly equally over s and p
states. The square-well pseudopotential Vo for l =0 gives
the bottom of the s band, i.e., it is close to the I

&
state.

This lies 0.3 Ry (Ag) or 0.5 Ry (Cu, Au) below the center
of the d bands. The value of V~ for the p states for all
three metals is nearly the same as Vo, and with the masses
v, and ~& near unity, the sp band is genuinely NFE-like.
The values of s„,(S), at the respective equilibrium
volumes are in the range —0.53 to —0.59 Ry. For all
three metals one has, on an energy scale where
V(S) =p„,(S), that (E)» (E)p) E (S)) Vp V&.

From these general considerations it follows that
P, &(s) =P, ~(p), both being large and negative. Obviously,
(E)I—VI must be positive for 1=0 as well as 1=1. It
then follows from (30b) and (30c) that P, 2 and P, 3 both
must be positive for 1=0 and 1=1. Since the half-full
NFE band consists predominantly of occupied bonding s

'

and p states, we would expect the net sp pressure to be
negative, i.e., that the negative P, &

for l=0, 1 outweigh
the positive P,2+P, 3.

We can also make some general predictions for the d
pressures. Since the d bands contain almost the nominal
ten electrons, and as they are relatively narrow, (E)2 al-
most coincides with C2. The d band center moves to-
wards higher energies under compression. Thus, we
would expect that 5C2 /51nS is negative, i.e., that P, ~(d)
in (29a) is positive. This agrees with the alternative
second expression for P, &(d ) in Eq. (29a), because we ex-
pect (E)~-(E)z-C2, which combined with the order-
ing of characteristic energies given above, gives
C2 —[V(S)—p„,(S)]& s„,(S). Thus the equation (29a) ap-
pears to yield a d-shell repulsive term with the proper
sign. It is somewhat more difficult to predict even the
signs of the two remaining contributions P, 2 and P, 3 to
the central d pressure. We have already made general re-
marks about the bonding redistribution and hybridization.
Since the d bands are relatively narrow, the bonding redis-
tribution may not be very large and may be outweighed by
hybridization. Since the d band is crossed by the sp band
and the hybridization matrix element is proportional to
k (Ref. 27, p. 66), the d band will be pushed up a little
near the center of the Brillouin zone and down by a larger
amount in the outer parts of the Brillouin zone, thus giv-
ing a net depression of (E )2, i.e., negative (E )2—C2 and
negative P,2(d)+P, 3(d). Incidentally, hybridization is
the interaction of the d states with the l =2 component of
the sp band which arises from expanding the tails of s and
p orbitals about the centers of neighboring atoms. Thus
hybridization does not mix different l in the strict sense,
only in the loose sense that we refer to sp or d bands.

III. CALCULATED PRESSURES

600—

400—

u. Total pressure
MTO ASA

I

U

200—
Q)

Vl
ti)
0)

0

-200—

—400

S~ SQ Sexper

, i if
2.6 2.8 3.0

S (a.u.)

I I I I

3.2 3.4

FICx. 2. Total pressure and equilibrium Vhgner-Seitz radius
So using scalar relativistic, self-consistent LMTO-ASA for Cu.
Solid curve and So (spdf) for 1,„=3; dashed curve and So
(spd) for I,„=2.

We do not intend to present here the best possible
local-density band-structure calculations for the noble
metals. We use the linear muffin-tin orbital (LMTO)
method, but we stay within the simplest approximation,
the ASA (atomic-sphere approximation). ' We do not
include the so-called "combined correction term" which
corrects for the nonspherical shape of the cell and the
omission of partial waves with l ~ I,„. Most of the re-
sults presented here are derived with l,„=2. However,
in order to estimate errors introduced by this choice,
which is made since it facilitates our analysis, some data
where 1,„=3will also be given. The actual choice of the
number of angular momenta included will be given in
each graph. Figure 2 illustrates, in the case of Cu, the ef-
fects on the total pressure of including f states. The LDA
is known to give all atomic sizes a little too small and
therefore for consistency we will discuss the calculated
pressures in terms of the calculated equilibrium Wigner-
Seitz radius S rather than the experimental one.

Numerical results for the pressure parameters for the
noble metals are given in Tables I—III. Except as other-
wise stated, energies will be expressed in rydbergs and dis-
tances in Bohr units (a.u.). We note general agreement
about signs and orders of magnitude with the qualitative
discussion at the end of Sec. II. We also see the approxi-
mate agreement between the exact P~ from (9) and (10)
and the approximate P~' (29) and (30). We had expected
the effect of sp-p hybridization to be mixed with other ef-
fects and spread between the P,2, P, 3, P, 2, and P, 3 for
l =0, 1,2 with substantial cancellations between them, as
indeed the table demonstrates. Thus we cannot extract
any net hybridization from the tables. However, we
would like to verify that it is a substantial effect and have
therefore chosen a different approach. In the LMTO-
ASA method one can simply set to zero the matrix ele-
ments connecting the s and p bands with the d bands and
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repeat the whole self-consistent calculation. This is not a
very satisfactory procedure, as discussed further below,
but we believe it gives qualitatively correct trends. The
results for the total pressure for Cu are included in Fig. 3,
which shows indeed a contraction of atomic radius from
2.84 to 2.63 due to hybridization. Similar results (not
shown) were obtained for Ag and Au.

Details of the separate components of the central d
pressure P, &(d ), P,2(d ), and P, 3(d ) for Cu are shown in
Fig. 4 and have the general signs and relative magnitudes
anticipated at the end of Sec. II B. In accordance with the
discussion there, we focus on P, &(d ) as the best measure
we have of the pure full d-shell interaction without sp-d
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hybridization, i.e., what the interaction between the d
shells would be if the d band were isolated and all other
bands so far away that hybridization with them were
negligible (Fig. 5). The P, ~(d ) is seen to be quite strongly
repulsive around the equilibrium atomic-sphere radius,
becoming very weakly attractive at much larger S, in ac-
cordance with the van der Waals interaction in the sense
of Sec. I. We note that P, &(d) in fact is rather more
weakly attractive than we would exp'ect from the magni-
tude of the van der Waals interaction estimated by
Richardson and Mahanty, ' and suggest that the hybridi-
zation effect may be stronger and the van der Waals ener-

gy weaker than obtained by these authors. Similar results
for P, ~(d ) were calculated for Ag and Au (Figs. 6 and 7).

In order to get an independent estimate of the pure d-
shell interaction we performed the calculations already
mentioned with the sp-d hybridization matrix elements
switched off (but the s to p matrix elements retained).
The pure d-shell interaction should then correspond to the
full d pressure in the unhybridized calculation, and this is
shown for Cu, Ag, and Au in Figs. 5—7 to be compared
with P, &(d) (not Pd) for full hybridization. For Cu the
two agree remarkably: for Ag and Au the unhybridized
calculations follow the same general curve as P, &(d) but

-100
3.0 3.1

S (a.u. )

3.2

FIG. 7. Same as Fig. 5 for Au.

about 100 kbar even more repulsive. The trouble with
these unhybridized calculations is that they give rather
peculiar bands. The pressure formulas assume self-
consistency in the bands, and these were therefore recalcu-
lated completely in the unhybridized scheme. For Ag the
top of the d band lay just below the Fermi level EF, for
Cu and Au slightly above, thus introducing a few real
holes. In view of these problems, it is gratifying that the
unhybridized calculations give a pure d-shell interaction
broadly similar to the P, ~(d ) which we prefer. Incidental-
ly, if one (incorrectly) uses non-self-consistent bands cal-
culated without hybridization from the with-hybridization
potential, one still obtains a substantial pure d-shell repul-
sion but about 100—200 kbar less than P, &(d ).

To complete the picture we analyze the tail pressures
for /=0 and 1, representing the NFE gas of sp electrons.
The kinetic (Fermi) pressures for a noninteracting free-
electron gas of one electron at the calculated radii are 418,
207, and 188 kbar for Cu, Ag, Au, which are seen to be
nearly half of P,z+P, q for l =0 and 1 combined, which
we shall call Pgp 3(sp). The remaining half is due to hy-
bridization and cancels a corresponding negative hybridi-
zation contribution to P,z+P, z as already remarked. Al-
ternatively, we can say that the total number no+ n

&
of sp

electrons is around 1.5 (Tables I-III) due to hybridization
and that the kinetic pressure of an electron gas of this
density accounts for almost all of Pgz 3(sp). This quantity
is therefore behaving as expected, which gives us confi-
dence in carrying the same analysis forward to P«(sp).
This should contain the exchange and correlation pressure
for a free-electron gas with Coulomb interactions, namely,
about —220, —130, and —120 kbar for Cu, Ag, and Au,
leaving a large negative part of P, ~(sp) to be ascribed to
the very attractive pseudopotentials, which is consistent
with the large negative Vo and V&.

This large negative P«(sp) is basically what balances
the positive pure d-shell repulsion. The variation of
P„(s) and P, &(p) with radius is shown in Fig. 8 and we
can interpret it in terms of the pseudopotentials9
V~(r) depicted for l=0 for Au in Fig. 9. We note that
V~, (r) is very attractive at —0.8 Ry around r =2 to 3
(Fig. 9) compared with potassium which has the same
core radius, which gives the large negative Vo and V~ and
large negative P, ~(sp). However, as the Wigner-Seitz ra-
dius S is reduced, the sp electrons get squeezed increasing-
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IV. DISCUSSION

%'e now discuss further the physical interpretation and
physical consequences of the results of Sec. III. The three

ly into the repulsive part of the pseudopotential at small r
(Fig. 9), making P, ~ go up until it ultimately becomes
repulsive (Fig. 8).

Finally, we comment on some differences between the
noble metals. It had at one time been thought that Cu
and Au should be similar, with Ag having a significantly
tighter d shell because of its lying deeper below EF, as
evidenced by the colors of the three metals. No doubt
there must be some such effect which may account for the
smaller Pd for Ag at equilibrium compared with Cu and
Au. However, in most respects, e.g., Fig. 8, Cu differs.
markedly from Ag and Au. This is easily understood in
terms of the pseudopotentials seen by the d-shell electrons
and the radii of their orbitals. For Cu there is no deeper
l=2 shell so that the electrons see the full potential,
whereas in Ag and Au the inner part is cancelled out in
the sense of the pseudopotential cancellation theorem. '
In consequence, the maxima of the d orbitals occur at
r=0.6, 1.2, and 1.2, respectively, leading to a larger d
charge density at the Wigner-Seitz radius and a larger hy-'

bridization matrix element in Ag and Au than in copper
(p. 66 of Ref. 27).

salient features emerging from our analysis of the partial
pressures were a strongly positive pure d-shell repulsion,
balanced by a net negative hybridization pressure and a
negative sp NFE pressure. The last is due to the attrac-
tive l=0 pseudopotential sucking the electron gas in-
wards, an effect that has been demonstrated directly by
the charge redistribution calculations '" for CsAu where
the electron transferred from Cs was relocated in the ra-
dius range 1.9—2.5 a.u. on the gold atom. (For compar-
ison, the Wigner-Seitz radius of Au is 3.0 a.u. ) It was also
shown that the extra gold electron density is mostly of s
character, which correlates with the shape of the gold
l =0 pseudopotential being anomalously attractive in just
the range mentioned (Fig. 9). The reason for the
anomalous shape of the Au+ l =0 pseudopotential com-
pared with that of K+ is connected with the soft d shells
as discussed elsewhere, '"' that for l = 1 being more
normal.

In order to make physical arguments relating to alloys
and surface reconstruction of the noble metals in the sense
of Sec. I, we need to know or assume how the three effects
above behave in the presence or absence of neighboring
atoms. The pure d-shell repulsion (without hybridization
effects) we take to be predominantly a pairwise interaction
between d shells in contact, vanishing at a free surface
and in alloys where the d shells are kept out of contact.
The NFE pseudopotential attraction we refer to as a
volume (one-atom) effect ("volume force" for short): the
interaction energy is the product of the atomic pseudopo-
tential and the NFE sp-electron density, the latter broadly
determined by the atomic density in a region, in a sense by
the volume available to the one gold sp electron.

The less obvious assignment is the sp-d hybridization as
also predominantly a volume and (one-atom) force dif-
ferent from the pure d-shell repulsion (which was the pur-
pose behind our careful analysis of the partial pressures).
We will not go into all the details of pseudopotential '
and hybridization theory ' but regard it as evident
enough that sp-d hybridization in our context is the in-
teraction of the d electrons on one atom with the l=2
component of the sp NFE wave functions on that atom:
note, for example, the hybridization matrix element as an
intra-atomic integral (p. 66 of Ref. 27). The hybridization
for a NFE state with wave vector k and energy above or
below the d band gives an additional effective pseudopo-
tential

0.2—
s pseudopotentials

S
)fc

Ykm 'Ykm

, E(k) —Ed (k) ' (31)

C)
ll

-0.2—

0 1 2 3 4 5
r (~.uI

FIG. 9. Pseudopotentials in hartrees (double rydbergs) corre-
sponding to l =0 for Au+ and K+ (after Ref. 39).

where y~m is the hybridization coupling to the mth d
band. Thus, V~ is predominantly a one-atom pseudopo-
tential which depends only weakly on neighboring atoms
through the energy dispersion Ed~(k) of the d band. To
obtain the total hybridization energy in the system re-
quires summing its effect on the occupied d shells and
NFE states below EF. The interaction is very complicat-
ed where the bands cross but we can perform the summa-
tion by noting from the trace invariance of a Hamiltonian
matrix that the total hybridization energy would be zero if
summed over the d bands and all NFE bands up to infin-
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FIG. 10. Calculated difference, P„,—P, ~(d ), between the to-
tal pressure and the repulsive d-shell term for Cu, Ag, and Au
as functions of the relative volume deviation from (theoretical)
equilibrium.

address quite the same issues of the pairwise or other na-
ture of the forces.

We have argued that the approximate pressure com-
ponent P, i(d) given in Eq. (29a) (for l =2) represents the
pairwise repulsive interaction between the d shells. We
wish here to substantiate this assignment further by ap-
plying our model to compute the "noble-metal contrac-
tion" observed by Nevitt ' and others for the MN al-
loys, i.e., we shall calculate the difference Q~ —Qz re-
ferred to in Sec. 'I. If our understanding of P, i(d) is
correct, then we should obtain Q~ simply as the volume
at which the total pressure P„, minus P, (id). vanishes
(Q& is, of course, the volume at which P„,=O). The re-
sult follows from Fig. 10, where the calculated values of
P„, P, i(d—) are shown for Cu, Ag, and Au. The relative
volume contractions which we find, are for Cu, Ag, and
Au, 17%, 10%, and 14%, corresponding to AQ=Q&
—Q~ ———2.0 A (Cu), —1.7 A (Ag), and —2.4 A (Au).
These results agree well with those obtained from the
analysis of the data given by Nevitt, ' —l.8, —1.2, and
—3.0A .

ite energy. Thus our summation up to EF is the negative
of the summation from EF to infinity where the form (31)
applies. This establishes the combined effect of hybridi-
zation on the d shells and the occupied sp states as also
predominantly a one-atom (volume) effect. We believe the
above interpretation is fully supported by more detailed
theories of noble-metal cohesion, though these do not
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