Scaling theory of the low-field Hall effect near the percolation threshold

David J. Bergman

School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

David Stroud

Department of Physics, The Ohio State University, Columbus, Ohio 43210 (Received 4 June 1985)

A scaling theory of the low-field Hall effect in a two-component metal-nonmetal mixture near the percolation threshold of the metallic component is formulated and some of its physical consequences are examined. We predict that under certain conditions a peak in the Hall resistivity R_e versus metal volume fraction p_M can be observed near the threshold.

Investigations of the theory of the Hall effect in composite media were started nearly 20 years ago by Juretschke, Landauer, and Swanson.¹ They treated various types of microgeometries in three dimensions (3D) approximately, and they also described the exact general solution for the Hall effect at low magnetic field H in isotropic two-dimensional (2D) composites. The behavior predicted for the 2D case has recently been observed experimentally for the first time.² Significant further progress was then made by the introduction of an effective-medium approximation, δ nodes-links approximation in two different forms,^{4,5} by the by the exact solution of the Hall problem on a Cayley tree network,⁶ and, more recently, by the exact solution of the Hall and transverse magnetoresistance problems for arbitrary field strength in $2D$.⁷ Also, recently, a comprehensive theory of the low-field Hall effect in isotropic twocomponent composites has been developed.⁸ An important result of that work was the conclusion that the low-field Hall conductivities of the two components λ_M , λ_I and that of the composite λ_e satisfy the following exact relation:⁹

$$
\frac{\lambda_e - \lambda_I}{\lambda_M - \lambda_I} = X \left(\frac{\sigma_I}{\sigma_M} \right),\tag{1}
$$

where X is independent of the Hall conductivities; it is a function only of the ratio of the Ohmic conductivities of the two components, and its precise form depends on the microgeometry of the composite. An attempt to construct a scaling theory of the Hall effect was made previously by Shklovskii.¹⁰ However, that involved an improper scaling ansatz and resulted in an inconsistent description of the critical behavior.

In this Rapid Communication we present a consistent scaling theory of the low-field Hall effect that is based upon the theory of Ref. 8, and this leads to some rather interesting predictions of critical behavior in an isotropic good conductor (σ_M, λ_M) –bad conductor (σ_I, λ_I) mixture near the percolation threshold $p_M = p_c$ of the former.

Equation (1) suggests that the particular combination of Hall conductances that appears on the left-hand side depends only on the Ohmic properties of the system. This is borne out by the fact that in order to evaluate the function X , one only needs to know the microscopic electric fields $\mathbf{E}^{(x)}(\mathbf{r})$, $\mathbf{E}^{(y)}(\mathbf{r})$ present in the system when an external potential difference is applied in the x, y directions,

respectively, in the absence of a magnetic field:⁸

$$
X = \frac{1}{V} \int dV \Theta_M(\mathbf{r}) \left(\mathbf{E}^{(x)} \times \mathbf{E}^{(y)} \right)_z \tag{2}
$$

Here V is the total volume, and $\Theta_M(r)$ is a characteristic step function equal to 1 when r is inside the σ_M component and equal to 0 otherwise, so that the integration is effectively restricted to the σ_M volume. As a consequence of these remarks, one is naturally led to assume that, near the percolation threshold of σ_M , the appropriate scaling variable would be the same as that which appears in the Ohmic conwould be the same as that which appears in ductivity, namely,¹¹ $(\sigma_I/\sigma_M)/|p_M - p_c|^{t+s}$.

We therefore make the following scaling ansatz for the bulk effective Hall conductivity λ_e :

$$
\frac{\lambda_e - \lambda_I}{\lambda_M - \lambda_I} = |p_M - p_c|^\tau F \left[\frac{\sigma_I / \sigma_M}{|p_M - p_c|^{t+s}} \right], \qquad (3)
$$

for $\sigma_I/\sigma_M << 1$ and $|p_M - p_c| << 1$.

The exponent τ characterizes the critical behavior of λ_e for $p_M > p_c$ when σ_I (and therefore also λ_I) vanishes. In that case we have $\lambda_e/\lambda_M \propto (p_M - p_c)^\tau$. The value of τ is case we have $\lambda_e/\lambda_M \propto (p_M - p_c)^{\tau}$. $\tau = 2t \approx 2.60$ in 2D; $\tau \approx 3.7$ in 3D.¹²

As usual, there are three interesting limits for the scaling function $F(Z)$, namely,

$$
F(Z) \propto \begin{cases} \text{const for } Z << 1, \quad p_M > p_c \quad (\text{Regime I}) \\ Z^2 \text{ for } Z << 1, \quad p_M < p_c \quad (\text{Regime II}) \\ Z^{r/(t+s)} \text{ for } Z >> 1, \quad p_M \leq p_c \quad (\text{Regime III}) \end{cases} . \tag{4}
$$

The first of these limits has been discussed before,¹² while the last limit is obviously a consequence of the need to cancel the dependence of Eq. (3) on $p_M - p_c$. However, the second limit merits some discussion, since one might have expected $F(Z) \propto Z$ below the threshold. In fact, as $\sigma_I/\sigma_M \rightarrow 0$, the fields $E^{(x)}$ and $E^{(y)}$ will also tend to 0 linearly with σ_l/σ_M inside the σ_M component, whenever that component does not percolate. From Eq. (2) it then follows that $X \propto (\sigma_I/\sigma_M)^2$ when $p_M < p_c$.

The analogous scaling ansatz for the Ohmic conductivity of the mixture σ_e would be

$$
\frac{\sigma_e - \sigma_I}{\sigma_M - \sigma_I} = |p_M - p_c|^t G \left[\frac{\sigma_I / \sigma_M}{|p_M - p_c|^{t+s}} \right], \tag{5}
$$

for $\sigma_l/\sigma_M \ll 1$ and $|p_M - p_c| \ll 1$,

32 6097 6097 985 The American Physical Society

where

$$
G(Z) \propto \begin{cases} \text{const in Regime I} \\ Z \text{ in Regime II} \\ Z^{t/(t+s)} \text{ in Regime III} \end{cases}
$$
 (6)

We note the difference in behavior between $G(Z)$ and $F(Z)$ in Regime II: the behavior of $G(Z) \propto Z$ is dictated by the fact that $\sigma_e \propto \sigma_I$ when $p_M < p_c$. While Eq. (6) is essentially equivalent to the scaling ansatz of Straley,¹¹ in which tially equivalent to the scaling ansatz of Straley, 11 in which the left-hand side of Eq. (5) is replaced by σ_e/σ_M , Eqs. (3) and (4) differ in important respects from the scaling ansatz of Shklovskii,¹⁰ which did not take into account the results included in Eqs. (1) and (2). In particular, we shall see

$$
R_e \propto \begin{pmatrix} A_1 R_M | p_M - p_c|^{-s} + B_1 R_I \left(\frac{\sigma_I}{\sigma_M} \right)^2 | p_M - p_c|^{-2t} \text{ in Regime I} \\ A_2 R_M | p_M - p_c|^{-s} + B_2 R_I | p_M - p_c|^{2s} \text{ in Regime II} \\ A_3 R_M \left(\frac{\sigma_I}{\sigma_M} \right)^{-s/(t+s)} + B_3 R_I \left(\frac{\sigma_I}{\sigma_M} \right)^{2s/(t+s)} \text{ in Regime III} \end{pmatrix}
$$

$$
g = 2t - \tau \tag{9}
$$

and where A_i , and B_i are constants of order one. The critical exponent g has the values 0, 0.29 ± 0.05 , and 1 in 2D, 3D, and 6D, respectively,^{2,5,12} while t and s are the usual Ohmic-conductivity critical exponents.

In Regime I, the ratio of the second to the first term in R_e is of order $(\lambda_I/\lambda_M)|p_M - p_c|^{-\tau}$, and thus either of them may dominate, depending on the parameters of the system. However, both of them increase as p_M decreases towards p_c , and this will continue until $(p_M - p_c)^{t+s} \approx \sigma_l/\sigma_M$, at which point Regime III is entered and R_e rounds off at a value independent of p_M . As p_M decreases below p_c , Regime II is eventually entered and there a nonmonotonic behavior is possible, since R_e is the sum of an increasing and a decreasing term: a minimum of R_e will occur at $p = p_{\text{min}}$ where

$$
|p_{\min} - p_c| \simeq \left(\frac{R_M}{R_I}\right)^{1/(2s+s)}, \tag{10}
$$

provided that point lies in Regime II, i.e., if

$$
|p_{\min} - p_c|^{t+s} \simeq \left(\frac{R_M}{R_I}\right)^{(t+s)/(2s+s)} > \frac{\sigma_I}{\sigma_M} \quad . \tag{11}
$$

(In these as well as in the subsequent approximate equalities, we ignore coefficients of order one.) Otherwise, R_e will continue to increase monotonically towards R_I as p_M decreases throughout Regime II. The (local) minimum value of R_e , which occurs for $p_M = p_{\text{min}}$, is given by

$$
R_{e,\min} \simeq R_M \left(\frac{R_I}{R_M}\right)^{g/(2s+g)},\tag{12}
$$

while the (local) maximum value, which must occur when

below the crucial importance of making the scaling ansatz (3) for $(\lambda_e - \lambda_l)/(\lambda_M - \lambda_l)$ rather than for λ_e/λ_M .

The consequences of our scaling ansatz are best discussed in terms of the Hall resistivities $R_M R_I R_e$, which are related to the conductivities as follows:

$$
R_i = \lambda_i / \sigma_i^2, \quad \text{for } i = M, I, e \quad , \tag{7}
$$

if the magnetic field is weak enough so that $\lambda_i \ll \sigma_i$ (or alternatively, so that the cyclotron frequency ω_c and the Ohmic relaxation time τ_0 satisfy $\omega_c \tau_0 \ll 1$). We will as-
sume not only that $\sigma_M >> \sigma_I$, but that $\lambda_M >> \lambda_I$ and sume not only that $\sigma_M >> \sigma_I$, but that $\lambda_M >> \lambda_I$ and $R_M << R_I$ as well. However, no *a priori* assumption is made regarding σ_e or λ_e . In this way we find

where
\n
$$
|p_M - p_c|^{t+s} \le \sigma_l/\sigma_M, \text{ is given by}
$$
\n
$$
g = 2t - \tau,
$$
\n(9)\n
$$
R_{e, \text{max}} \approx R_M \left(\frac{\sigma_l}{\sigma_M} \right)^{-g/(t+s)}.
$$
\n(13)

This peak can only be observed in 3D composites, since in the 2D case (i.e., thin films), $g = 0$. A qualitative plot of R_e vs p_M is shown in Fig. 1.

An experimental test of these predictions would have to use a pair of components whose Ohmic conductivities are very different, e.g., a metal σ_M and a semiconductor σ_l , where clearly $\sigma_M >> \sigma_I$. In order to observe the peak described above, R_M/R_I should then not be too small. This is necessary to ensure that Eq. (11) is satisfied, but also to

FIG. 1. Qualitative plot of log R_e (Hall resistivity) vs p_M (metallic volume fraction) a, for the case $(R_M/R_I)^{(t+s)/(2s+s)} < \sigma_I/\sigma_M$, b, for the opposite case. The width of the region where the peak in R_e gets rounded off is $\epsilon_\sigma \simeq (\sigma_I/\sigma_M)^{1/(t+s)}$. The other important quantities in this plot can be calculated from Eqs. (10), (12), and (13) .

separate the positions of $R_{e, min}$ and $R_{e, max}$ sufficiently so that they will actually occur at experimentally distinguishable values of p_M . As an example, if we take

$$
\frac{\sigma_I}{\sigma_M} = 10^{-6}, \quad \frac{R_M}{R_I} = 10^{-3}, \quad t = 1.95, \quad s = 0.7, \quad g = 0.3
$$

(see Refs. 11–13 for the values of t , s, and g), then we find that Eq. (11) is well satisfied and that

$$
|p_{\min} - p_c| \approx 0.017 ,
$$

\n
$$
\frac{R_{e,\min}}{R_M} \approx 3.4 ,
$$

\n
$$
\frac{R_{e,\max}}{R_M} \approx 4.8 .
$$

A somewhat better situation would occur if we took

$$
\frac{\sigma_I}{\sigma_M} = 10^{-9}, \quad \frac{R_M}{R_I} = 10^{-2} ,
$$

and t , s , and g as before. In that case, Eq. (11) is again sa-

¹H. J. Juretschke, R. Landauer, and J. A. Swanson, J. Appl. Phys. 27, 838 (1956).

- 2A. Palevski, M. L. Rappaport, A. Kapitulnik, A. Fried, and G. Deutscher, J. Phys. (Paris) Lett. 45, L367-L371 (1984).
- M. H. Cohen and J. Jortner, Phys. Rev. Lett. 30, 696-699 (1973).
- 4A. S. Skal and B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 8, 1586 (1975) [Sov. Phys. Semicond. 8, 1029 (1975)].
- 5J. P. Straley, J. Phys. C 13, L773 (1980).
- 6J. P. Straley, J. Phys. C 13, 4335 (1980).
- 7D. Stroud and D. J. Bergman, Phys. Rev. B 30, 447-449 (1984).
- 8D. J. Bergman, in Percolation Structures and Processes, edited by
- G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel Physical Society, Vol. 5 (Hilger, Bristol, 1983), pp. 297-321.

tisfied, and we find that

$$
|p_{\min} - p_c| \approx 0.067
$$

$$
\frac{R_{e,\min}}{R_M} \approx 2.3
$$
,

$$
\frac{R_{e,\max}}{R_M} \approx 10.4
$$
.

The reason why such extreme values of the conductivity ratio are needed in order to observe a sizable peak in R_e is that the critical exponent g, which controls the divergence of R_e , is so small.

This work was supported in part by the National Science Foundation under Grant No. DMR 81-14842 and benefited also from the Materials Research Laboratory at the Ohio State University, NSF Materials Research Laboratory Grant No. 81-1936 B. Partial support was also provided by the U.S.-Israel Binational Science Foundation under Grant No. 3391/83. One of us (D.J.B.) would like to thank the Ohio State University and Exxon Research and Engineering Company for their hospitality.

- ⁹A heuristic proof of this result can be given by noting first that when $\lambda_I = \lambda_M = \lambda$, then also $\lambda_e = \lambda$. Since we assume all λ 's to be much smaller than all σ 's (this is the low-field assumption), we can expand λ_e in powers of λ_I , λ_M , to linear order. It then we can expand λ_e in powers of λ_I , λ_M , to linear order. It then ollows that $\lambda_e - \lambda_I = (\lambda_M - \lambda_I)X$, where X must be a homogeneous function of order zero of σ_I , σ_M only.
- ¹⁰B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 72, 288 (1977) [Sov. Phys. JETP 45, 152-156 (1977)].
- ¹¹J. P. Straley, Phys. Rev. B 15, 5733-5737 (1977).
- 12D. J. Bergman, Y. Kantor, D. Stroud, and I. Webman, Phys. Rev. Lett. 50, 1512 (1983).
- ³R. Fisch and A. B. Harris, Phys. Rev. B 18, 416-420 (1978).