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Scaling theory of the low-field Hall effect near the percolation threshold
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A scaling theory of the low-field Hall effect in a two-component metal-nonmetal mixture near the per-

colation threshold of the metallic component is formulated and some of its physical consequences are ex-
amined. We predict that under certain conditions a peak in the Hall resistivity R, versus metal volume

fraction pM can be observed near the threshold.

Investigations of the theory of the Hall effect in compos-
ite media were started nearly 20 years ago by Juretschke,
Landauer, and Swanson. ' They treated various types of mi-
crogeometries in three dimensions (3D) approximately, and
they also described the exact general solution for the Hall
effect at low magnetic field H in isotropic two-dimensional
(2D) composites. The behavior predicted for the 2D case
has recently been observed experimentally for the first
time. Significant further progress was then made by the in-
troduction of an effective-medium approximation, by the
nodes-links approximation in two different forms, ' by the
exact solution of the Hall problem on a Cayley tree net-
work, and, more recently, by the exact solution of the Hall
and transverse magnetoresistance problems for arbitrary
field strength in 2D.' Also, recently, a comprehensive
theory of the low-field Hall effect in isotropic two-
component composites has been developed. An important
result of that work was the conclusion that the low-field
Hall conductivities of the two components A.M XI and that of
the composite X, satisfy the following exact relation:9

(
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where X is independent of the Hall conductivities; it is a
function only of the ratio of the Ohmic conductivities of the
two components, and its precise form depends on the mi-
crogeometry of the composite. An attempt to construct a
scaling theory of the Hall effect was made previously by
Shklovskii. ' However, that involved an improper scaling
ansatz and resulted in an inconsistent description of the crit-
ical behavior.

In this Rapid Communication we present a consistent
scaling theory of the low-field Hall effect that is based upon
the theory of Ref. 8, and this leads to some rather interest-
ing predictions of critical behavior in an isotropic good con-
ductor (a~, l(.((r)—bad conductor (aI, l(.1) mixture near the
percolation threshold pM =p, of the former.

Equation (1) suggests that the particular combination of
Hall conductances that appears on the left-hand side
depends only on the Ohmic properties of the system. This
is borne out by the fact that in order to evaluate the func-
tion X, one only needs to know the microscopic electric
fields Et"~(r), Et»(r) present in the system when an exter-
nal potential difference is applied in the x,y directions,

respectively, in the absence of a magnetic field:8

X = —' „dVO (r) (E&"&x E'»)
VJ j (2)

Here V is the total volume, and O((r(r) is a characteristic
step function equal to 1 when r is inside the o-M component
and equal to 0 otherwise, so that the integration is effective-
ly restricted to the AM volume. As a consequence of these
remarks, one is naturally led to assume that, near the per-
colation threshold of o-M, the appropriate scaling variable
would be the same as that which appears in the Ohmic con-
ductivity, namely, " (aI/aM)/Ip~ —p&l'+*.

%e therefore make the following scaling ansatz for the
bulk effective Hall conductivity X, :

= IpM
—p, I'F,

I PM Pc

for a.&/a-M « 1 and Ip~ —
p& I && 1

(3)

The first of these limits has been discussed before, ' while
the last limit is obviously a consequence of the need to can-
cel the dependence of Eq. (3) on p((r —p, . However, the
second limit merits some discussion, since one might have
expected F (Z) ~ Z below the threshold. In fact, as
a.I/a((I 0, the fields E~"~ and Et» will also tend to 0
linearly with crI/a((r inside t.he (T~ component, whenever
that component does not percolate. From Eq. (2) it then
follows that X~ (aI/a~) when pM (p, .

The analogous scaling ansatz for the Ohmic conductivity
of the mixture cr, would be

(5)

for a I/a M « 1 and Ip((r
—p, I « 1,

The exponent v characterizes the critical behavior of X, for
pM & p, when aI (and therefore also XI) vanishes. In that
case we have )(.,/kM~ (p~ —p, ) . The value of 7 is
v = 2t = 2.60 in 2D; v = 3.7 in 3D.'

As usual, there are three interesting limits for the scaling
function F (Z), namely,

const for Z &( 1, p((r & p, (Regime I)
F(Z)~ Z2 for Z && 1, p((r & p, (Regime II) . (4)

Z'~t'+'' for Z && 1, p((r & p, (Regime III)
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where

const in Regime I
G(Z)~ Z in Regime II

,
Z'/('+') in Regime III,

(6)

below the crucial importance of making the scaling ansatz
(3) «r (l4 —Al)/(AM —Al) rather than for A, /A~.

The consequences of our scaling ansatz are best discussed
in terms of the Hall resistivities RM RI R„which are related
to the conductivities as follows:

We note the difference in behavior between G(Z) and
F(Z) in Regime II: the behavior of G (Z)~ Z is dictated by
the fact that a.,~ o.I when p~ & p, . While Eq. (6) is essen-
tially equivalent to the scaling ansatz of Straley, " in which
the left-hand side of Eq. (5) is replaced by o,/o~, Eqs. (3)
and (4) differ in important respects from the scaling ansatz
of Shklovskii, ' which did not take into account the results
included in Eqs. (1) and (2). In particular, we shall see

R~ = A~/a;2, for i = M, I,e

if the magnetic field is weak enough so that A.; « cr; (or al-
ternatively, so that the cyclotron frequency co, and the
Ohmic relaxation time 70 satisfy co 70« 1). We will as-
sume not only that AM && o-q, but that PM » A.l and
RM (& Rq as well. However, no a priori assumption is
made regarding a-, or P, . In this way we find

in Regime III

Q
&q&~lp~ —p, I +BtRI Ip~ —p, l

"in Regime I
)

~M

~e~ ~ 2~jig Ip~ pc I
'+ &2&—1 Ip~ p, I" in Re—gime II

' —g/(t+s) ' 2s/(t + s)
CTI ~r

A 3RM + B3RI

(8)

where Ip~ —p, I'+* & o.l/o. ~, is given by

g =2t —v,
Re, max RM

' —g/(t + s)

(13)
and where A;, and B; are constants of order one. The criti-
cal exponent g has the values 0, 0.29+0.05, and 1 in 2D,
3D, and 6D, respectively, ' while t and s are the usual
Ohmic-conductivity critical exponents.

In Regime I, the ratio of the second to the first term in

R, is of order (Al/A~)lp~ —p, l
', and thus either of them

may dominate, depending on the parameters of the system.
However, both of them increase as pM decreases towards p„
and this will continue until (pM —p, )'+'= o.l/oM, at which
point Regime III is entered and R, rounds off at a value in-
dependent of pM. As pM decreases below p„Regime II is
eventually entered and there a nonmonotonic behavior is
possible, since R, is the sum of an increasing and a decreas-
ing term: a minimum of R, will occur at p =p;„where

This peak can only be observed in 3D composites, since in
the 2D case (i.e. , thin films), g = 0. A qualitative plot of R,
vs pM is shown in Fig. 1.

An experimental test of these predictions would have to
use a pair of components whose Ohmic conductivities are
very different, e.g. , a metal AM and a semiconductor o-l,
where clearly a-M » o-I. In order to observe the peak
described above, R~/Rl should then not be too small. This
is necessary to ensure that Eq. (11) is satisfied, but also to

' 1/(2s+ g)
MIp;.—p, l

= (10) log Ri

provided that point lies in Regime II, i.e., if

' ( t+ s)/(2s+ g)

I

(In these as well as in the subsequent approximate equali-
ties, we ignore coefficients of order one. ) Otherwise, 8,
will continue to increase monotonically towards RI as pM de-
creases throughout Regime II. The (local) minimum value
of R„which occurs for pM ——p;„, is given by

IOQ Re,max

o ~ e min

IOg RM

I l l

~c-e~ ~c ~c+6

' g/(2s +g)
1R,, ;„=R (12)

while the (local) maximum value, which must occur when

FIG. 1. Qualitative plot of log R, (Hall resistivity) vs pM (metal-
lic volume fraction) a, for the case (RM/RI) '+' '+g ( cr&/AM,

b, for the opposite case. The width of the region where the peak in

R, gets rounded off is e~= (a.z/crM) '+'). The other important
quantities in this plot can be calculated from Eqs. (10), (12), and
(13).
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separate the positions of R, ;„and R, ,x sufficiently so
that they will actually occur at experimentally distinguish-
able values of p~. As an example, if we take

=10, =10, t=1 95, s=07, g=03
~M

(see Refs. 11—13 for the values of t, s, and g), then we find
that Eq. (11) is well satisfied and that

Ipm ~
—p'I = 0.017,

R, m;„3 4
RM

R8msx 4 8
R~

A somewhat better situation would occur if we took

I 10 9 Af 10

and t, s, and g as before. In that case, Eq. (11) is again sa-

tisfied, and we find that

ip;„—p, i =0.067,
R8, ml11

RM

8 msx ]0 4

The reason why such extreme values of the conductivity ra-
tio are needed in order to observe a sizable peak in R, is
that the critical exponent g, which controls the divergence
of R„ is so small.
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