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Clear evidence of redundant operators in Monte Carlo studies of the Ising model
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After reviewing the notion of redundant operators and the procedure for deriving them analytically for
Ising systems, we present Monte Carlo renormalization-group data that clearly show their occurrence as
eigenoperators in d = 2.

In the renormalization-group (RG) approach to critical
phenomena' one starts with a Hamiltonian H(@), subjects
it to an RG transformation RL that reduces the degrees of
freedom by a factor L (in d dimensions) and gives
H(@'), the effective Hamiltonian for the block-spin~ vari-
ables P'. If H is critical one assumes RL (H) H' as
N ~, while if H = H +5H, RL is approximated by the
linear operator TRL.

5H TL 5H
RL

It is then easy to show 5H is redundant. For example, to
show that the partition function is unchanged one proceeds
as follows:

Z(H+5H) =
J~ d@exp[H(@) +SH(@)]

=JI d@exp[H(@+5@)]
r

d@'expH(@'), @'= @+&@

(6)

(2)

then under

(where S@ depends on x but not @),

H H+5H (4)

aIThe eigenvalues g;=L ' of TL can be relevant (a; & 0),
marginal (a; = 0), or irrelevant (a; ( 0), with the same la-
bels attached to the corresponding eigenoperators.

There is, however, yet another class, the redundant opera-
tors, which usually are relegated to obscurity for three
reasons: (i) The nomenclature, which suggests we can live
without them. (We will show here it may be very hard to
live with them. ) (ii) They can be eliminated by a change of
variables, and do not affect the free energy. (iii) The asso-
ciated eigenvalues X; can vary from one RG scheme to
another and are free of physical significance.

Unfortunately, none of these preclude the possibility of
these operators playing havoc in a given Monte Carlo RG
(MCRG) study. 3 For example, if any redundant X; & I,
RI. (H) will not tend to any H' even if H is critical. Even if
A.; ( 1, a; can mimic a correction-to-scaling exponent.

Pawley et al. found such an operator in the odd sector of
the d = 3 Ising model. By use of the P field-theory
language they associated it with the @ operator which is
redundant in that given @, @2, and $" terms, we can gen-
erate the @ term by shifting: @ @ + A.

In his detailed article Wegner' points out that given any
H(@) one can generate the redundant operators 5H associ-
ated with it by making the change $(x) @(x)+5@(x). If

At any point H(@) in the space of Hamiltonians all the
redundant directions can be derived by choosing all the pos-
sible changes of variables @ /+8@. [If 5@ depends on
@, one must worry about the Jacobian J(P'/g). ] If H is a
fixed point, this will be the space that generates the redun-
dant eigenoperators that cloud the issue as described earlier.

This procedure for generating redundant operators runs
into a snag when applied to Ising Hamiltonians H (S),
S = +1, since the variables S do not admit an infinitesimal
change. The problem was circumvented in Murthy and
Shankar6 as follows. Let us define H'(S') by

I

expH'(S') = X g + eS'f (S) expH (S)
sites

= X P(S',S)expH(S)

In the above, (I + SS')/2= 5, is the Kronecker 5 for Ising

spins, e is a small parameter, and f is any function of the
"old spins S." P(S,S') is a projection operator of the type
invented by Kadanoff, 7 except that no reduction of degrees
of freedom is attempted here. If &=0, clearly H'=H. If
&&0, then H' = H + 5H, where 5H is of order e and
depends on f (S) and H.

Reference 6 shows that this 5H is indeed redundant and
shows how it may be computed in practice for a given f and
H. Several examples were computed for H =H„'„, the criti-
cal nearest-neighbor interaction, in d = 2 and 3. Even
though H„'„ is not the fixed point of any simple RG
transformation, it is quite close to the fixed points of many
of them. Thus we may expect that the redundant direction
at H„'„approximates very well those of the fixed points H'.
Also, in practice, TL is diagonalized not at H' itself, but
after some iterations that begin at H„„. We will see below
that some of the eigenvectors of TL, after one iteration are

32 6084 O1985 The American Physical Society



32 CLEAR EVIDENCE OF REDUNDANT OPERATORS IN MONTE CARLO. . . 6085

Qt=Ho+a (1 —4a+2a —4a +a ) 'Hp34

Q2=Hp+2a (1 —4a+2a —4a +a ) 'Hpt2

3 =Hp34 2Hp~2= (Qy Q2)f (a) (8)

Q4 ——Hp+ 2a3(1 —4a + 7a2 —16a3+ 7a4 —4a5+ a6) 'H~35

Q5 = Hp+ 2a (1—4a + 4a —4a + a ) 'H[3574

remarkably close to the redundant operators derived at H„'„.
For d = 2, in the odd sector, the following short-range

redundant operators emerge for H„„:

Note that, in general, a redundant operator derived
analytically (as above) need not be a redundant eigenopera
tor of some RG. However, in this case of a 2&2TL, the
redundant subspace 0 ~ was one dimensional and hence also
an eigenspace.

Let us move on to the 3X3TL which included Hp~2.
Equation (8) tells us that there are two linearly independent
redundant operators in this space. So we expect two redun-
dant eigenoperators to emerge. Continuity with the 2 x 2
case tells us that one term will have eigenvalue = 0.7 (SW)
or 0.6 (GC) and be close to Q t. Here, it is,

IR2) = Ho 0 2852Ho34 0 0317Hoi» l 2= 0 7257 (SW)
In the above a = tanhE, and = 0 ) + 0.016603 + 0.0010Hp)2 (13)

H~jk ~ ~ ~ g (S;S,Sk + rotations and reflections)
sites

(9)

(In view of all the errors and approximations we must at-
tach no importance to the small Ho~2 term. Thus IR2) lies
in the redundant subspace. ) Likewise

0 1 2

3 4 5

,6 7 8,

(10)

where the multiplicity at each site is such that any interact-
ing set of spins is represented once and only once. The
spins Sp, S~, . . . are numbered as follows:

IR2) =Q, +0.0168Q3 0.0117Hp]2, X2=0.6099 (GC)
(14)

(The expansion of IR2) in terms of Q~, Q2, and a "left-
over piece" is not unique; we have chosen to express the
leftover piece in terms of Ho~2. )

Finally, the third eigenvector is

IR3) = Ho 7 0350H034+13 4663H012 ) 3 0 0989 (SW)(The same combination of operators, up to a spin-
independent term, occurs in the works of Dekeyser and Ro-
giers, Lee and Barrie, and Fisher' who exploited the sym-
metry of the measure to obtain relations between correlation
functions. Of course these pre-RG analyses did not view
them as redundant operators. )

Setting a = v 2 —1 we get the following redundant opera-
tors associated with H„'„,

= 0 ) —6.733203 —0.0010Hp12 (15)
and

IR3) = Ho 4 4997Ho 34+ 8.3495Hoi2 . &3 = 0.1114 (GC)

= A )
—4.197903 0.0464Hp12

which is consistent with being redundant.
We now move to the even sector in d =2. Reference 6

gives two short-range redundant operators at H„'„:
0 ~

= Hp —0 3018Hp34

0 2 = Hp —0.6036Hp)2

0 3 —Hp34 2Hp&2

(11)
Q t = Hpg —(J2/3) Hp4 —(J2/6) Hp2+ (1/642) H$357, (16)

Q 2
= Hpl (2&2/5)H04 (~2/5)H02 + ( I/10)H0124 . (17)

We do not discuss Q4 and 0 5 further.
Let us now turn to the data. These were obtained by

2X 2 blockings with a majority rule and random tie breakers.
The starting H was H„'„and TL was evaluated and diagonal-
ized after one blocking. The extraction of TL was done
both a la Swendsen (SW)" and Gupta and Corderey
(GC).' The errors due to truncation in the space of cou-
pling constants will not be discussed here.

Let us consider first the case where only Hp and Hp34
were kept. Besides the leading right eigenvector IR~) with
eigenvalue 3.681 (Swendsen) or 3.617 (Gupta-Corderey)
compared to the expected one, 2' '=3.6680, there was a
second one:

I

IR 2) = Hp 0.3011Ho34, A. 2 = 0.722 (SW)

= Hp 0.3115Hp34, X2 = 0.568 (GC) (12)

(The last two digits are not to be taken seriously in view of
the various approximations involved. )

It is obvious that R2 is just Q~(=Hp 0.3018Hp34). The
exponent a2 ——lnk2/ln2 is therefore redundant and could
easily have been confused with a correction to scaling ex-
ponent. Since the free energy in the presence of a field is
unknown, we could not have spotted this problem by any
other analytic means.

0 ~
= Hp —0.1740Hp34 + 0.0362Hi3p

A2 Hp 0.1160Hp34 0.2320Hp~2+ 0.0241H&35

(18)

(19)

We were not able to see clear evidence for the occurrence
of O~ or 02 or a combination thereof as redundant opera-
tors. For one thing, in those cases where all the operators
in Q 2 or Q 2 were included in the analysis, several others
were also included. (The MCRG analysis was not tailor
made to this study of redundant operators. ) The leading
eigenvalues 2, 2 ', 2, and 2 were clearly visible. The
redundant operators were presumably lower down and
severely distorted by the truncation. When we ignored the
last terms in Eqs. (16) and (17) and looked for them in the
3 x 3 case that included Hp~, Hp4, and Hp2 we found only
the standard eigenvalues 2, 2 ', and 2 . Presumably the
irrelevant eigenvectors, when truncated to this subspace,
had bigger eigenvalues than the redundant ones similarly
truncated. (Such a thing could also have happened in the
odd sector for 2X2 or 3x3 cases if the redundant eigen-
values had been lower than the irrelevant ones. )

We finally turn to the odd sector of the d = 3 model. Set-
ting K =0.221654 (suggested by the work of Pawley et al.)
in the formulas of Ref. 6, we get at H„'„ the following
short-range operators:
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The spins are numbered as in d = 2 except we now need
two layers, the upper ones carrying a superscript +. We do
not yet have data for this case. So meanwhile we predict
that if the redundant operator mentioned by Pawley et al.4

comes from the Hp —Hp34 subspace, it must be close to 0 ~

truncated to that space, i.e., Hp —0.1740Hp34.
The aim of this paper was to emphasize what was evident

from the work of Pawley et al. , that redundant operators are
not curiosities one can turn one's back on, that. they can
and do play a significant role in numerical studies.

We hope that we have done this by demonstrating con-
vincingly that some of the operators that played a major role
in the MCRG study of the Ising model were indeed redun-
dant operators by construction.
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