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Z(4) model: Criticality and break-collapse method
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Within a real-space renormalization-group (RG) framework, we study the criticality of the Z(4) fer-
romagnet on the square lattice. The phase diagram (exhibiting ferromagnetic, paramagnetic, and nematic-
like phases) recovers ali the available exact results, and possibly is of high precision everywhere. In particu-

lar, we establish the main asymptotic behaviors (bifurcation and Ising regions). In addition, we develop an
operational procedure ("break-collapse method") which considerably simplifies the exact calculation of arbi-

trary Z(4) two-terminal clusters (commonly appearing in RG approaches).

The Z(N) model contains, as particular cases, various
important statistical models (e.g. , bond percolation, spin-~
Ising and Potts models), and is relevant for a large class of
physical, problems (e.g. , random resistor and magnetic sys-
tems, adsorption). It has attracted, during the last years, a
certain amount of work, ' mainly in two dimensions, and
addressing more particularly the square lattice which, due to
its self-duality, turns out to be relatively simple. The Z(N)
model starts out being larger than the %-state Potts model at
N=4. The phase diagram of the Z(4) ferromagnet in the
square lattice is known to have three phases, namely, the
paramagnetic [P; Z (4) symmetry], . the nematiclike or
intermediate [I; Z(2) symmetry], and the ferromagnetic
(F; completely broken symmetry) ones. The entire phase
diagram is constituted by second- . or higher-order phase
transitions. The P-I'", I-F, and I-P critical lines join at the
4-state Potts critical point. The P-I' line is entirely deter-
mined by duality arguments; furthermore, these arguments
biunivocally relate the still unknown (as far as we know) IF-
and I-P lines. Herein we calculate these lines by construct-
ing a real-space renormalization group (RG) based on the
well-known self-dual Wheatstone-bridge cluster (Fig. 1).

A convenient form for the Z(4) (symmetric Ashkin-
Teller model) ferromagnet (dimensionless) Hamiltonian is
the following:7

This vector transmissivity generalizes the scalar one used in
the Ising (recovered as t2= r$) and in the 4-state Potts
(recovered as tt = r2) models. The transmissivity t ' (t i' ),
corresponding to a series (parallel) array of two bonds,
respectively, associated with t ' and t, is given by

and

t,
' =

t&
' t&t, (i = 1,2) (bonds in series), (3)

1 —ttD—= 2

1+2t1+ t2
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1 —2rt+ t2
t I+2rt+ r2
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Algorithms (3) and (4) enable quick calculation of the
transmissivity corresponding to any two-terminal array fully

(i = 1, 2) (bonds in parallel), (4)

where the dual transmissivity t is given by

= g [Ki —Kt(o,o~+ r,rq) —2K2(o'ioJTiT, )]
kg T (IJ)

where T is the temperature, (ij ) runs over all first-
neighboring pairs of sites on a square lattice, o-, = +1,

+ 1(V i), Ki ~ 0, and Ki + 2K2 ~ 0. Let us introduce
the operationally convenient variable (vector transmissivity~)
t= (I,tt, t2, t3) through

' -4Ã1
1 —e

1 3 —2( Jw'1+ 2K2) —4K11+2e ' ' +e
—2(K1+2K2~ 4+1
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FIG. 1. RG clusters. 0 () denotes terminal (internal) node.
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reducible in series/parallel sequences; we shall see later on
how to deal with arrays which are not fully reducible.

To treat Hamiltonian (1) we use the cluster RG transfor-
mation indicated in Fig. 1 (with t = t ). This choice is
known to be a very convenient one for the square lattice
(e.g. , random resistor, 'o bond percolation, " N-state Potts, 9

and anisotropic Heisenberg'2 models). The RG recursive
relations are constructed to preserve the correlation func-
tion, i.e. , exp( —~{2/k&T) = Tr[exp( —~t 2 3 4/kt)T)1,
where A ] 2 and A ] 2 3 4 are the Hamiltonians, respectively,
associated with Figs. 1(a) and 1(b). (A { 2 includes an ad-
ditive constant. ) We obtain, through a tedious but straight-
forward calculation,

[2(l+ t2 ) tt 1+ [2(1+ t2) tt 1tt+ (4t2tt ) t2

(1+ t2 + 2tt ) + [4(1+ t2 ) tt it)+ [2(t2 + tt') ]t2

[2(t2 + t) )1+ (8t2tt ) tt+ [2(t2 + tt )]t2
(1+ i, +2t, )+ [4(1+ t2 )t,']tt+ [2(t,'+ t,')]t,

where tt and t2 (tt' and t2) are related to Kt and K2 (Kt'
and K2) through Eqs. (2) and, where t= t [it is only for fu-
ture convenience that we have already indicated the result
corresponding to Fig. 1(b), where t and t are arbitrary
transmissivities. ] Equations (6) and (7) fully determine the
phase diagram we are looking for, as well as thermal-type
critical exponents.

Before analyzing the results, let us describe a particularly
simple manner [break-collapse method (BCM)] to obtain Eqs.
(6) and (7), and, more generally speaking, the equivalent
transmissivity G associated with an arbitrary (series/paral-
lel reducible or not, planar or not) two-terminal graph of
Z(4) bonds. G is determined by Gi((t ' })=Ni({t ' })
/D((t ' )), (l=1,2), where (t ' } denotes the set of
transmissivities, respectively, associated with the bonds of
the graph, and Ni({t' })and D((t ")) are multilinear poly-
nomials of the form A =Bt]' + Ct~" for an arbitrary jth
bond, A, 8, and C depending on the set of transmissivities
(noted [t'") ') of the remaining bonds. The performance of
three different operations on the jth bond, namely, the
"break" (ttj =tq~ =0), the "collapse" (ttj =t2j =1),
and the "precollapse" (tt(j) =0, t2(j) =1), completely deter-
mine A, B, and C. It immediately follows:

Ni( (
t(i) ) ) (I t2(j) ) Nbb(( t(i) ) ') + t (J)Nt((ctc(l) }')

+(t,j —t,'j )N,"({t')'), (i=1,2), (8a)

D ( ( t(l) }) ( I t (j) )Dbb( {t(l) ) ') + t (j)Dcc( (
t(i) ) ')

(t(j) t(j) )Dbc((t(i) }')

where N~~, . . . , D~ are the numerators and denominators
of the "broken" (bb), "collapsed" (cc), and "precol-
lapsed" (bc) graphs. By recursively using this property and
algorithms (3) and (4) the problem is easily solved. In other
words, the tracing algebra is automatically satisfied through the
(above mentioned) top-ological operations Let us illustrate t.he
procedure on the graph of Fig. 1(b): its broken, collapsed,

(o) (c)

FIG. 2. (a) Broken, (b) collapsed, and (c) precollapsed graphs,
obtained from that of Fig. 1(b), considering, respectively,
t) = t2 = 0; t) = t2 = 1, and t) = 0, t2= l.

and precollapsed graphs (operating on the t bond are,
respectively, represented in Figs. 2(a), 2(b), and 2(c), and
yield

N('b =2(1+ t2) t2

Nf~ =2(t$ + t(4 ),
D =1+ t2 +2ti

Nfc =4(1+ t )2tf",

N$'=4(t$ +2t2t'+ tt'),
D"= (1+ t2 )'+ 4[(1+ t2 ) tt + t, ],
Nf'=2(1+ t2)'tt'

NP =4(t2+ t4),
D~= (1+ t' )'+ 4t4

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

(9h)

(9i)

Equations (9a)-(9f) were obtained through exclusive use of
algorithms (3) and (4); Eqs. (9g)-(9i) used also algorithm
(8) (and the fact that a graph exclusively made by precol-
lapsed bonds is precollapsed itself). It can be checked that
Eqs. (9) replaced into Eqs. (8) recover Eqs. (6) and (7),
which is very tedious to establish through the traditional tracing
operations. This type of procedure has been very useful in a
variety of problems (Potts9 model, resistor network, '3

directed percolationt~): it is herein established for the Z(4)
model [we are presently working in its generalization for the
Z(N) model].

We go now back to the criticality provided by Eqs. (6) and
(7) (with t= t). The present RG shares with the Migdal-
Kadanoff-like RG of Ref. 6 the fact that it recovers all the
available exact results for the phase diagram of the Z(4)
ferromagnet in square lattice (see Fig. 3), namely: (i) the
self-dual line (t2= 1 —2tt), part of which constitutes the P-F
critical line; (ii) the location of the Potts (tt= t2= T,' P
point in Fig. 3), Ising 1 (tt = jtq= J2 1; It point), Isin—g 2

(t(=0, t2= J2 —1; 12 point), and Ising 3 (tt= J2 —1,
t2=1; I3 point) critical points; (iii) the I Fand I-P critical-
lines are related through duality [Eqs. (5)]; (iv) the phase
transitions are second- or higher-order ones. Furthermore,
the present RG provides the following asymptotic behaviors
(possibly excellent for the square lattice):

t2 —(v 2 —1) —ctf [c= 2(3W2 —2)/7 = 0.64]

t2 —1 —d[(J2 —1) —tt] —e[(J2—1) —tt] [d=2/(J2 —1)=4.83; e = c/J2(J2 —1) = 15 4],
t2 —1 —2tt +f(l/3 —t))b [f= 982; P = ln(27/13)/ln(17/13) = 2.7245], (12)

in the neighborhood of the I2, I3, and P points, respectively. With respect to the thermal critical exponent v, the results are
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FIG. 3. (a) Phase diagram in the (tt, r2& space. F, I, and P, respectively, denote the ferromagnetic, intermediate, and paramagnetic
phases. P is the Potts fixed point; I&, I2, and I3 are the Ising fixed points. 0 denotes the 'fully stable fixed points. The shaded region is
nonphysical. The t2= t& and t2= if dashed lines, respectively, represent Potts and Ising invariant subspaces. (b) Phase diagram in the
(ksT/Jt, I+2J2/J~) space. (JI= ksTlt'I, i =1,2). The dashed lines are asymptotes.

the following: (i) at all three Ising points,
v = ln2/ln(2 42 —1) = 1.149 [v (exact). = 1]; (ii) at the Potts
point, v = ln2/ln(27/13) =0.948 [v(exact) =2/3]; (iii) the
I-F and I-P lines belong to the Ising universality class
(which is known to be correct); (iv) the P-F line belongs to
the Ising universality class (which is wrong s this error
could possibly disappear in the increasingly large-cluster lim-
it) .

Summarizing, the Z (4) ferromagnet phase diagram ob-
tained within the present RG approach recovers all (as far
as we know) the exact results available for the square lattice,
and possibly is an excellent approximation everywhere [in
particular, the asymptotic behaviors (10)-(12)]; the ap-
proach is less performant for the thermal critical exponents.
If instead of the square lattice, we focus the hierarchical one
generated by transformation in Fig. 1, then all the present
results are exact. In addition to that, we have established a
new method for calculating arbitrary two-terminal (and pos-
sibly n-terminal) arrays of Z(4) [and possibly Z(N) within

appropriate generalization] bonds. The procedure is opera-
tionally quite convenient as the tedious tracing algebraic cal-
culations are automatically performed through elementary
topological operations. Consequently, RG's based in rela-
tively large clusters become tractable.

Note added in proof. We have just noticed that the present
RG approach was first introduced (although quite less ex-
plored) by H. Moraal [in Classical, Discrete Spin Models:
Symmetry, Duality and Renormalization, Lecture Notes in
Physics, Vol. 214 (Springer-Verlag, New York, 1984)];
more specificalIy, his Eqs. (12) of Sec. 11.2 are the t= t par-
ticular case of our Eqs. (6) and (7) [notice that his Eqs.
(12) possibly contain a misprint: the numerator of ft(x,y)
should read 2x'+2x'+ . instead of 2x'+2y'+ ].
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