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Determination of percolation probability from the use of a concentration gradient
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Using the idea that the percolation hull is the limit of a diffusion front, we are able to propose a very pre-
cise value for the percolation critical probability p, . For a two-dimensional square lattice, we obtain

p, =0.592802 %10

Percolation is widely studied as a simple representation to
critical phenomena in disordered systems. '2 Usually the
percolation problem is defined in a lattice with a constant
concentration probability. We have, however, introduced in
a previous paper the idea that interesting new features ap-
pear in systems where the concentration probability is made
to vary over the lattice. In the case of the concentration
gradient obtained by diffusion, we have defined a diffusion
front which was shown to be very similar to the percolation
hull defined by Voss. 4 In particular, it has the same fractal
dimension. The length and the width of this front follow
power laws, the exponents of which are directly related to
the critical exponent v of the correlation length in the per-
colation problem. The mean position of this front was
found to be in a concentration region very close to the per-
colation probability p, . In the present Brief Report we show
that this last property may be used to obtain a simple and
accurate determination of p, in a 20 lattice.

As far as the determination of p, is concerned, our
preceding approach was found to present the difficulty that
the concentration of diffused particles varies nonlinearly
with position; we use here a constant gradient of concentra-
tion. Besides, because we were interested in the frontier of
the diffused region, the diffusion front was situated on oc-
cupied sites; we use in this paper a different definition
presented, in the following paragraph, in which empty and
occupied sites play a more equivalent role.

In the usual site percolation problem for a square lattice, '

a cluster is defined as an ensemble of occupied sites linked
via nearest-neighbor connections (four possible connec-
tions); we call this cluster an A cluster. The percolation
probability is the minimum concentration probability for the
onset of an infinite A cluster. Considering now the remain-
ing empty sites, we define in a similar manner a 8 cluster as
being composed of empty sites connected via first- and
second-nearest-neighbor connections (eight possible connec-
tions). A and 8 clusters are defined on two lattices with dif-
ferent coordination numbers (four or eight possible connec-
tions for each site). In opposition to the usual percolation
problem, in the case of a monotonous concentration gra-
dient ranging from zero to one, we remark that there exist
both infinite A and 8 clusters. The infinite A cluster is lo-
cated in the high-concentration region, whereas the irifinite
8 cluster is in the low-concentration region. They are in
contact with each other (Fig. I). The sites of the infinite A

cluster which are connected with sites in the infinite 8 clus-
ter (via first- or second-nearest-neighbor connections) con-
stitute the frontier as defined in Ref. 3. %'e call this fron-
tier f&, its definition is similar to that given by Voss for the

A site
)

8 site

fAB

FIG. 1. Schematic picture of frontiers fA and fB in a lattice with
a gradient of concentration; the concentration of A sites decreases
with increasing x. A and B sites are shown as black and white cir-
cles, respectively. The frontier fA is the set of black circles connect-
ed by the thick black line. fB is the set of white circles connected
by the thick white line.

hull4 and we have shown that the frontier should be found
in a region where the concentration is very close to p, .
Similarly, we define the frontier fa as composed with the
sites of the infinite 8 cluster which are connected with the
sites of the infinite A cluster via first-nearest-neighbor con-
nections (see Fig. 1). Following Ref. 3, we consider for
each frontier fq or fs the following parameters: the mean
positions xfA and xfB, the widths o-fA and o.fB, and the
numbers of sites NfA and NfB. We introduce now the new
entity fqs, defined as the union of frontiers f& and fs, its
position xfAB is simply the mean position of all the lattice
points belonging to the frontiers fq and f~, and one can
easily find

NfAXfA + NfBXfB
+fAB

NfA + NfB

We determine the parameters characterizing the frontiers
by using a simulation procedure similar to that described in
Ref. 3. For each site of abscissa x in a sample of size L by
L' (L columns by L' rows), we choose a number n~ at ran-
dom between 0 and 1; the site is occupied if n~ ( p(x) and
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l&pl '", (3)

which corresponds to relation (7) of Ref. 3. This was ex-
plained on the basis of simple arguments relating the width
of the diffusion front to the correlation length of percola-
tion. This dependence permits a considerable reduction of
the computation time because it is sufficient to consider
only a number of rows L' such that the frontier remains
within the limits of our sample. As the gradient Vp de-
creases, we only need to investigate a concentration region
limited by concentrations pt and p2, where (pt —p2) varies
as ~V'p~ c5". Besides, for a given gradient t7p, the largest
finite A or B clusters have a spread of the order of a.fg. '
Therefore the lateral extent of our samples must be larger
than o-f~ to prevent any possible confusion. between such
large clusters and the frontier itself. In the present calcula-
tion, L has systematically been taken larger than 10 o-f&.

Relying upon the rapid convergence to p, observed in
Ref. 3, we consider the variation of the position xfgQ when
the concentration gradient decreases to zero. We define the
quantity p,'(t7p) =p(xfgs). For each concentration gra-
dient V'p, we average the calculation of p,"(I7p) on 10000
samples of lateral size L =2048. The statistical uncertain-
ites are then reduced to about 2&10 5 for each point. We
observe in Fig. 2 that p,'(vip) varies linearly as a function
of Vp. Assuming that this can be extrapolated to zero gra-
dient, we propose to determine p, as the limit p,'(0). We
then obtain

p, = 0.592 802 + 10 (4)

This result is obtained from a linear regression through
the points of Fig. 2, with a very good correlation coefficient
of 0.999'7. This result is compatible with the most recent
values for p, . However, w'e have gained a factor of 5 in
the statistical precision compared with the best available
result, and it should be stressed that this calculation only
required 20 h of calculation on an IBM 3033 class computer.
This has two main reasons. First, we may investigate rela-
tively small samples as mentioned above. Second, the iden-
tification of the frontier is quite short compared to the clus-

empty if n~ & p(x), where the concentration p(x) of A sites
is simply given by the following expression:

p(x) =I —xlVp I, (2)

where Vp is the imposed constant concentration gradient;
We determine the frontiers fq and fs assuming periodical
boundary conditions in the direction perpendicular to the
gradient. The parameters characterizing the frontiers are
averaged over a large number of samples in order to reduce
statistical uncertainty.

In accordance with our previous observations' we find
that
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CONCENTRATION GRADIENT: Vp

FIG. 2. Variation of the probability p, (Vp) as a function of the
concentration gradient Vp. The error bars represent the standard
deviations obtained on 10000 samples. The probability p, (Vp) is
found to vary almost linearly as a function of Vp. The straight line
is the best fit for these points, obtained by linear regression. We
take for p, the value on this line obtained for Vp = 0.
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ter recognition in usual percolation problems. . Another su-
periority of our method arises from the fact that the frontier
is well defined as soon as L is large enough compared to the
width a-f~., the errors due to cutting both lateral ends may
be expected to be negligible for periodic boundary condi-
tions. The results obtained from our simulation indeed
show a complete independence (within statistical uncertain-
ty) of lateral size L as soon as L is larger than a few o.fQ.

In conclusion, this paper confirms beyond doubt the sta-
bilization of the double frontier at p, . This fact can be justi-
fied from scaling arguments. %e have shown that the con-
centration at the mean barycenter of the double frontier
converges very rapidly to p„allowing for a very precise
determination of this quantity. Although there is no
theoretical proof for this result at the preserit time, it can be
shown from symmetry considerations that in the triangular
lattice p,'(vip) is exactly equal to p, for any gradient. 9 We
expect that the calculations presented in this paper could
very efficiently be generalized to other lattices, especially in
higher dimensions, where rapid convergence should be of
great help.
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