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The temperature dependence of the spin susceptibility P(T) is studied in a weakly disordered

itinerant-fermion system close to a magnetic instability. The paramagnon model is used with a

Hubbard-type contact repulsion among opposite spins, with the Stoner enhancement of the pure sys-

tem (1 —I )
' ~~ I. The result is shown to be different from the usual one obtained in the case of a

screened Coulomb interaction: The 2-phDP (two —particle-hole-diffusion-propagator) diagrams,

which cancel altogether in the Coulomb interaction case, are shown to give; here, for the contact in-

teraction, a finite contribution which is of the same order in (GF7 ) as the 3-phDP and 4-phDP dia-

grams where ~ is the lifetime due to disorder, and cF the Fermi energy. Instead of a unique tem-

perature range T~&&1 in the Coulomb case, here one has to distinguish two ranges: When

Tr «(1 I), the us—ual 3- and 4-phDP diagrams dominate and one recovers X(T)=+Tr/{1 I)'—
as was first announced by Al'tshuler and Aronov', but when (1—I ) & T~ && 1, the 2-phDP diagrams

dominate, yielding P(T)-(T~)' /(1 —I)', which is non-negligible near the magnetic instability.

At T=O, the 2-phDP diagrams definitely dominate as they enhance the effective interaction

(I,ff I)=(cF~) (1—I) ' and let the system be closer to magnetism, while the 3- and 4-phDP di-

agrams play a minor role at 0 K. The present study accounts only for phDP processes. Effects due

to ppDP s (particle-particle diffusion propagators) should also be studied within the same frame-

work to incorporate the contributions of the 2-ppDP diagrams. Finally, the latest developments us-

ing renormalization-group analysis of Finkel stein and of Castellani et al. with a screened Coulomb

interaction ought to be modified to account for the contact-interaction case where spin constraints

yield the noncancellation of the 2-phDP —and also most likely of the 2-ppDP —diagrams.

I. INTRODUCTION

The purpose of the present paper is to examine how the
low-temperature dependence of the spin susceptibility
X( T) in a disordered fermion system is modified in the
weakly localized regime (r '«eF, r being the lifetime
due to the elastic impurity scattering, e~ the Fermi ener-

gy), when the system is close to a magnetic instability
(1—I)-0, I being the dimensionless, Hubbard-type con-
tact and instantaneous repulsion among opposite spins,
I=INo, where No is the density of states at the Fermi en-

ergy for one spin direction, No PFI(2m ) in ——atomic
units. A short comment concerning this problem was
given in Ref. 1, indicating a quantum modification to X,
in the weakly localized regime, 5X-T'~ (1 I),but-
the derivation of the I dependence was not given and the
corresponding modification at T =0 was not provided.
On the other hand in Ref. 2 inclusion of higher-order in-
teraction effects in the weakly localized regime (the Hub-
bard type of interaction) was considered, and the follow-
ing formula was obtained:

5Xtp ——Xp,„i;(1 I ) (@Fr) [1—(—1 I )' ]—
X(3&3/4)[1 —0.7 (23+T )r' ] .

[The above formula is obtained from formulas (6.1) and
(6.3) of Ref. 2 in the case where the T matrix is not used,
i.e., with E/2 replaced by I/(1 I) in the present nota-—

tion. ] In (1), the T =0 as well as the finite- T contribution
to 6X is provided.

I wish to reexamine the derivation of 6g. The motiva-
tion is that, according to the calculation of X(T) in the
pure case for the paramagnon contribution to X(T) some
diagrams do not- seem to have been considered in Refs. 1

and 2 and some other were assumed to cancel, as they
indeed do in the Coulomb-interaction case, while they do
not for the present contact interaction case. Although the
(1 I ) (Ty)'~ contr—ibution of Refs. 1 and 2 is present
in both cases, the I dependence in the numerator of (1) is
slightly modified here, but it still does not diverge when
I—+1; however, what is more important is that the contri-
bution due to diagrams which were supposed to cancel in
Ref. 2 and 1 introduces here terms proportional to
(1 I )

~ (Tr) ~; —such a contribution may be either
negligible compared to the above (1—I) (Tr)'~, or im-
portant depending on the range of T, [i.e., depending on
Tr as compared to (1 I )', both quan—tities being much
smaller than unity]. In any case, at T =0, the contribu-
tion due to the diagrams which were supposed to cancel in
Ref. 2 predominates here as it contains an extra factor
(1 I )

'~ . This last point —is very important in connec-
tion with computation of the "effective" value of I, (the
I,ff considered in Ref. 4), renormalized by disordered
paramagnons of use to quantitatively check whether the
effective susceptibility enhancement (1 I,rr) is larger-
or smaller than the bar one (1 I ) '. This point is also—
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FIG. 2. Diagrams entering into the calculation of
[g++ and g+ of formula (3)], and of g+ of formula (4).

The signs of the fermion lines (the solid lines) are the spin direc-
tions. Shaded area is made explicit in Fig. 3.

FIG. 1. Three kinds of possible paramagnon structures, in

the absence of disorder (which will be schematized as a wiggly
line in Fig. 3); a and P refer to the spin orientations of the fer-
mion lines (the solid ones), a= f3=+1—. Dashed line is the
bare contact repulsion I among opposite spins: (a) transverse
paramagnon containing an infinite ladder in the interaction; (b)

and (c) are longitudinal paramagnons containing an infinite,
respectively even and odd, number of elementary bubbles.

g++=n~n+ and g+ =n+n (3)

On the other hand, the transverse susceptibility 7+ is
given by

important in connection with the most recent develop-
ments on disordered electron systems where screened
Coulomb interactions were considered. These studies, in
principle, cover the short-range as well as the long-range
interaction case. However, it is shown here that the prob-
lem appears to be slightly more subtle. The short-range
case forces one to consider not just one diagrammatic
structure for the interaction propagator (as for the case of
a screened Coulomb interaction), but three different ones
for the three different paramagnon propagators (this is
made explicit in Fig. 1 in the absence of disorder). This
very point is responsible for the noncancellation of the di-
agrams containing 2- as well as 3-phDP (particle-hole-
diffusion-propagator) processes, and for the combination
among some other diagrams containing 4-phDP processes
which give a contribution of the same order in (ez~) as
the 3-phDP processes.

II. BRIEF REVIE%' OF THE LO%'EST-ORDER
PARAMAGNON CONTRIBUTION

TO THE SUSCEPTIBILITY
IN THE PURE CASE

For pedagogical reasons it is useful to start with a brief
review of the lowest-order paramagnon contribution to 7
in the absence of disorder and, first of all, of some well-
known basic ingredients entering in the calculation of X.
This will prove extremely useful for an understanding of
the disordered case.

To compute the static susceptibility, one needs to evalu-
ate the spin-spin correlation function (S'S'&, i.e., the
longitudinal susceptibility P:

When the magnetic field is turned off, one gets, as is well
known,

X "=X~~=X = —,'X+ (for H =0),
in which case (the field H~O)

X+ =g++ —g+ (for H=0) .

The diagrams corresponding to the three quantities
g++, g+, and X+ are schematically given on Fig. 2.
To lowest order in a paramagnon insertion, any block
(shaded area of Fig. 2) contains the various possibilities
indicated on Fig. 3. On the other hand, the paramagnon
(wiggly line on Fig. 3), may have the three kinds of struc-
tures exhibited in Fig. 1; since the interaction I arises only
among opposite spins, one may have either a transverse
paramagnon, Fig. 1(a), with an infinite ladder in the in-
teraction I, or two longitudinal paramagnons, Fig. 1(b),
containing an even number of elementary bubbles (21),
with 1—+ao, when the spins of the two external fermion
lines are opposite, or Fig. 1(c), with an odd number of
bubbles (21+1), with 1—+ac, when the spins of the two
external lines are the same. While the effective interac-
tions between the external fermion lines with opposite
spins [Figs. 1(a) and l(b)j are repulsive, like the bare one
I, in contrast, the effective paramagnon-mediated interac-
tion entering into Fig. 1(c) has one elementary bubble
difference compared with Fig. 1(b), and therefore one
minus sign difference (so that the resulting effective in-
teraction is attractive among parallel spins). This remark

n+ —n
(2)

where n+ are the spin-up or -down densities. Since, by
symmetry n+n+ ——n n and n n+ ——n+n, one is left
with

FIG. 3. The lowest-order paramagnon contribution entering
in the shaded area of Fig. 2. %'iggly lines are paramagnons of
the various kinds in Fig. 1. Solid lines are fermion lines.
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(e)

FIG. 4. Diagrams contributing to the g++ part of the longi-
tudinal susceptibility in formula (3) (each bubble string contains
an odd number of such bubbles).

will be the key point in the following; the same remark
has allowed one in the past to propose that paramagnons
favor triplet-pairing superconductivity, although they
suppress singlet-pairing superconductivity. One can now
draw the various diagrams contributing (to lowest order in
the paramagnon insertion), to either the longitudinal sus-
ceptibility through g++ and g+ (Figs. 4 and 5); or to the
transverse one P+ (Fig. 6.) It is easy to cheek
mathematically that, as H —+0, the sum of the diagrams
involved in (g++ —g+ ) is equal to the one involved in
7+ . Therefore, depending whether one or the other way
is more convenient, it is equivalent to compute the static
susceptibility by deriving the free energy twice with
respect to the magnetic field H (i.e., to cut two fermion
lines in the diagrams of Fig. 7), which yield the longitudi-
nal susceptibility through (g++ —g+ ) or to compute
X+ by calculating the four types of diagrams of Fig. 8,
whose details are given in Fig. 6. It was shown in Ref.

FEG. 6. Diagrams contributing to the transverse susceptibili-
ty P+ (c), (d), (f), and (g) contain an odd number of bubbles; (e),
(h), and (i) contain an even number of bubbles.

3(b) as well as in the rotationally invariant formulation of
Ref. 7 that the last two diagrams of Fig. 8 combine to
yield a contribution of the same order in the divergent pa-
rameter (1 I) ' as that of—the first two. A different but
analogous combination will appear in the following, of
crucial importance in the disordered case.

To end this first part, I wish to clearly specify the nota-
tions used in this paper, as was used in the pure case of
Ref. 3. A dashed line as in Figs. 1 and 4—7 represents the
bare contact interaction with a minus sign, —I; a solid
(fermion) line represents a fermion Green's function with
a minus sign, —G; a closed loop will haue a minus sign, so
that each bare bubble in the preceding diagrams is

(cj

FKz. 5. Diagrams contributing to the g+ part of the longi-
tudinal susceptibility in formula (3) (each bubble string contains
an even number of such bubbIes).

FIR, 7. Free-energy diagrams generating the paramagnon
contribution to the longitudinal susceptibility, constructed by
cutting two fermion lines in all possible ways, as was done in the
pure case of Ref. 3. (Note that the second diagram contains an
even or odd number of bubbles in the presence of a field; it is
only when the field is turned off that one must have spin conser-
vation, yielding the only possibility shown in Figs. 4, 5, and 6.)
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XR

FIG. 8. Diagrams of Fig. 6 schematized in order to make a
link with the disordered ones involved in the remainder of the

paper.

Xo——( —1) g( —G)( —G) = —QGG, where the sum is
over momentum and frequency variables. The same nota-
tion will be used later on in this paper when fermion lines
will be renormalized by impurity scattering and the
"disordered" elementary bubble Xo will include vertex
corrections due to impurity scattering and fermion lines
also renormalized by impurity scattering [as will be expli-
cated later in connection with Fig. 11(a) and A in Fig. 9].

III. THE LOWEST-ORDER PARAMAGNON
CONTRIBUTIONS TO THE SPIN

SUSCEPTIBILITY IN THE DISORDERED CASE
WITH 2-, 3-, AND 4- phDP PROCESSES

A. Noncancellation of 2-phDP diagrams

I now turn to the case where a mean free path due to a
weak disorder dresses the preceding quantities. It appears
easier to compute the static susceptibility through 7+
which contains less diagrams than X since, in the limit of
zero field, both ways are equivalent. As in Refs. 1 and 2,
I restrict myself to the "weak-localization" regime:

The diagrams of Fig. 6 will now be dressed with impurity
scattering; a fermion Green's function now reads

G(p, co„)= (i co„—gp) (&)

with the standard notation for Matsubara frequencies,

1
~n ~n + sgncon

2v

A(q, ice„i )=r '(Dq + iso„i )

D =pFr/3,

1.(q,
~
~„~ ) =(2~+,H)-'(Dq'+

~
~„~ )-'

=A/(2m. Xpr),

n) =2m.vT, v=0, 1,2,

where A and I are computed in the diffusive regime, and
one has the usual conditions' '

kFgg (( 1

i
co,

/
r((1,

T'T(( 1

(12)

With the help of A and I, one can compute the basic dia-

grams of Fig. 10 which serve to compute the various
disordered paramagnon propagators. The disordered bub-
ble Xo(q,

~
co,

~

) [the closed loop of Fig. 10(a)] is [with the
conventions of Sec. II and with Eqs. (8)—(11)]

Xo(q l~
~

)= —Tg I P G(p, g )(2'�)'

XG(p+q, co„+ )A(q,
~
co„~ )

FIG. 9. The phDP-type diagrams A {top line) and I {bottom
line) exhibiting infinite scatterings of the fermions on the impur-
ities (the crosses are impurities and the dotted lines correspond
to the scattering potential). Here each fermion line {solid lines)
is also renormalized by impurity scatterings.

co„=2m T(n + —,
'

), n =0, 1,2, (9)

and (in atomic units) with
2

P PF
2 2

(10)

On the other hand, for simplicity, I restrict my considera-
tions to the vertex corrections due to impurity scattering
to be only of the "diffuson" type, or particle-hole dif-
fusion propagators (phDP's) containing an infinite ladder
of impurity scattering as usual, ' ' and recalled in Fig. 9:

A —1

o A

Dq

Dq +/co
(13)

[Note that as A is divergent for small q and J co

(A —1)—A. ] The quantity displayed in Fig. 10(b), Xo, is
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FIQ. 10. The basic ingredients Xp [in (a)] and X&& [in (b)] of
(13) and (14) and the corresponding lowest-order (in the interac-

tion) contribution to the disordered paramagnons X„or X„[in
(a')] and X~ [in (b')]. All fermion lines (solid lines) are them-

selves renormalized by impurity scattering. Notation is the
same as in Fig. 9.

FIG. 11. The same conductivity diagrams as in Figs. 5(a),
5(b), and 5(c) of Ref. 10 containing 2 phDP's. They cancel when
the wiggly line is the screened Coulomb interaction, but they do
not cancel when it is a disordered paramagnon (see details in
Appendix A), in which case they contribute a term of (T~) to
the conductivity as well as to the susceptibility. As in Ref. 10,
there are two diagrams like (a), and two diagrams like (c), when
the self-energy affects the "hole" line instead of the electron
line.

G
Xp(q, t

cp
t )=Tg f G(p, cp„)G(p+q, tp„+„)

(2m )

XG(p'+q, ro, + )

2v—1 A —1
Np Tg (2mNp—r) I

n=0 A

Dq

Dq + tee„t

Diagram [10(a')]—+( —1)~A2Xp=i~A~Xp (15a)

Diagram [10(b')]~(—I) I Xp Np27r&
A

2

=(—I) (2miti prI )
A

2

(15b)

Then if one computes the disordered paramagnons (corre-
sponding to those of Fig. 1, but in the presence of disor-
der), one gets for their lowest-order contribution displayed
in Figs. 10(a') and 10(b'), with the use of (11),

This will serve as the basic ingredients in what I will call
X„,7„,and Xi as being disordered paramagnons contain-
ing, respectively, an odd and an even number of disor-
dered closed bubbles and an infinite interaction ladder.

I first examine here the diagrams of Fig. 11 containing
2 phDP's renormalizing the vertices at the meeting points
between the wiggly line and the fermion line. Such dia-
grams were shown to cancel in the Coulomb interaction
case. ' ' The cancellation has been shown explicitly in
great detail in Appendix C of Ref. 10 where the conduc-
tivity diagrams of Fig. 11 were computed in two dimen-
sions, with the wiggly line being the screened Coulomb in-
teraction V, (q,cp). I compute, in Appendix A of the
present paper, the same conductivity diagrams in three di-
mensions, but the dimensionality plays no role in the can-
cellation or noncancellation of these diagrams. I keep
track of the various contributions until the very end,
where I find the following: (i) when the wiggly line in
Fig. 11 is the screened Coulomb interaction V, (q, co) of
Ref. 10, I recover the result of that reference that the dia-
grams altogether cancel; in contrast, (ii) when the wiggly
line is the appropriate disordered paramagnon [X„and Xi
in Figs. 11 (a) and 11(c) and X„ in Fig. 11(b)], the dia-
grams do not cancel, but combine to yield a nonvanishing
contribution (independently of the dimensionality being
two or three).

The absence of cancellation in (ii) is only due to the.
geometrical structure of the involved paramagnons con-
taining an even or odd number of elementary bubbles de-
pending on the spin directions of the fermions lines at
both ends.

In what follows, I compute directly the corresponding
susceptibility diagrams in three dimensions. As for the
conductivity, and for the same reason, the susceptibility
diagrams containing 2 phDP's do not cancel. The sum of
the diagrams with a self-energy correction containing a
disordered paramagnon with an odd number of bubbles
X„and the diagram with a vertex correction containing a
disordered paramagnon with an even number of bubbles
g„read
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d3 3 IX
(5X o+5X )2 hDP 2T g f f 3

G (P co )G(p+q co + )A'(q
I
co.

I
)

d p d q+ —T gf,f,G (p, co„)G (p+q, co„+„)A2(q, ~co„~ )
(2m') (2m ) 1 —I Xo

=2TQ ~co,
~ f,A Nor'

(2m )

'&o

1 —I 7o

IX
2 2

1 —I ~o
(16)

In (16) and in the following, I use the results displayed in
Appendix B for a number of integrals, over momentum,
of various products of fermion Green's functions. If, in
the right-hand side of (16), one would have inside both
parentheses the same Coulomb propagator &,(q,

~

co
~

),
the difference of them would vanish as it does in Ref. 1, 2,
9, and 10. Instead, here, again because of the different
structures of the involved paramagnons, the same quanti-
ty does not vanish:

2

(5Xrp+5Xre)2 phDP=2&0~ T g I
co.

I 3
A ~

d q 2 Igo
(2m )

(17)

I Xo(q,
~
co„( )

X„(q, ~co„~ )=+
1 —I'Xo'(q (co ()

(18a)

The various paramagnon propagators used above, and in
the following, read as follows:

I3XO(q, ~co ( )
X„(q, [co„

f

)=—
1 I X (q—, i co„[ )

I'Xo(q,
~
co,

~
)

XI(q,

waco

i
)=—

1 IXo(q —(co. ()

(18b)

(18c)

(con~con+v) &0 . (19)

Now, to the contribution (17), one must also add the dia-
grams with a self-energy correction containing a disor-
dered paramagnon of ladder type in the interaction XI as
given by (18c):

The lowest order (in the interaction) of (18a) and (18c)
multiplied by the vertex correction A was computed in
(15); note the sign difference between (18a) and (18b) cor-
responding to one bubble difference between them. Recall
that, in computing (16) and in order to get the diffusion
pole in A as given in (ll) (the most singular term), one
must have for the fermion Green's-function frequencies

IX
(5XI)2phDP ——2T g f —

3 f 3
G (p, co„)G(p+q,co„+„)A

(2m ) (2n )

(20)

Therefore this last contribution is equal to the one given above in (17). Then the sum of the contributions with 2 phDP's
is

(5Xro+5Xre+5XI )2 phDP's ~+0~ Tg I
co.

I

3 dq 2 +0
(2n. )'

d3 D 2
=4I 2v T g ~

co„~
2w Dq + co 1 —Iaq + co

D3/2 (1 I) I/2, , —1 ——TgQ ]co„/

(21)
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One can check that [(1 I—) '~ —1 I/—2] vanishes, as it should, when I~O like I, and, on the other hand, diverges
like (I I—) ' when the magnetic instability is approached, I~ l. Note that the sum over co„ is restricted to

I co„~ z & 1.

B. Diagrams wth 3- and 4-phDP processes

1. 3 phDI"s

I concentrate first on 3-phDP processes [Fig. 4 of Ref. 9 or Fig. 5(a)—5(d) of Ref. 2, or here, Figs. 12(a), 12(a'), 12(b),
and 12(b )], which cancel among themselves if the wiggly line is the screened Coulomb interaction and which, in the
present case, will combine since they involve X„,X„,and XI. As I did with 2 phDP s, I first compute

d d
(5X„+5X„)3phDp —— 2T'—gf, f 3 f,G (p, co„)G(p+q,co„+„)G (p', ro„)

(2m. } (2m. } (2m )3

XG(p'+ qco„}I( q, l ro„I }A (q,
I
ro„I )

I Xp

1 —I gp

3 3 i 3

+ 2T g—f f 3 f 3
G (p, co„)G(p+q, ro„+„)G (p'+q, co„+„)

(2~) (2~) (2~)

I Xp
&& G(p', a„)1 (q, ) co„~ )A'(q,

~
co„~ )

1 —I Xp

I Xp

1—I Xp

IX
1 —I Xp

(22)

To compute (22), I also use the integrals over Green s functions whose details are given in appendix B. Here, as in (15), if
one would have V, (q,

~
co„~ ) in each pair of parentheses of the last line, (22) would vanish as it does in Refs. 2 and 9. In-

stead I get

2

(5X„+5X„)3phDp——4mXov g ~co,
~

A Id q ~ Igp
(2m)

On the other hand,

(23)

d d
(5XI)3 pqDp —— 2T g f f f 6 (p, co„)G(p+q,co„+ )G (p', co„)G(p'+q, co„+„)

(2m ) (2~) (2n. )

X I (q,
/

co
f

)A (q, f co,
[ )

I Xp

1 —Igp

(24)

and thus again this last contribution is equal to the one in (23). The sum of the contributions with 3-phDP processes is

(5Xro+5Xre+5Xi}3 phDp=g~&o~'T g I
~

I f (2n )

I Xp

1 —Igp
(25)

Before proceeding with the detailed calculation of (25), I have also to consider diagrams with 4 phDP s.

2. 4phDP's

I now compute the diagrams with 4 phDP s of the type of Figs. 12(c) and 12(d), which, in absence of disorder, corre-
spond to those of Figs. 6(f)—6(i). They read
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d d d
(5X)&phDp —— 2T—' g f,f,f,G'(p, co„)G(p+q,co„+ )6 (p', G„)6(p'+q, co„+ )(2') (2m. ) (2m )

&&A (q, ice„i )
1 —IXp

I'Xp

1 —I gp

d2T3 y f "p f "p, f "q, G (p, ~„)6(p+q,co„.)6 (p', co„)6(p—q, ~.
(2'�)3 (27r) (2~)

XA'(q, iso„i )
1 —IXp

I
1 —I Xp

d=2T +co,f %or A
(2'�)

I Xp

1 —Igp 1 —I gp
I.

1 —I&p2 2

d
(5X)g phDp ——2T g ro,f Nor A

(2m. ) (1—IXo)

Now, I combine the results obtained with 3- and 4-phDP processes, formulas (25) and (27), to get

(5»3 hDP+(5»4 q Dq

(Dq + ~ru„~ )' (1 I)Dq'+ ~co„~—

Here too, if one had V, (q,
~

co
~

) in both sets of large parentheses in the last line, these diagrams would vanish as was
found in Figs. 5(e) and 5(f) of Ref. 2, for instance. Instead, here, they combine to give

, T +co'„dq
(Dq'+

I ~„l )' [(1 I)Dq'+
I

~—.l

]'
Straightforward algebraic manipulations yield

(28)

(5X)„, ,+(m)„, ,= „, 1 ———(1—I)'" TgD3/2 2
)
~

)

I/2

1 ———(1 I)' [1——(2m Tr)' ] .
3 &o

4 (pFr)2 2

(c) (&)

FIG. 12. Diagrams with 3 phDP's [(a), (a'), (b), and (b')]
which do not cancel in contrast with the Coulomb case, and dia-
grams of the same order, although with 4 phDP's [(c) and (d)],
which do not cancel either. These last two diagrams correspond,
in the absence of disorder, to those of Figs. 6(fl—6(i).

One can check that [1 I/2 (1 —I)' —] vani—shes with I,
like I, and, on the other hand, does not diverge when
I~1, in contrast with (21). If I compare (29) with for-
mula (1), (1 I) 5XtF, as anno—unced in the introduction, I
find a slightly different dependence in I [in particular (29)
vanishes quadratically as I~O and not linearly like in
(1)], but the same kind of overall temperature dependence
is found, in particular, no divergence close to the magnet-
ic instability, when I~1. I discuss all the results in the
following section.

IV. DISCUSSION OF THE RESULTS

(a) I chose to compute the transverse susceptibility
while Ref. 2 computed the longitudinal one, but the result
ought to be the same: the diagrams involved in Ref. 2 cor-
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Xp+6XNp+5X
X( T)=

1 I [No+ 5X]—
(1 I ) 1 I——5X

1 —I

respond to those of Figs. 4 and 5, approximately dressed
with phDP, 's. Reference 2 states that its result for the sus-
ceptibility involves diagrams shown in Figs. 7(a), 7(b), and
8(a) of Ref. 2. Such diagrams correspond, respectively, to
Figs. 4(e) and 4(f) [with Green's functions dressed by im-
purity scattering and 3 phDP's appearing as in Figs. 12(a)
and 12(a')] and to Fig. 4(c) [with 4 phDP's as schematized
in Fig. 12(c)]. However, it seems that Figs. 7(c) and 7(d)
in Ref. 2, although considered in the conductivity, were
not considered in the susceptibility there, while they were
in Ref. 11; they would correspond to my Fig. 5(d) dressed
with 3 phDP's in two possible ways. But one should also
consider Figs. S(c) and 5(d) with 4 phDP's each [in that
case Fig. 5(d) must be drawn as in Fig. 13]. I checked
that, dressed with 4 phDP's, Figs. 4(a) and 4(b) cancel
altogether F—igs 5(.a) and 5(b) as well —and also, in
(g++ —g+ ), Diagrams [4(c)-S(c)-5(d)]= Diagrams
[6(f) + 6(g) + 6(h) + 6(i)]. I also checked that, dressed
with 3 phDP's, 2X Diagram [4(d)]—2 X Diagram [5(d)J =
2X Diagram [6(e)]. What remains with 3 phDP's are Di-
agrams 4(e) +4(f) +4(g) +4(h), which are the same as
Diagrams 6(a) + 6(b) + 6(c) + 6(d). Thus it is clear that it
is simpler to deal with 7+ rather than with g . I sup-
pose that the neglect of Figs. 5(c) and 5(d) with 4 phDP's
and 2XDiagram[4(d)] and 2X Diagram [5(d)] with 3
phDP's in Ref. 2 (in the Hubbard-model case) may be the
source of the slight difference in the I dependence be-
tween formula (29) of the present paper and formula (1)
extracted from Ref. 2.

(b) The most important point, however, is the noncan-
cellation between the diagrams with 2 phDP's, as em-
phasized in the text. Comparing (21) with (29), they give
contributions of the same second order in (e'er) '. They
both contribute to a decreasing temperature variation
when T increases. However, (21) and (23) will predom-
inate depending on the range of T, inside the region of in-
terest of (12), Tr«1.

(i) If Tr&(1 I)' «1, (29) wi—ll predominate and one
will recover the overall susceptibility change proportional
to (1 I) 3/'T, annou—nced in Ref, 1:

FIG. 13. Another way of drawing Fig. 5{d), which is identi-
cal to it in the absence of disorder, but which may be dressed
with 4 phDP's, while Fig. 5(d), as such, must be dressed with 3
phDP's in two possible ways as in Figs. 7(c) and 7(d) of Ref. 2,
or the two possible ways in Fig. 1(b) of Ref. 11.

may be reached at quite a low temperature if the pure sys-
tem is strongly enhanced (I is close to 1), then (21) will
predominate over (29) and one gets, analogously to (30)
and (31),

(5X)(2])hX( T)—
(1 I)— ( T )3/2

(eFr) (1 I) (1—I) '/—

(1 I) '
& Tz«—1 (32)

3/ 3NO
1 —I[NO+(5X)T o] =1 I No+-

(epr) (1—I) '/

(33)

Therefore, even though we are in the weak localization re-
gime,

where (5X)~2~~ is the T dependence of the contribution of
formula (21): (5X)2 phDp, .

(iii) What is more important is the contribution of dis-
order to X(T=O). At T=O, (21) clearly predominates
with the large contribution (1 I) ' . Theref—ore, in the
first expression in (30a), one has

eI;r p)1x
(30a)

Np 1 I—since, near the magnetic instability,

(35)

=X(T=0)+AX(T), (30b) the contribution [3/3(@Fr) (1 I) ' ] in (33) may b—e
non-negligible compared to unity. Such a correction
yields an effective value I,ff for I:

( &X )(29)
bX( T)— cc—

(1 I)2— v3 1Iff ——I 1+
(eFr) (1 I)—T 1/2

Tr&(1 I)'—
(&pr) (1 I)— (36)

(31)

where (5X)(29) is the T dependence of the contribution of
formula (29) [(5X)3~hDp»+(5X)g~hDp J. Note that (31)
yields an infinite slope when T~o.

(ii) However, when (1 I)' &T~&&1, a range wh—ich

At that order in (@Fr) ', I,rr is larger than I. Such a re-
sult is in agreement with what was conjectured in Ref. 4:
that paramagnons (stronger in the presence of disorder" )
contribute to yield a larger Stoner enhancement than in
the absence of disorder; indeed I find
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X( & =0)
1 —Jeff

1
,— &(I—I)' '

(eFr)
(38)

In other words, one is not only in the weakly localized re-
gime, but also not too close to the magnetic instability.
Were we much closer to it, for I very close to 1, (38) could
no longer hold and the expansion (36) would break down.

(c) Finally, it is hopefully clear that more sophisticated
theories like the one of Ref. 5 dealing with the screened
Coulomb interaction do not cover the contact interaction
since they ought to not only let the range of the interac-
tion become very small, but at the same time impose spin
constraints, which will at once make the three different
structures X~, X«, and P„appear (instead of the unique
one V, ), which in turn are the source of the extra contri-
bution obtained here.

(d) I have confined consideration in this paper to
phDP's in order to dress the various diagrams contribut-
ing to the susceptibility in the presence of weak disorder
and a strong interaction. It remains to include the contri-
bution of ppDP's as mell, and to look for both their ef-
fects on other properties: specific heat, conductivity, etc.

(e) One last remark concerns the conjecture, proposed in
Ref. 4(b) that paramagnons altogether become stronger
and tend to become local in the presence of disorder, in
which case one might have a crossover towards a regime
of vanishing interaction, enabling the metal-insulator
transition to take place. This will occur if, for increasing
disorder, the space dependence of the paramagnons disap-
pears before the magnetic instability is reached. One
should then (again for stronger disorder than in the
present paper) study, on equal footing, the effect of disor-
der on the paramagnon space dependence as well as on the
effective value of the Stoner enhancement. This appears,
at present, difficult.
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APPENDIX A: COMPARISON BETWEEN
THE CONDUCTIVITY DIAGRAMS CONTAINING THE

phDP'S IN THE CASE OF THE SCREENED
COULOMB INTERACTION

AND IN THE PARAMAGNON CASE

f( )
d q p(q, co)

(2n ) r (Dq i co)— (Al)

The space dimensionality, as will be clear later, plays no
role in the cancellation or combination of the diagrams.

Compared to V, which assumed a unique form, we will
have here three possibilities for the paramagnon structure
of the type of Fig. 1 but renormalized by impurity scatter-
ing, as explained in the text in formulas (18), X«, g'„, and
X~. The corresponding integrals in (Al) will be called
f„,f„, and f~. I then compute the diagrams of Figs.
11(a)—11(c), analogous to those of Figs. 5(a)—5(c) of Ref.
10. I will use here the same notation that appears in Ap-
pendix C of Ref. 10 (a++, etc.) with the exact limits of
integration [note that, instead, in formula (C2) of Ref. 10,
the integral over e has been approximated by de al-

.0
though, as is obvious from the limits over ~, it should

1/w —Q i

rather read f de]. I will have two types of dia-
0

grams in Figs. 11(a) and 11(c), one with X~, the other with

X«, which will be contained in (f~+f„). I then get

In Appendix A, I follow step by step, the Appendix C
of Ref. 10, to demonstrate that, in comparison with the
Coulomb interaction case of Ref. 10, instead, for the
Hubbard-type contact interaction treated here, the corre-
sponding diagrams do not cancel. As in Ref. 10, I
separate the integral over momentum of the product of
the phDP's by the interaction [V,(q, co) in Ref. 10 and
X(q, co) in the present paper]:

1/v. —Q —(g+ Q)

f, «f „, d~[f«( ~)+fi( —~)]gp.'G+(p)G (p)=a'++,
—Q- 1/wf d&f d~[f«(co)+f)(co)] gp~G (p)G+(p) =a'

P
0 —(e+Q)f „«f, d~[f«( ~)+f~( ~)]gp~G'+(p)G' (p)=a' —+,

P
]/~ —Q —(~+Q)f de f dcof„( —m) gpFG+(p)G (p),

P—Q 1/zf de f dcof„(co) gpzG+(p)G2 (p),
P

(A2)

(A3)

(A4)
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0 —(e+0) 2 2 2 f I
+ = f „«f, dai[f„, ( ai—)+f~( —ai)] gpFG+(p)G (p) Q 6+(p')G (p')=c' +

P P

(A7)

with

U = 1

2mXpv
(A8)

a+++a'++ +b
=2Pf de f den[(f„+fi) —f„], (A17)

a ++a' ++c ++c' +
It is easy to verify that (as done in Appendix B of the
present paper), as in the two-dimensional (2D) case of Ref.
10, one has in 3D as well, Sepal ating ln

2P f—de f [f«+fi] . . (A18)

P = X&~G'+G =X&-F'G+ G'
P P

1/v. Q 1/w

(a +a' ), f de= f de+ f
= ——, gioFG+G = 2~pFN—p~

2 2 2 2 3

P

(A9) one has

a +a' +$++
=2Pf «f d~u«+fi]

+2P de dm, + &
—„. Al9

In the second term of (A19), one sets e=Q+e' to appear
similar to a term like (A17); then

U p~ g G+G g G+G =pF( —2imNpr )i
P P

I V7 07

2 3= —2+PgXpz =P . (A10)

a +a' +6++
Q 1/z

=2Pf def d~[y,.+y, ]

+2Pf de f dco[f«+f&) f«] . —

Then the first term of (A20) combines with (A18):

f def d~ f def-
=f def
= f def 'd~ f de—f'd~. (A21)

In the first term of the last expression, one sets e'=0 —e
so that one gets

f def 'd~= f def'd~—= f def'de, (A22)

which exactly cancels the second term in the last expres-
sion of (A21). Therefore one is finally left with only
(A17) and the second term in the right-hand side of (A20):

1/z —0 1/w

a+++a'++ =2Pf def de[f„(ei)+f((oi)], (A20)

(A 1 1)
1/~

g +g' =2Pf de f dei[f«(cp)+f~(ai)],

(A12)
1/~

g +g' + = 4Pf—de f dco[f„(ai)+fi(co)],

(A13)
0 1/&

c ++c + 2P f de f ——drp[f„(a~)+f&(a~)],

2P f de f—„drof,.(ai) .

(A14)

(A15)

(A16)

Then one has

Changing the variables in (A2)—(A7), so that variables of
integration wi11 be positive, and setting e=0+e' ina, a', and b and a+A=a" in b++, one finally
gets

1/~-0
a+++a'+++b +a ++a' ++c ++c' ++a +a' +&++ —4p f d, f dpi[(f +f, ) f ] (A23)

It is clear that, if the sum (f«+fg) as well as f„would
reduce to V, (q, ai) as in Ref. 10, the quantity in the square
brackets of (A23) would identically vanish and one would
recover the cancellation proved in Appendix C of Ref. 10.
Instead here we have

d q 1
[ f«+fi fry]= 2' t Dq —l CO

X[(—X«)+(Xi)—( —X„)]. (A24)

The signs in (A24) must be understood as follows, with
the conventions at the end of Sec. EI: in the diagrams in-
volving g„or g„one has, aside from these paramagnon
propagators [evaluated in formula (18) of the text], one
extra big loop apd therefore one extra minus sign in both
cases; in the diagrams involving XI, one has two extra big
loops and thus a plus sign. In (A24) the combination of
the 7's reads
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(Xl )+(—X„)—( —X„)=
I Xp +

1 —Igp

I Xp

pe p2

IX
+ 2-2I —I &p

I2g

1 —Igp

I Xo(1+IXo) 2I Xo

(1 —IXQ)(1+IXp) 1 —IXp
(A25)

with

Dq
Xp(q, co) =Xp

Dq —~co
(A26)

X„and X„having one minus sign difference, combine to
yield a contribution of the same form as Xl. This is
linked to their having one bubble difference, itself due to
the bare interaction I playing a role only among opposite
spins.

Therefore the same diagrams with 2 phDP's, considered
in Ref. 10 and here, yield different conclusions: they can-
cel in the case of the screened Coulomb interaction while
they combine to give a finite contribution in the pararnag-
non case. [Note in passing that the diagrams of Fig. 11(c)
contribute a vanishing contribution, as they should, when
Q~O. ] The usual scaling argument tells us at once that
these diagrams with 2 phDP's, when they do not cancel,
give a temperature dependence proportional to T in
three dimensions. As far as the two-dimensional
paramagnon case is concerned, it exhibits severe specific
difficulties, both in the pure and in the disordered cases, '

so I do not wish to elaborate more on it here. In any case,
it is clear that the screened Coulomb interaction con-
sidered in Ref. 10 cannot, as it stands, recover the contact
interaction case without not only reducing the screening

I

APPENDIX 8: CALCULATION OF A NUMBER
OF USEFUL INTEGRALS

I compute first

d6 G =
3
6 p~COn 6 p+qCOn+v

(2m. )

f+dZf
(4 EEon) —(4+PFqz EEo~+ —)

(81)

where g&+q is approximated, as usual, for small q values
by

~p+q=kp+PFqz =0+PFqz

z =cos(p, q) =cos8 .
(82)

As usual, to have the diffusion pole appearing in the dia-
grams computed in the text, one is always restricted to

~n ~~n+v & 0

Then

(83)

length, but most impor)antly, examining in detail the re-
strictions implied in the diagrams by spin constraints.

6(co„)6(—Eo„+„)6(—Eo„)

(Eco~—l /r pFqz )—+l d 6(Eo„„)6(—Eo„)6(Eo,)6 6 =Xp 2im—1 (Eco~+l /1 pFqz )— (84)

=—2+No 2[6(Eo„+„)6( —Eo„)6(Eo,) +6(co„)Q ( —co„+„)6( —Eo„)], (85)

where I have used the fact that
~

Eo~
~

~ && 1 and PFq~ && 1. Note that

T g fG G = Np~
~
co„~— (86)

On the other hand

+' dzf G G =f G (pEo„)G (p+qco„)=X f(2n) ' (g iso„) (g+PFq—z iso„+ )— (87)

=4~+,~'[e(~„„)e(—~„)e(~„)+6(~„)e(—~„„)e(—~.) ] . (88)

Note that

Tg fG G'=+2%or'~ co
~

. (89)

I will also need
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+' dz6 6 = 6 p~co~ 6 p+q~co~+~(2~)' 2 (g —i co~) (g+PFrlz i—co„+ )
(810)

=2l'7rXor [6(co„+ )6( —co„)6(co„)—6(co„)6(—Co„+„)6(—Co„)], (811)

and

—Tg f P G2(p, co„)G(p+q, co„+ )= i—Nor co
(2~)

(812)

One alsa checks that

G (p, co„)G(p—q,co„,) =2irrX r [6(co„,)6( —co„)6(—co,) —6(ro„)6(—ro„)6(co„)],
(2m )3

d3f G (p+q, ro„)G(p, ro„) =2irrX r [6(ro„)6(—co„+,)6( —co„)—6(co„+ )6(—co„)6(co,)],(2'�)'

(813)

(814)

3
—Tg fG (p, co„)G(p q, co—„,)= —Tg f 3

G (p+q, co„+,)G(p, co„)=i%or ro, .
(2tr)

(815)
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