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Theory of surface effects in binary alloys with fcc crystal structure: A Landau approach
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The interplay of surface segregation and ordering in binary alloys with face-centered-cubic struc-
ture is studied within the Landau theory of phase transitions. In contrast to the bulk first-order
transition, the surface may disorder in a continuous manner. We find that the surface disorders at
the temperature at which a bulk-ordered and a surface-disordered phase coexist. A mechanism for
the bulk first-order phase transition is discussed.

I. INTRODUCTION

In previous publications' we have studied surface ef-
fects in binary alloys A„Bs (y = 1 —x) that undergo
order-disorder' and magnetic second-order transitions.
Those theories were developed to study the interplay of
spatial order, magnetism, and segregation in (i) flat'
and stepped surfaces of ordering alloys which can be
described by two equivalent interpenetrating sublattices,
like FeCo, CuZn, AuCd, A1Ni, NiZn, LiTl, etc. and (ii)
face-centered-cubic clustering alloys, ' like CuNi, AuNi,
AuPt, etc.

Systems equally important in catalytic processes and
metallurgy are ordering alloys with face-centered-cubic
structure, like PtNi, PtCo, FeNi, AuCu, etc. The main
characteristic of these alloys is that the spatial order-
disorder transition is of first order. ' Therefore, the
theories mentioned above do not hold for these systems.

Additional interest in the fcc binary alloys is given by
the prediction"' that semi-infinite systems with a bulk
first-order transition may show a second-order phase tran-
sition at the surface and that near the bulk transition tem-
perature T, a disordered surface region of macroscopic
dimensions is formed. In that study the free energy was
evaluated in a Landau expansion of a continuous order
parameter and the equilibrium state at the surface was ob-
tained for various situations.

Here, we present a theory, where in addition to the
minimization of the free energy with respect to the order
parameters, the constraint on the particle conservation
imposes the minimization of the free energy with respect
to the surface concentration. The additional constraint
leads to new results, some of them discussed recently, '

which provide, among other features, a mechanism of
bulk first-order phase transitions.

It is well known that to obtain the correct phase di;.-
gram of fcc binary alloys it is necessary to calculate the
configurational entropy at least in the tetrahedron approx-
imation. ' The Bragg-Williams (BW) approximation'

yields a phase diagram with a maximum at x=0.5, the
value at which the transformation becomes of second or-.

der. In this paper we investigate the general effects on the
phase transformation caused by the surface, by perform-
ing a Landau expansion of the entropy calculated in the
BW approximation.

A similar study in the tetrahedron approximation of the
(001) surface and its application to the CuAu system has
been carried out recently. ' ' It is found that the phase
transitions taking place in a surface with that geometry
differ considerably from the results obtained here for the
(111) surface. In particular, for the A3B alloy, Sanchez
and Moran-Lopez' found that in most cases the surface
layer disorders through a second-order phase transition,
while the rest of the solid follows the first-order transition
in the bulk.

In Sec. II we outline the theory and calculation for the
bulk and for the surface with planes parallel to the (111)
direction. The results for various situations are presented
and discussed in Sec. III.

II. THEORY AND CALCULATION

A. Bulk properties

The order-disorder phase transition is described' by
subdividing the lattice into two nonequivalent sublattices
a and P such that the number of a and P sites are ~ and

of the total number of sites N, respectively. An a site
has four a sites and eight p sites as nearest neighbors. On
the other hand, a p site has twelve a sites as nearest
neighbors. Thus, there are four different single-site prob-
abilities, pg (p=a, p; I =A, B), and the phase transforma-
tion is described by the order parameter

(2.1)

By assuming that the contributions to the internal ener-

gy U are only the nearest-neighbor pair energies ez~, e~~,
and @~it, the free energy can be written in the form
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f=f/N =u(0) ——, Wg krrT =112xy(x +y )W/(25x —22xy+25y ) (2.14)

+ kgb T/4 3 Ppr lnpr + Ppr 1npr
I I

(2.2) and

rjmo =3go/4 (2.15)

where

~=&AA+&aa —2&As . (2.3)

The main features of the free energy are kept if we take
the Landau expansion up to the fourth order'

f=f(0)+ay l2 —bg /3+cd /4,
where

(2.4)

a = , (krr T/4x—y —W), b = —,', (1/y —1/x2)krr T,
(2.5)

c =,'„(1/y +1/x )krrT,

f (0)=6W[x +(b, —1)x +errrr/W]+krr T(x lnx +y lny),

B. Surface properties

We consider now the [111]direction of the fcc lattice.
We subdivide the crystal into planes parallel to the sur-
face. The geometry of these planes is similar to the bulk
and the number of a and P sites at each plane is —,

' and —,
'

of the total number of sites per plane X~~. We introduce
four site probabilities per plane i: pf; (p=a, P; I =A,B;
i =0, 1,. . . ). In a way similar to the bulk order parameter
g we define at each plane an order parameter2'

a P
II PA, i PA, I ~ ~ 0~ 1~2~ . ~ (2.16)

In terms of these order parameters the free energy can be
written as

with

(2.6)
2

f=f(0,0, . . . )+ g 16

~=«~~ &aa—)/W (2.7)
3 4c;;g;3+4 (2.17)

g(crj bg+c) =0—. (2.8)

The equilibrium values of the order parameter are ob-
tained by minimizing f with respect to g, which yields the
equation

where

k~T
8 2xy;

. Thus, q~ ——0 is a solution as well as the roots of the
second-order equation —3

El

1 1

X.
(2.18)

7/2 3 —[b + (b 4ac)' ]l—2c (2.9)

The order-disorder transition occurs at a temperature
T, where the energy of the disordered phase (g=0) and
the ordered phase (g=go) coincide. In our approxima-
tion T, and qo are given by

7 1 1
ll 256 3 + 3 B

A

f(0,0, . . . ) =3WQ [x; +x;x;+&+ —,(b, —1)(3x;+x;+&)
0

and

[—,
' ——,

' (x —y ) /(x +y )]ks T, =6 Wxy (2.10)
+k~T(x;1nx;+y;lny;)] . (2.19)

rjo ———,'xy(x —y )/(x +y ), (2.11)

k~ Tmd
——48'xy (2.12)

respectively.
Two other transition temperatures might be con-

sidered: (i) the temperature of metastability limit of the
disordered phase, T~d, at which the smaller root of Eq.
(2.9) is zero, =0,

an
i =0, 1,2, . . . (2.20)

To take into account segregation effects we have written
the concentration at the ith plane as x;.

The equilibrium values of g; and x; are obtained from
the two sets of coupled equations:

and

nmd =3n0~2 (2.13)
df df =p, i =0, 1,2, . . . .

BX; Bx
(2.21)

and (ii) the temperature of metastability limit of the or-
dered phase T~~, at which the discriminant in Eq. (2.8) is
zero,

The set of equations (2.20) and (2.21) can be written in the
form
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2li ——hi(2)p, xp),
'92=h2(210~91~xi�

) ~

for the 2l s and x s there is only one solution that fulfills
the boundary conditions.

gn hn( gn —2~ 9n —l~xn —1) (2.22)

III. RESULTS AND DISCUSSION

A. Bulk properties
and

x1 —gi(90~ l~xp~x) ~

x2 =g2(711,2l~xp~x»x)

Xn gn( gn —1~ g~Xn —2~Xn —1&X (2.23)

By substituting q& in gz, gz in g3, etc., and by applying
the boundary condition that q„+~——q one obtains, instead
of Eqs. (2.22), the equation

H(alp, 2),xp, xi, . . . , x) =0 . (2.24)

In a similar way the set of equations (2.23) can be reduced
to the equation

G(xo x rio 211 )=0 ~ (2.25)

After characterizing the bulk properties, we find the
solution of those equations in the following way: (i) We
fix xp ——xi —— x; (ii) we find the solution for rip from
Eq. (2.24); (iii) we substitute this value in Eqs. (2.22) to
determine il„212, . . . , g„ 1', (iv) the values obtained for
the g s are used in Eq. (2.5) to find xp, (v) we substitute
the ri s and xp in Eqs. (2.23) to find xi, x2, . . . , x„
(vi) we use the new values for the x s as input to calculate
new values for the il s as described in step (i). The loop is
carried out until the difference between the input and the
output values for the x s and the il s is smaller than a
given tolerance value. Within the range of values allowed

We show in Fig. 1 the phase diagram for the bulk in the
paraineter space k&T/8' versus x. The three curves cor-
respond to the transition temperatures T„T ~, and T,
given by Eqs. (2.10), (2.12), and (2.14). Relative minima
for T ~&T&T0 with g=O and for T, &T&T, with
ri&0 characterize metastable states. As mentioned above,
the phase transformation taking place at T, is of first or-
der except at x=0.5. This can be seen clearly in Fig. 2
where the concentration dependence of the order parame-
ter at the transition temperature of il, is plotted. We
show also 21, as obtained by using the full expression of
the free energy, Eq. (2.2).

B. Surface with xo ——x~ —— - - ——x

First we ignore the chemical potential constraint and
study the case of no segregation, i.e., xo ——xi —— . ——x,
which requires the minimization of the free energy only
with respect to the order parameters. This case is
equivalent to one previously studied within the continuous
Landau theory. "

After solving the set of equations (2.20) and, assuming
50 layers different from the bulk, we find that the surface
disorders through a second-order phase transition. We
show in Fig. 3 the temperature dependence of g; for
i = 1, . . . , 6 and of the bulk rib for an alloy with x=0.75.

To find our the order of the surface phase transition we
studied the solutions for 2l; very near T, . In Fig. 4 we
show, in the upper part, results for the surface profile of
the long-range-order parameter at temperatures
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FIG. 1. Bulk phase diagram in the concentration versus tem-
perature parameter space; T, is the order-disorder transition
temperature giveri by Eq. {2.9); T d and T, are the tempera-
tures of metastability of the disordered and ordered phases,
respectively. The order-disorder transition is of first order in
the whole range of concentrations except for x =0.5.

0
0.5 0.6 0.7 0.8 0.9

CQNCENTRAT ION X

1.0

FIG. 2. Long-range-order parameter at T, as a function of
x. Lower curve corresponds to the Landau expansion of the
free energy to the fourth order and the upper curve is obtained
by taking the full expression for the free energy, Eq. (2.2).
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FIG. 3. Temperature dependence of the long-range-order pa-
rameters g; (i =0, 1, 2, 3, 4, 5, and 6} at the (111) surface of
c4 0 7580 25 alloy. The long-range-order parameter of the bulk is
also shown for comparison.
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FIG. 5. The distance A, as a function of —ln(T —T, ) for
several concentrations.

T =0.999T„0.9999T„0.99999T„and 0.999999T, for
an alloy with x=0.65. In the lower part of the same fig-
ure one observes that Ag; =q;+& —q; has a maximum at
A. that diverge as

A, =r ln(T, —T) . (3.1)

0.2

x = 0.65

The maxima in b,g; were obtained by fitting the discrete
data to a fifth-order polynomial. One can observe in Fig.
5, where we plotted A, as a function of ln(T, —T) for
several concentrations, that the coefficient in Eq. (3.1) de-
pends on the concentration x. Furthermore, we find that
A, diverges as one gets to the second-order point x=0.5
(see Fig. 6).

C. Surface with xo&x, xi ——x~ —— . - ——x

%'e ignore the chemical potential constraint, change ar-
bitrarily the surface concentration x0, and keep all other
concentrations xi, x2, etc., equal to the bulk x. We now
find that it is possible to get at the surface a first-order
phase transition. The phase diagram in the x0 versus x
parameter space showing the second- and the first-order
regions is shown on the left-hand side of Fig. 7. The situ-
ation discussed in Sec. IIIB corresponds to the dashed
line. The surface undergoes a first-order phase transition
mainly for high values of x. In that case, two situations
might be distinguished: (i) T» ——T, and (ii) T» )T„
where T„ is the surface transition temperature. In the
shaded area of the phase diagram the first situation takes
place and the condition leading to multicritical transi-
tions is given by
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FIG. 4. Long-range-order parameters at the surface (upper
figure) and the difference hq;=g;+& —g; (lower figure) for
several temperatures and for an alloy with x=0.65.
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FIG. 6. Concentration dependence of A, at a temperature
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FIG. 10. Temperature dependence of the surface long-range-
order parameter qp for 6= —1.5, —1.0, —0.55, and 0 when sur-
face segregation is included. The temperature dependence of gp
without the chemical potential constraint is also plotted (dashed
line).

0.005

x is independent of surface segregation.
One can understand point (i) by looking to the concen-

tration profile shown in Fig. 11. Near the surface (-5
layers), it exhibits the typical oscillatory behavior, but
deeper inside, to achieve the chemical potential constraint,
the system accumulates atoms of type A in the disordered
region, compensating therefore the lack of spatial order.
The reduction in the transition temperature is driven by
this surface phase with concentration xd larger than the
bulk x. As one gets nearer T„, A, increases (the surface-
disordered region grows), and it diverges only in the case
of an infinite system. One expects very different results in
finite system, where the system cannot supply an infinite
number of A atoms to the disordered region. In this case
the ordered bulk phase will change the concentration to
x„smaller than x, and therefore behaving now like a sys-
tern with higher bulk T, . This mechanism is similar to
that of clustering alloys at low temperature where two

phases of different compositions coexist. It is worth not-
ing that the temperature T„ is a teinperature different
from Eqs. (2.11) and (2.13). The fact that T„does not
depend on b for x=0.75 is because this system stays in
the second-order region independent of the value of xp.

An additional region of first-order transitions is ob-
tained for 0.5 & x (0.66. This region does not depend on
xo and it is regulated by the bulk chemical potential. In
this case the constraint produces a depletion of atoms A
in the surface-disordered region and thereby behaving like
a system with higher T, .

Finally, we show in Fig. 12 the temperature dependence
of xp for x =0.75 and b =0. One can see clearly the ef-
fect of ordering on surface segregation. The dashed line is
the surface concentration if the alloy would not order at

0
As we mentioned above, the BW approximation does

not reproduce the correct phase diagram. However, we
expect that the general features of this model should be
present also in more refined theories.

We summarize our results in the following points.
(i) The surface may disorder through a first- or second-

order transition.
(ii) The surface may disorder through an ordinary

( T„=T, ) or an extraordinary transition ( T„&T, ).
(iii) For values of x —1 or 0 surface segregation may

saturate the second layer to 1 or 0 (i.e., il&~0), thereby
decoupling the surface layer. It behaves then as a two-
dimensional system with a T„ that depends only on xo
and that might be smaller or larger than T, .

(iv) In a finite system, when the surface disorders in a
continuous manner, the system does not allow the disor-
dered region (A, ) to diverge, by changing the composition
in the bulk ordered and the surface disordered phases.

(v) The phase transformation in the solid states at the
surface and evolves by a mechanism similar to the phase
separation in clustering alloys.

(vi) The surface disorders at a temperature at which a
surface-disordered phase of microscopic dimensions coex-
ists with the ordered bulk.
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FIG. 11. Surface concentration profile of an A p 75Bp 25 alloy
for several temperatures and b =0.0. The inset figure shows the
concentration in layers i =0 to 4.

FIG. 12. Temperature dependence of the surface concentra-
tion xp for 6=0.0 and x=0.75. The dashed line corresponds to
the case where a random alloy is assumed.
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