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The interplay of surface segregation and ordering in binary alloys with face-centered-cubic struc-
ture is studied within the Landau theory of phase transitions. In contrast to the bulk first-order
transition, the surface may disorder in a continuous manner. We find that the surface disorders at
the temperature at which a bulk-ordered and a surface-disordered phase coexist. A mechanism for

the bulk first-order phase transition is discussed.

I. INTRODUCTION

In previous publications' ~* we have studied surface ef-
fects in binary alloys A,B, (y=1-—x) that undergo
order-disorder! 3 and magnetic* second-order transitions.
Those theories were developed to study the interplay of
spatial order, magnetism, and segregation in (i) flat'—*
and stepped’ surfaces of ordering alloys which can be
described by two equivalent interpenetrating sublattices,
like FeCo, CuZn, AuCd, AINi, NiZn, LiTl, etc. and (ii)
face-centered-cubic clustering alloys,>” like CuNi, AuNi,
AuPt, etc.

Systems equally important in catalytic processes® and
metallurgy are ordering alloys with face-centered-cubic
structure, like’ PtNi, PtCo, FeNi, AuCu, etc. The main
characteristic of these alloys is that the spatial order-
disorder transition is of first order.®~!° Therefore, the
theories mentioned above do not hold for these systems.

Additional interest in the fcc binary alloys is given by
the prediction!"!? that semi-infinite systems with a bulk
first-order transition may show a second-order phase tran-
sition at the surface and that near the bulk transition tem-
perature T, a disordered surface region of macroscopic
dimensions is formed. In that study the free energy was
evaluated in a Landau expansion of a continuous order
parameter and the equilibrium state at the surface was ob-
tained for various situations.

Here, we present a theory, where in addition to the
minimization of the free energy with respect to the order
parameters, the constraint on the particle conservation
imposes the minimization of the free energy with respect
to the surface concentration. The additional constraint
leads to new results, some of them discussed recently,!3
which provide, among other features, a mechanism of
bulk first-order phase transitions.

It is well known that to obtain the correct phase di:-
gram of fcc binary alloys it is necessary to calculate the
configurational entropy at least in the tetrahedron approx-
imation.>!® The Bragg-Williams (BW) approximation'*
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yields a phase diagram with a maximum at x=0.5, the
value at which the transformation becomes of second or-
der. In this paper we investigate the general effects on the
phase transformation caused by the surface, by perform-
ing a Landau expansion of the entropy calculated in the
BW approximation.

A similar study in the tetrahedron approximation of the
(001) surface and its application to the CuAu system has
been carried out recently.’>~!7 It is found that the phase
transitions taking place in a surface with that geometry
differ considerably from the results obtained here for the
(111) surface. In particular, for the A;B alloy, Sanchez
and Moran-Lépez!” found that in most cases the surface
layer disorders through a second-order phase transition,
while the rest of the solid follows the first-order transition
in the bulk.

In Sec. IT we outline the theory and calculation for the
bulk and for the surface with planes parallel to the (111)
direction. The results for various situations are presented
and discussed in Sec. III.

II. THEORY AND CALCULATION

A. Bulk properties

The order-disorder phase transition is described'® by
subdividing the lattice into two nonequivalent sublattices
a and B such that the number of a and f3 sites are % and
+ of the total number of sites N, respectively. An a site
has four «a sites and eight f3 sites as nearest neighbors. On
the other hand, a S site has twelve a sites as nearest
neighbors. Thus, there are four different single-site prob-
abilities, pf (p=a,B; I =A,B), and the phase transforma-
tion is described by the order parameter

n=p5—ph . 2.1)

By assuming that the contributions to the internal ener-
gy U are only the nearest-neighbor pair energies €44, €pp,
and € 4, the free energy can be written in the form
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f=f/N=u(0)—3+Wn?

+ksT/4 33 pfinpf+ X pfipf |, (2.2)
I I

where

W=€AA+€BB—2€AB . (2.3)

The main features of the free energy are kept if we take

- the Landau expansion up to the fourth order®

F=f0)+an*/2—bn*/3+cn*/4, (2.4)
where
a=3kgT/4xy —W), b=2(1/y*—1/xNksT ,
(2.5)
c=5=(1/y3+1/xkgT ,
and
FO)=6W[x2+(A—1)x +€pg/W]+kpT(x Inx +y Iny) ,
‘ (2.6)
with
A=(e q—€pp)/W . 2.7)

The equilibrium values of the order parameter are ob-
tained by minimizing f with respect to 7, which yields the
equation

nen*—bn+e)=0. (2.8)

-Thus, 17;=0 is a solution as well as the roots of the
second-order equation

My 3=[b+(b%—4ac)/?]/2¢ . 2.9)

The order-disorder transition occurs at a temperature
T, where the energy of the disordered phase (7=0) and
the ordered phase (=) coincide. In our approxima-
tion T, and 7, are given by

[2—4(x2—p22/(x3+y) ks T, =6Wxy (2.10)
and

No=3xp(x2—p?)/(x3+p%), @.11)
respectively.

Two other transition temperatures might be con-
sidered:®® (i) the temperature of metastability limit of the
disordered phase, T,,4, at which the smaller root of Eq.
(2.9) is zero,

kBde=4ny' (212)

and

Nma =310/2 (2.13)
and (i) the temperature of metastability limit of the or-
dered phase T,,, at which the discriminant in Eq. (2.8) is
zero,
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kg Tomo=112xp (x34p )W /(25x2—22xy +25p2)  (2.14)

and

Nmo =310/4 . (2.15)

B. Surface properties

We consider now the [111] direction of the fcc lattice.
We subdivide the crystal into planes parallel to the sur-
face. The geometry of these planes is similar to the bulk
and the number of a and 3 sites at each plane is + and +
of the total number of sites per plane N|. We introduce
four site probabilities per plane i: pf; (p=a,B; I =A,B;
i =0,1,...). In a way similar to the bulk order parameter
1 we define at each plane an order parameter?!

mi=p%;—phi =012, ... (2.16)
In terms of these order parameters the free energy can be
written as

aym; _ 3Wmini 4

f=£00,.)+3 5 T:
i
N by} N cini (2.17)
3 4 ’ )
where
a..—i kT _
u 8 2x,'y,' ’
3 1 1
by=— | —— — .
i 64 yiz xiz kBT ’ (2.18)
7 1 1
i ="5se ?4-;‘7 kgT ,
and

£00,0,..)=3W 3 [x/+x;%; 1+ 3(A—1)(3x;+x; 4 1)
i

+kB T(xilnx,- +y,lny,)] . (2.19)

To take into account segregation effects we have written
the concentration at the ith plane as x;.

The equilibrium values of 7; and x; are obtained from
the two sets of coupled equations:

izo, i=0,1,2,...

2.20
an, ( )
and
af af .
R T— Py — y 1, 9 e 0 o -21
dx; Ox po 1=0,1,2 221)

The set of equations (2.20) and (2.21) can be written in the
form
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M =h1(ngxo) ,
Ma=ha(ne,M1,%1) »

Mn =hn(77n——2’77n—1’xn—1)

(2.22)
and
X1 =g|(7]0,7],X(),X) ’
X2 =82(N1,MX%0,X1,X) ,
Xn =gn(7ln—1,77:xn—2,xn_1,x) . (2.23)

By substituting 1, in 77,, 17, in 73, etc., and by applying
the boundary condition that 7, , ;=" one obtains, instead
of Egs. (2.22), the equation

H(no,m,%0,X1,...,x)=0. (2.24)

In a similar way the set of equations (2.23) can be reduced
to the equation

G(xO,x,'ﬂ(),’Yll,. . )=0 . (2.25)

After characterizing the bulk properties, we find the
solution of those equations in the following way: (i) We
fix xg=x,;= """ x; (ii) we find the solution for 1y from
Eq. (2.24); (iii) we substitute this value in Egs. (2.22) to
determine 7y, 75, . . . ,Mn—_1; (iv) the values obtained for
the 7,’s are used in Eq. (2.5) to find xg; (v) we substitute
the n;’s and xg in Egs. (2.23) to find xy, Xx;,...,%,_y;
(vi) we use the new values for the x;’s as input to calculate
new values for the 7;’s as described in step (i). The loop is
carried out until the difference between the input and the
output values for the x;’s and the 7;’s is smaller than a
given tolerance value. Within the range of values allowed
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FIG. 1. Bulk phase diagram in the concentration versus tem-
perature parameter space; T, is the order-disorder transition
temperature given by Eq. (2.9); T,,g and T,,, are the tempera-
tures of metastability of the disordered and ordered phases,
respectively. The order-disorder transition is of first order in
the whole range of concentrations except for x=0.5.

for the n;’s and x;’s there is only one solution that fulfills
the boundary conditions.

III. RESULTS AND DISCUSSION

A. Bulk properties

We show in Fig. 1 the phase diagram for the bulk in the
parameter space kzT /W versus x. The three curves cor-
respond to the transition temperatures T,, T,,4, and T,,,
given by Eqgs. (2.10), (2.12), and (2.14). Relative minima
for T,,4<T <Ty with =0 and for T, <T «<T,,, with
10 characterize metastable states. As mentioned above,
the phase transformation taking place at T, is of first or-
der except at x=0.5. This can be seen clearly in Fig. 2
where the concentration dependence of the order parame-
ter at the transition temperature of 7, is plotted. We
show also 7, as obtained by using the full expression of
the free energy, Eq. (2.2).

B. Surface with xo=x;="--- =x

First we ignore the chemical potential constraint and
study the case of no segregation, i.e., xg=x;= """ =x,
which requires the minimization of the free energy only
with respect to the order parameters. This case is
equivalent to one previously studied within the continuous
Landau theory.!!

After solving the set of equations (2.20) and, assuming
50 layers different from the bulk, we find that the surface
disorders through a second-order phase transition. We
show in Fig. 3 the temperature dependence of 7; for
i=1,...,6 and of the bulk 7; for an alloy with x=0.75.

To find our the order of the surface phase transition we
studied the solutions for 7; very near T,. In Fig. 4 we
show, in the upper part, results for the surface profile of
the long-range-order parameter at temperatures

0.4+
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FIG. 2. Long-range-order parameter at T, as a function of
x. Lower curve corresponds to the Landau expansion of the
free energy to the fourth order and the upper curve is obtained
by taking the full expression for the free energy, Eq. (2.2).
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FIG. 3. Temperature dependence of the long-range-order pa-
rameters 7; (i=0, 1, 2, 3, 4, 5, and 6) at the (111) surface of
Ao.75Bo.as alloy. The long-range-order parameter of the bulk is
also shown for comparison.

T =0.999T,, 0.9999T,, 0.99999T,, and 0.999999T, for
an alloy with x=0.65. In the lower part of the same fig-
ure one observes that An;=%;,,—7; has a maximum at
A that diverge as

A=rIn(T,—T) . (3.1)

The maxima in A7; were obtained by fitting the discrete
data to a fifth-order polynomial. One can observe in Fig.
5, where we plotted A as a function of In(T,—T) for
several concentrations, that the coefficient in Eq. (3.1) de-
pends on the concentration x. Furthermore, we find that
A diverges as one gets to the second-order point x=0.5
(see Fig. 6).
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FIG. 4. Long-range-order parameters at the surface (upper
figure) and the difference An;=7;,,—m; (lower figure) for
several temperatures and for an alloy with x=0.65.
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FIG. 5. The distance A as a function of —In(7 —7T,) for
several concentrations.

C. Surface with x¢p#£x, x;=x,= "+ =x

We ignore the chemical potential constraint, change ar-
bitrarily the surface concentration x,, and keep all other
concentrations x;, X, etc., equal to the bulk x. We now
find that it is possible to get at the surface a first-order
phase transition. The phase diagram in the x, versus x
parameter space showing the second- and the first-order
regions is shown on the left-hand side of Fig. 7. The situ-
ation discussed in Sec. III B corresponds to the dashed
line. The surface undergoes a first-order phase transition
mainly for high values of x. In that case, two situations
might be distinguished: () T,,=T, and (i) T, >T,,
where T, is the surface transition temperature. In the
shaded area of the phase diagram the first situation takes
place and the condition leading to multicritical transi-
tions?? is given by

25

201

X (0.9999993 T, )

10 . s " s

05 06 07 08 0.9 10

FIG. 6. Concentration dependence of A at a temperature

T =0.99999997,.
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FIG. 7. Phase diagram in the parameter space x, vs x: (a)
refers to the case where x; =x,= -+ =x and x, is changed ar-

bitrarily, and (b) refers to the equilibrium values of all x;. The

dashed line marks the case where no segregation occurs.

3 2b%
Xovo |7+ =xy(148b%/27¢c) . (3.2)
Co0

We show in Fig. 8 the temperature dependence of the
long-range-order parameters at layers 0,1,2,3,4,5,6,10 and
for the bulk of a system lying in the shaded area
(x(=0.75 and x;=x,= "'+ =x=0.8). Figure 9 contains
the profile of n; and An; at T, for x=0.8 and various
surface concentrations (x3=0.6, 0.7, and 0.75). For
x0=0.7 and 0.75 the surface disorders at the same tem-
perature as the bulk (ordinary transition), but for x¢,=0.6
the surface disorders at T, > T, (extraordinary transi-
tion).
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FIG. 8. Temperature dependence of the surface long-range-

order parameters 7; (i=0,1,2,3,4,5,10) and in the bulk 7, for a
system with x(=0.75 and x; =x,= -+ - =x,=0.8.
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FIG. 9. Long-range-order parameters at the surface (upper
figure) and the difference An;=mn;,1—; at T=T, and several
values of x4 (0.6, 0.7, 0.75). All other concentrations are equal
to 0.8.

D. Surface with equilibrium concentrations

The situations discussed in Secs. III B and IIIC do not
correspond to equilibrium states. The system is in equili-
brium only when Egs. (2.21) are also fulfilled. Under
those conditions, the phase diagram gets modified as
shown on the right-hand side of Fig. 7. To compare the
results with those obtained in Sec. IIIC we choose the
same parameter space; however, in this case
X 15X, - - %x. We see that the first-order phase-
transition region present in the preceding case becomes
considerably reduced. We observe that now the curves
marking the regions T,;=T, and T,; > T, join in a point
x < 1. This is because for those parameters the equilibri-
um value for the concentration in the second layer satu-
rates to 1 and the surface layer decouples now from the
rest of the solid. Then it behaves like a two-dimensional
system with transition temperature

[3—(x5—y8)2/(x3+y0) kg Tos=3Wxopo .  (3.3)

The key parameter for surface segregation is A. In the
complete disordered state (go=mn;= -+ =0) the element
A gets segregated to the surface for values of
A>A,=(1—-2x), otherwise the surface gets enriched in
element B. We show in Fig. 10 the temperature depen-
dence of my for A=—1.5, —1.0, —0.55, and O for
x =0.75. Two important features can be noticed: (i) the
transition temperature at the surface T, is smaller than
the one dictated by the bulk, and (ii) T,, for this value of
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FIG. 10. Temperature dependence of the surface long-range-
order parameter 7, for A= —1.5, — 1.0, —0.55, and O when sur-
face segregation is included. The temperature dependence of 7,
without the chemical potential constraint is also plotted (dashed
line).

x is independent of surface segregation.

One can understand point (i) by looking to the concen-
tration profile shown in Fig. 11. Near the surface (~5
layers), it exhibits the typical oscillatory behavior, but
deeper inside, to achieve the chemical potential constraint,
the system accumulates atoms of type A in the disordered
region, compensating therefore the lack of spatial order.
The reduction in the transition temperature is driven by
this surface phase with concentration x; larger than the
bulk x. As one gets nearer T,;, A increases (the surface-
disordered region grows), and it diverges only in the case
of an infinite system. One expects very different results in
finite system, where the system cannot supply an infinite
number of A atoms to the disordered region. In this case
the ordered bulk phase will change the concentration to
X, smaller than x, and therefore behaving now like a sys-
tem with higher bulk T,. This mechanism is similar to
that of clustering alloys at low temperature where two

0.7510

Xij

0.7505

0.7500

FIG. 11. Surface concentration profile of an Ag 75B s alloy
for several temperatures and A=0.0. The inset figure shows the
concentration in layers i=0 to 4.

phases of different compositions coexist. It is worth not-
ing that the temperature T, is a temperature different
from Egs. (2.11) and (2.13). The fact that T,; does not
depend on A for x=0.75 is because this system stays in
the second-order region independent of the value of x,,.

An additional region of first-order transitions is ob-
tained for 0.5 < x <0.66. This region does not depend on
xo and it is regulated by the bulk chemical potential. In
this case the constraint produces a depletion of atoms A4
in the surface-disordered region and thereby behaving like
a system with higher T,.

Finally, we show in Fig. 12 the temperature dependence
of xo for x =0.75 and A=0. One can see clearly the ef-
fect of ordering on surface segregation. The dashed line is
the surface concentration if the alloy would not order at
T,.

As we mentioned above, the BW approximation does
not reproduce the correct phase diagram. However, we
expect that the general features of this model should be
present also in more refined theories.

We summarize our results in the following points.

(i) The surface may disorder through a first- or second-
order transition.

(ii) The surface may disorder through an ordinary
(T,,=T,) or an extraordinary transition (T,; > T,).

(iii) For values of x ~1 or O surface segregation may
saturate the second layer to 1 or O (i.e., 7;—0), thereby
decoupling the surface layer. It behaves then as a two-
dimensional system with a T,; that depends only on x,
and that might be smaller or larger than T,.

(iv) In a finite system, when the surface disorders in a
continuous manner, the system does not allow the disor-
dered region (A) to diverge, by changing the composition
in the bulk ordered and the surface disordered phases.

(v) The phase transformation in the solid states at the
surface and evolves by a mechanism similar to the phase
separation in clustering alloys.

(vi) The surface disorders at a temperature at which a
surface-disordered phase of microscopic dimensions coex-
ists with the ordered bulk.
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FIG. 12. Temperature dependence of the surface concentra-
tion xo for A=0.0 and x=0.75. The dashed line corresponds to
the case where a random alloy is assumed.
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