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An anomaly which occurs in the submonolayer phase diagram of krypton and nitrogen adsorbed
on graphite has been ascribed to an "incipient triple point" arising because the low free energy of the
solid phase of the adsorbed film prevents the occurrence of a liquid phase. In this paper a detailed
thermodynamic model for an incipient triple point is developed and applied to these two systems.
The model employs a two-dimensional Ising lattice gas for the fluid phase and a fairly simple
phenomenological expression for the free energy of the solid phase, which is assumed to be inert.
The parameters are adjusted to fit the experimental heat-capacity data with the use of a method
which permits a separate determination of the parameters for the fluid and solid phases. The results
are in reasonably good agreement with experiment except for some systematic deviations at higher
temperatures and coverages which may reflect the inadequacy of a lattice-gas free energy for the
fluid. The parameters of the fluid phase, in particular the metastable critical temperature, are phys-
ically reasonable and do not seem to be seriously affected by the influence of substrate imperfections
on the experimental results. As the thermodynamic model is a model of the free energy, all thermo-
dynamic properties can be computed once the model parameters are chosen. The changes in the
phase diagram and in the specific heat as the parameters are varied, are considered in a simple case
in order to explore what happens as a triple point changes into an incipient triple point at a critical
endpoint.

INTRODUCTION

The physics of adsorbed monolayers has attracted
much interest in recent years. ' The phase transitions in
these two-dimensional systems differ in many respects
from their three-dimensional counterparts. A particular
anomaly occurs in krypton and nitrogen ' adsorbed on
graphite, where no liquid-gas phase separation is found.
Instead there is a region in the supermonolayer phase dia-
gram where a solid coexists with a fluid phase whose den-
sity (or coverage) varies smoothly, though rapidly, with
temperature. There is no liquid phase coexisting with a
gas phase, and thus no critical point or triplet point.

In this paper we develop a phenomenological model of
the free energy of submonolaye'r films and apply it to
krypton and nitrogen on graphite. Depending on the
values of its parameters the model leads either to the usu-
al phase diagram with a triple point and a critical point,
or to one with no triple point or critical point. In the
latter case the system has an "incipient triple point. " We
adjust the model parameters via a thermodynamic
analysis of the specific heat measured for krypton and ni-
trogen ' adsorbed on graphite. We find that the model
with an incipient triple point is in good agreement with
the experiments, and thus the incipient-triple-point ex-
planation seems to be correct for these two systems.

Thorny and Duval interpreted their vapor-pressure-
isotherm measurements of krypton on graphite as indicat-
ing the presence of both a triple point and a critical point
with liquid-gas coexistence in between. However, Larher
in a later study concluded that the triple and critical
points were very close together, and Butler et al. , on the
basis of specific-heat measurements, proposed that there is

no liquid-gas coexistence in this system, but only an inci-
pient triple point. The mechanism by which an incipient
triple point can arise is that the corrugation of the gra-
phite substrate favors the commensurate solid phase of
krypton over the liquid, and the liquid-gas phase separa-
tion is therefore preempted by solidification. In contrast,
in the case of an incommensurate solid phase the corruga-
tion does not stabilize the solid phase in any obvious way,
and the usual liquid-gas phase separation occurs, as ob-
served in, for example, xenon ' and methane' on gra-
phite.

The measured specific heat of krypton on graphite has
a strong peak in the solid-fluid coexistence region at the
temperature where the density of the fluid phase coexist-
ing with the solid varies rapidly. The lever rule irr|plies
that in this region solid is rapidly converted into fluid
when temperature is increased. The anomaly in the
specific heat corresponds to this rapid but continuous
melting of the solid, in the same way as the delta-function
peak at an ordinary triple point arises from the abrupt
melting.

Butler et aI. found that their results were generally
consistent with a simple model of the incipient triple
point, aside from the fact that at high coverages the max-
imum in the measured specific-heat peak shifted to higher
temperatures, whereas the model predicted that it should
stay at the same temperature. They thought that this
shift might reflect a finite-size effect, whereas we shall
show that a more realistic model allows for such a shift
on an ideal substrate (i.e., an infinite graphite surface
without defects).

Nitrogen on graphite closely resembles krypton. At the
temperatures of interest the molecules are rotating and are
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roughly spherical with an average radius about equal to
that of krypton. The same "V3Xv 3" commensurate
solid phase is found in both krypton"' and nitrogen' '
on graphite, and the specific-heat measurements by Mi-
gone and Chan ' show no evidence of a liquid phase in a
submonolayer film of nitrogen.

In a preliminary model analysis of the data of Migone
and Chan we found that the specific-heat results agreed
reasonably well with the incipient-triple-point mechanism.
However, in the model the fluid phase was approximated
by scaling expressions, valid asymptotically close to a crit-
ical point, but the fit to the experimental data implied
that the metastable critical point is some 20% below the
temperatures of interest. Therefore, an improved analysis
was clearly called for. This paper reports the results of
such an analysis.

Recent density-functional calculations by Sander and
Hautman' support the physical basis of the incipient-
triple-point explanation. In the calculations the effect of
the corrugation of the adsorption potential is taken into
account explicitly. Good agreement is found with the ex-
perimental phase diagrams of krypton and nitrogen on
graphite.

A different explanation for the absence of the liquid-gas
phase separation in krypton (and nitrogen) on graphite
was proposed by Ostlund and Berker, ' who argued that
on an ideal substrate a first-order transition from solid to
gas at low temperatures would change into a continuous-
melting transition at a tricritical point (at 78 K in the case
of krypton). In real systems, however, the tricritical point
and the continuous-melting line close to it w'ould be
smeared out by finite-size effects and temperature inho-
mogeneities. This would give rise, to a phase diagram
where there would appear to be a solid-fluid coexistence
region of the sort observed in the specific-heat measure-
ments with an apparent tricritical point at a significantly
higher temperature. We will comment on this alternative
in Sec. VI.

The outline for the rest of this paper is the following.
We start by discussing, in Sec. II, the physical mechanism
of an incipient triple point. We show how an increase in
the stability of the solid in general suppresses liquid-gas
phase separation and leads to what we call an incipient
triple point. We then define our model using separate ex-
pressions for the free energies of fluid and solid phases.
The fluid phases are described by an Ising lattice-gas
model, but in addition some alternative models are con-
sidered. The free energy of the solid is taken to be a com-
pletely phenomenological smooth function of temperature
and coverage.

In Sec. III we fit the parameters of our model to the
specific-heat data of nitrogen obtained by Migone and
Chan. ' A thermodynamic procedure allows the parame-
ters of the fluid model to be fitted first, independently of
the parameters of the solid model. The latter can then be
adjusted separately. In addition, the data of Chung and
Dash' are used to study how sensitive the parameters of
the (fluid) model are to the influence of substrate imper-
fections on the experimental data.

The specific heat data of krypton is treated in Sec. IV.
The procedure of Sec. III is shown to work in this case as

well. In Sec. V the parameters of our model are varied to
explore what happens as one goes from the case of an ac-
tual triple point to the case of an incipient triple point. A
summary of the paper is given in Sec. VI.

II. THERMODYNAMIC MODEL

We describe the behavior of the submonolayer film us-
ing a model of the Helmholtz free energy in which the
fluid and solid free energies are given by separate expres-
sions. This approach is reasonable if the solid phase does
not become critical simultaneously with the fluid phase. -

(Both nitrogen and krypton on graphite have solid-fluid
tricritical points, but at temperatures well above those of
interest here. )

Before the details of the model we illustrate how the
incipient-triple-point phase diagram arises from such a
model. A graphical model of the Helmholtz free energy
per unit area as a function of coverage is shown in Fig. l.
The diagrams on the left-hand side depict the free energy
at four different temperatures for a system with an ordi-
nary triple point and the diagrams on the right show the
free energy at the same temperatures as on the left, but for
a system with an incipient triple point. In each of the dia-
grams the solid and fluid phases are described by separate
free-energy wells, the one on the left (low coverages) being
that of the fluid and the one on the right (high coverages)
that of the solid.

(e)

(b)

Coverage
FICi. 1. Helmholtz free energy versus coverage at different

temperatures for a system with an ordinary [(a)—(d)] and an in-
cipient triple point [(e)—(h)]. In diagram (a) the temperature is
below the triple point, T & T„' in {b), T = T, ; in (c), T, & T & T„'
and in (d), T & T, . Diagrams (e)—(h) differ from the adjacent
diagrams on the left only in that the free energy of the solid is
lower.
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The equilibrium free energy of the system has to be a
convex function of coverage. This is enforced by the
double-tangent construction, indicated by the dashed lines
in the figure. The double tangent gives the free energy of
the system when it is decomposed into two separate
phases, the coverages of which are given by the tangent
points. The exact free energy, if known, would corre-
spond to the convex envelope.

Let us first consider the sequence of diagrams (a)—(d)
on the left-hand side of Fig. 1, where temperature in-
creases from (a) to (d). The fluid free energy well shows
the transition from liquid-gas coexistence at low tempera-
tures to a homogeneous fiuid phase above the critical
point. The solid free-energy well, on the other hand, is
narrow (the solid is relatively incompressible) and in this
simplified discussion can be taken to have a temperature-
independent shape.

Figure 1(a) depicts the situation below the triple point,
T & T, . Thus, in addition to the gas and solid phases,
there is a substantial interval, in coverage, of solid-gas
coexistence. As temperature increases the free energy of
the fluid decreases relative to that of the solid because the
solid has less entropy than the fluid. As a result the cov-
erage of the gas coexisting with solid increases. Then at
some particular temperature the solid-gas double tangent
meets the liquid free-energy well [Fig. 1(b)]. This is the
triple point T=T„where all the three phases coexist
simultaneously. When the temperature is further in-
creased the tangent breaks into two, the one at high cover-
ages corresponding to solid-liquid coexistence and the one
at lower coverages to liquid-gas coexistence [Fig. 1(c)].
Above the critical temperature [Fig. 1(d)] only the solid-
liquid coexistence remains. It is easy to confirm that the
sequence (a) to (d) gives rise to the usual phase diagram of
three-dimensional matter.

Next we consider the sequence of diagrams (e) to (h) on
the right-hand side in Fig. 1 and show that it leads to an
incipient triple point. The diagrams differ from the adja-
cent diagrams on the left only in that the free energy of
the solid is lower on the right. As a result quite a dif-
ferent phase diagram arises.

At low temperatures the shift in the free energy of the
solid does not have much effect on the solid-gas coex-
istence. The coverages of the coexisting phases are almost
the same in Figs. 1(a) and 1(e). At higher temperatures,
however, the change in the solid free energy has more ef-
fect. At the temperature where there was previously a tri-
ple point (b), the liquid now has a larger free energy than
the coexisting gas and solid [Fig. 1(f)]. Consequently, the
liquid phase cannot be observed.

In the case illustrated here the free energy of the solid
continues to be lower than that of the fluid phases all the
way up to a temperature above the critical point [Fig.
1(h)]. Thus only one coexistence region of solid and fluid
is observed. In all the diagrams (e) to (h) the coverage of
the fluid at the phase boundary is lower than (or equal to)
the critical coverage, while coverages characteristic of a
liquid would be observed coexisting with the solid at still
higher temperatures. On the other hand, there is no clear
distinction between gas and liquid at the phase boundary,
so that the coverage of the fluid varies smoothly with

p=H/n, . (2)

The scale of n is chosen so that n =1 corresponds to the
complete registered monolayer. The chemical potential p
is given by

BP(n, T)p=
1

Note that P(n, T) is completely defined by Eq. (1) when
the critical temperature T, and critical coverage n, are
given because the exchange constant of the Ising model
determines T, . We should, in principle, have added a
term of the form neo(T) in Eq. (1) and Po(T) in Eq. (2),
because the model as defined does not contain all the
ideal-gas degrees of freedom. However, we can subtract
the "ideal-gas" contribution to the specific heat from the
measured values to obtain a reduced specific heat to
which our model is then fitted.

The free energy 6(T,H) of the Ising model has to be
evaluated numerically. In a preliminary study that em-
ployed a scaling expression for 6 ( T,H), we found that for
nitrogen on graphite the critical temperature appears to be
some 20% below the interesting temperature range.
Therefore in this temperature range the asymptotic scal-
ing properties cannot provide an accurate. :-equation of
state for the fluid.

We have chosen to work with the variational
renormalization-group method of Kadanoff 20,2i It is
straightforward to implement and, to the best of our
knowledge, yields better accuracy than any other existing
practical computational scheme. We use a slightly modi-
fied version of the original scheme with the variational
parameter p taken as a predetermined function of tem-

temperature. Note how a lowering of the free energy of
the solid phase has suppressed the liquid-gas phase
separation. If the situation in diagram (h) occurs not too
far above the critical temperature, the fluid-to-coexistence
phase boundary increases rapidly with temperature as the
double tangent sweeps across the broad minimum of the
fluid free-energy well.

We now consider in more detail the inodels of the fluid
and the solid. The fluid phases are described by an Ising
lattice gas in which we ignore the effects of the substrate
corrugation that, according to the density-functional stud-
ies, ' mainly affects the commensurate solid phase. Thus
the lattice of the lattice-gas model has no relation to the
structure of the substrate. The lattice-gas approximation
was chosen since no realistic and practical equation of
state is available for the two-dimensional fluid, and in fact
even the correct form of the interactions between adsorbed
atoms is not quite clear. '

The Helmholtz free energy per unit area of the fluid,
P(n, T), is related to the standard (Gibbs) free energy of
the Ising model, 6 ( T,H) = —kz T ln(Z)/N, via

P(n, T) =G(T H)+IJ(n n, ) . —
We make the identification of the Ising magnetization
m = BG/BH with—(n n, )/n„whe—re n, is coverage of
the (metastable) critical point, and the Ising magnetic field
H with the chemical-potential p through
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perature rather than being optimized at each iteration.
The scheme yields the thermodynamic properties of the
Ising model on both square and triangular lattices. Most
of our calculations are done with the triangular Ising
model. Details of the scheme, including estimates of its
accuracy, can be found in the Appendix.

In addition to the Ising lattice gas we consider two oth-
er fluid equations of state, the mean-field lattice-gas
model and the van der Waals model. In the mean-field
case P(n, T) is defined by

or

f[~(n, T)=y(ni, T)+@[~(T)(n —n i )

f~~(n, T)=@(n2,T)+p~((T)(n —n2),

(10)

where ni(T) and nq(T) are the fluid-to-coexistence and
solid-to-coexistence phase boundaries. The free energy of
the system consists of P(n, T) for n &ni, f~~(n, T) for
ni &n &n2, and f(n, T) for n &nz.

III. ANALYSIS OF THE NITROGEN DATA

+ mkgTln
1+Pl —3k' T,m 2/2,

x =n —no with np=1.0,
go(T) and fi(T) are smooth functions of temperature,

2

g„(T)= g p„;(T—To)', r =0, 1 (8)
i =0

and To is a suitable reference temperature. The function
p(x) is

p(x)=(x —x ) [pz+p3x+p4x'+p, /(x —x, ) ], (9)

where the singular term is helpful in fitting the data, but
the pole has no physical significance: x, is chosen outside
the range of coverages that are relevant in our study, and
in any case p(x) does not appear directly in the specific
heat of the solid.

Despite its complicated appearance, Eq. (6) is a relative-
ly simple expression. The first two terms allow for a
specific heat which can vary linearly with the coverage.
The p(x) term gives the compressibility of the solid,
which is thus assumed to be temperature independent.
Since the compressibility is positive, p (x) must be a con-
vex function. If p (x) were a parabola the compressibility
would be independent of coverage, but this is inconsistent
with our fit of the experimental results.

Finally the free energy f~~(n, T) within the coexistence
region is given by the double tangent construction as

with m =(n n, )/n„a—nd in the van der Waals model
case, by

P( n, T)= an —nk& T—ln(n ' b), —

with a =9k&T, /Sn, and b =(3n, ) '. Note that for the
lattice-gas models n is restricted to lie between 0 and 2n,
as a result of the special symmetry, whereas for the van
der Waals model the domain of n ranges from 0 to
b '=3n, .

The commensurate solid phase is expected to have a
small compressibility and it should show no thermal ex-
pansion. We approximate the free energy of the solid
phase by a phenomenological smooth function of coverage
and temperature defined as

1t(n, T) =1(Q(T)+pi(T)x +p(x),
where

A. Phase boundaries and "background" correction

Our model analysis relies to some extent on the experi-
mental phase boundaries. We therefore start by discuss-
ing the information that can be inferred directly from the
experiments. The specific-heat traces measured by Mi-
gone and Chan are displayed in Fig. 2 as the dots. (The
solid lines are results of our model calculation, to be dis-
cussed below. ) The transition from solid-fluid coexistence
to fluid can be easily distinguished since it corresponds to
a drop —discontinuous in the ideal case—in the specific
heat with increasing temperature. The scatter of the data
is fairly small and the phase boundary ni can thus be
pinned down quite accurately. The result is shown in Fig.
3.

The transition between solid and solid-fluid coexistence,
on the other hand, is difficult to observe. This is because
the phase boundary n2(T) is presumably almost parallel
to the temperature axis and thus to the constant coverage
scans of the experiment, which implies that the specific-
heat discontinuity at this boundary is also small. There-
fore random scatter and imperfections of the experimental
sample (e.g., finite-size effects), even if very small, can
round the discontinuity at the boundary. Fairly tight
bounds for the boundary n2 can, however, be inferred in
the following way. In the two-phase region the specific
heat C~~(n, T) is a linear function of coverage:

C~~(n, T) =C~~(ni, T) (n —ni )Td p—~~/dT

= C~~(n2, T)—(n n2)Td —p~~/dT, (11)

where C~~(ni, T) and C~~(nz, T) are the two-phase specific
heat along the phase boundaries [cf. Eq. (20) below]. We
can evaluate the slope, —BC~~/Bn= Td p~~/dT;in the re-

gion where the linear coverage dependence is unambigu-
ous and extrapolate the specific heat from this linear re-

gime to higher coverages. This extrapolation is given by
the dashed line in Fig. 2 at the three highest coverages
measured, n =0.955, 0.975, and 1.01.

At n =0.955 we conclude that the measurement is con-
sistent with two-phase coexistence, at least up to 53 K.
At n =1.01, just above the nominal coverage n =1.00 of
the complete registered monolayer, no anomaly is ob-
served from 44 to 60 K. The measured specific heat is
constant, in accord with the assumption of an inert solid
phase. Thus the phase boundary should lie between
n =0.955 and n =1.01. At n =0.975 a small precursor
of a peak is visible below 49 K, whereas above that orily
the solidlike specific heat is observed. Thus there seems
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to be a coexistence-to-solid transition around 49 K at this
coverage, and therefore the phase boundary n2(T) is a de-
creasing function of temperature. This seems to be the
case at least up to 53 K, though eventually the phase
boundary should start increasing.
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FIG. 3. The submonolayer phase diagram of nitrogen on gra-
phite. The pluses indicate the location of the coexistence-to-
fluid phase boundary as inferred from the experiment. The
solid lines are the final model results and the dashed lines are
the results of Sander and Hautman.
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Next we consider the specific heat of the fluid film.
We estimate that the three-dimensional motion of the ni-
trogen molecules in the adsorption potential contributes
3k& per molecule at 50 K. In addition to this "ideal-gas"
term, the interactions described by the Ising lattice-gas
model amount to about 1k& per molecule at n = —,

' and to
0 at n =0 or 1. However, from Fig. 2 one can see that
there is a discrepancy between the expected (3—4)k~ per
molecule and the actual measurement. This may
represent systematic errors in deducing the film heat
capacity from the experimental measurements.

In order to analyze the data and fit them to our model,
we have adopted the expediency of subtracting the "back-
ground" heat capacity

0 ~
Co =(3+2n)N, k~, (12)

Z 0
IO

0

IO

0

IO

0.896
~ yy

0, 868
e

0.82 I

where N, is the number of adsorbed atoms at n = 1, from
the experimental data, to yield a reduced heat capacity.
The model fits are carried out in terms of the reduced
heat capacity. Then at the end of the calculation Co is
added to the calculated results to yield the curves in Fig.
2. Alternative choices for Co are possible, but they will
not make much difference except in the pure fluid region
where this correction is proportionately large.

p I

48
I I I

52
T(K)

FIG. 2. The specific heat per molecule of nitrogen adsorbed
on graphite foam as measured by Migone and Chan at a set of
fixed coverages is given by the dots. The final model results are
given by the solid lines. The dashed lines at the three highest
coverages are inferred from the experimental data (at lower cov-
erages) assuming two-phase coexistence, and the error bar refers
to the uncertainty in these values. Note the different vertical
scales of the two parts of the figure. fII(n, T)=f~I(no, T)+@II(T)(n no), — (13)

B. Fitting the data in the two-phase region

We fitted our model to experimental estimates of the
free energy and chemical potential in the solid-fluid coex-
istence region. The estimates can be obtained by integrat-
ing the measured specific heat. We can then fit the
models of the fluid and solid phases independently of one
another.

The free energy at coexistence [see Eq. (10)], fII(n, T),
can be written as
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where no ——1.0 is a convenient reference coverage, and

p~~(T} is the chemical potential at coexistence. An experi-
mental estimate p~~( T) (we use the superscript e to refer to
the experimental estimates) is obtained by integrating the
slope —BC~~/Bn= Td IJ~~/dT [cf. Eq. (11)] of the mea-
sured specific heat in the two-phase region:

p~~(T) =@~(T)+po+piT, (14)

where

dn~
C~~(n l~ T} T4TT+ Tenn T

2

(20)

where P(n, T} is the model free energy of the fluid, com-
pletely determined by T, and n, . Then ni (T) is used as
an estimate of n i(T) and the slope of the phase boundary
is given by

t'

dn i dpt(

(15)

and po and pi are two undetermined constants of integra-
tion. We choose Tq

——46 K. In order to obtain the corre-
sponding estimate f~~(no, T) for the free energy, we first
extrapolate C~~

———TB f~~/BT up to n =no and then in-
tegrate twice:

We then consider the fitting of the solid free energy
t/i(n, T) to the experimental data. The information about
the fluid equation of state is now implicit in the chemical
potential p~~(T) and in the free energy f~~(no, T) at coex-
istence, determined by the experimental data. We can use
the analog of Eq. (18),

f~~(no, T) =fq(T}+fo+fi T ~

where

(16)
e( Bf(n, T)

n =n,*
(21)

f~(T)=- T C~)(no, T)

and fo and fi are two more constants of integration. The
"background" Co, Eq. (12), is subtracted off before any of
the quadratures are carried out.

In what follows we will use the experimental quantities
p~~(T) and f~~(no, T) as a basis for independently adjusting
the parameters of the fluid and solid models. In the fit of
the fluid model the information about the coexisting solid
is implicit in p~~(T) and f~~(no, T), and vice versa.

Consider first the adjustment of the parameters of the
fluid model. The experimental phase boundary p~~(T) can-
be combined with the model free energy of the fluid,
P(n, T), to obtain an estimate ni (T) of the fluid-to-
coexistence phase boundary via

,(T) Bp(n, T)
~!i

n =n1

If the fluid model is consistent with the experiment, then

f i ( T), defined as

f i (T)=f~~(no T)+p~~(T)(n &

—"o) P(n i T) (19)

should vanish within the experimental uncertainty. In ad-
dition, n i (T) should be consistent with the phase boun-
dary n i(T) inferred from the experiment. It is important
to note that n i (T) and f; (T) depend on both the experi-
mental data and the model of the fluid, but not on the
model of the solid.

%'e can use the two consistency relations, n
&
——n

&
and

f i
——0, to adjust the four constants of integration and the

parameters of the fluid model, T, and n, . The results can
be checked by comparing the model prediction of the
two-phase specific heat along the phase boundary,
C~~(ni, T), with the experimental estimate. In the experi-
ments C~~ tends to be rounded at the phase boundary.
Good estimates can, however, be obtained by extrapolat-
ing C~~ from the region where C~~ is clearly linear in cov-
erage down to the phase boundary n

&
(T). The model esti-

mates of C~~(ni, T) are obtained from the equatiori

to obtain a model-dependent estimate n2 (T) of the solid-
to-coexistence phase boundary. Unlike the fluid-to-
coexistence case, the experimental boundary n2(T) is
known only qualitatively and cannot be used in the fit.
However we can employ the consistency requirement that
P(n, T) be equal to f

~~
(n, T) along n =n 2 ( T). Since the

functional form of the solid free energy is not very obvi-
ous in advance, we do not expect to be able to find a reli-
able representation of the solid outside the immediate
neighborhood of the phase boundary.

The solid model g(n, T) is given by Eq. (6), with x de-
fined by Eq. (7). Thus f2 (n, T), defined as

fz (n, T)=f~~(no, T)—it'o( T)+[p~~(T) —f,(T)](n —no)

(22)

should be equal to p (x) when n =n 2 (T). Since the fit of
the fluid model discussed previously fixes the integration
constants in f~~(no, T) and p~~(T), the condition fz ——p
determines fo( T) and pi( T).

At any fixed temperature, fz (n, T) is by construction a
linear function of coverage. As temperature is varied
these straight lines should form an envelope for the
temperature independent -function p (x). We therefore
want to adjust fo(T) and gi(T) so that the corresponding
envelope is a convex function of coverage with the func-
tional form of Eq. (9). In addition, n2 (T) should satisfy
the qualitative conditions inferred from the experimental
data. It is the temperature independence of p that allows
for the relatively easy and intuitive two-step fitting of the
solid model: first the adjustment of go(T) and pi(T), and
then that of p (x). If p depended on temperature, then the
notion of an envelope would no longer be useful.

C. Results

Let us now explain the actual choice of parameters. We
start with the model of the fluid phase. We have used
several methods of adjusting the model parameters n, and
T„and the constants of integration po, p&, fo, and f~.
They all lead to similar estimates for n, and T, . When
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FIG. 4. The two-phase specific heat along the fluid-to-
coexistence phase boundary. The pluses give the experimental
result and the continuous lines are obtained from the fluid
model as explained in the text.

the critical coverage n, is chosen between 0.48 and 0.49
and the critical temperature T, between 40 and 42 K, the
consistency requirements f i -0 and n i ni a-re satisfied
within the experimental uncertainty. For values of n, and
T, outside this range the two requirements cannot be sa-
tisfied simultaneously.

The model-dependent estimates of the specific heat C~~

along the phase boundary n&, shown in Fig. 4, are ob-
tained using the values of the integration constants found
earlier with n, =0.48 and T, =40, 41, and 42 K. As one
might expect, the peak in the specific-heat curve becomes
sharper as T, becomes larger and the metastable critical
point approaches the phase boundary. Both T, =41 and
42 K give equally good agreement with the experiment,
which is represented by the pluses. Note that there are no
experimental estimates below 48 K because experiments
were not carried out at low enough coverages. Overall,
the model result is quite good. At high temperatures,
however, it clearly overestimates C~~. We have not been
able to eliminate this discrepancy by adjusting the param-
eters. It will be discussed later. Thus we conclude that
our fluid model gives good agreement with the experiment
when the model critical temperature is between 41 and 42
K and the critical coverage is 0.48+0.01.

Then consider the adjustment of the solid model. We
start by ensuring that the model satisfies the qualitative
constraints on the solid-to-coexistence phase boundary:
0.955 & nz & 1.01, dn2 ldT &0, and n2 (T =49 K)
=0.975. This can be done by setting x = —0.025, and
eo(T=49 K)=f~~(no 49 K), 01(T=49 K)=p(((49 K),
and, in addition, df&ldT must be large enough so that
p~~(T) —Pi(T) [which is equal to dpldx; cf. Eq. (21)] is a
decreasing function of temperature, and, consequently,
also n 2 ( T) is a decreasing function of temperature.
Another constraint, on dgoldT, ensures the convexity of
the envelope.

We still have quite a lot freedom in choosing Po i, $0 2,

T(K)

I

5l

FIG. 5. The two-phase specific heat along the solid-to-
coexistence phase boundary. The pluses are obtained by extra-
polating the experimental two-phase result up to n =n2. The
solid curve is the model result.

g& i, and ltj& 2. In a typical case the envelope formed byf2 is quite smooth but asymmetric around the minimum.
This asymmetry appears to be a general property, and this
is why we have included the pole in the definition of p (x),
Eq. (9). The location of the pole x, is chosen close to
zero, and hence the singularity does not directly affect the
phase boundary or specific heat at the temperatures of in-
terest. We wish to emphasize that the pole is only a con-
venient way to parametrize p (x), and does not reflect any
physical singularity.

When the parameters in Eq. (9) are properly adjusted,
the deviation of p (x) from the envelope is of the same or-
der of magnitude as the experimental uncertainty in
f2 (n, T) at n =no The solid. model P(n, T) then gives a
phase boundary n2 (T) that (by construction) satisfies all
the conditions discussed above. Also, the two-phase
specific heat C~~(n2, T), see Fig. 5 for an example, is in
reasonable agreement with the experimental estimate ob-
tained by extrapolating the two-phase specific heat to
n =n2 (T). The agreement could probably be improved
by further modifying the model parameters, but this does
not seem worthwhile. What we wish to emphasize is that
we are able to fit the experimental results with a smooth
g(n, T) consistent with the absence of any phase transi-
tions in the solid phase.

Once all the parameters in the fluid and solid models
are determined, one can calculate consistently any thermo-
dynamic quantities of interest. The agreement between
the calculated phase boundaries and specific heats can be
improved slightly by small modifications in the parame-
ters goo and t/ro i. Figures 2 and 3 present model results
using the final choice of parameter values: T, =42 K,
To ——49.3 K, n, =0.48, $0 0———39.2 K, Qo i

——2.08,
QO2=0. 01 K Qi'0=18. 9 K Qi i=56.8 gi 2=0.5 K
x~ ———0.0235& x&

———0.01, '

p2 ——7.45 X 10 K,
p3 ———4.02&10 K, p4 ——16.3&10 K, and p, =0.46 K.
(In the earlier solid fit, go o —39.3 K——and $0 i ——2. 15. )

I et us now discuss the results. First of all, the phase
boundaries, the solid curves in Fig. 3, are consistent with
the experimental results, except at high temperatures,
where the model boundary n i(T) is a bit low, and is start-
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ing to decrease with increasing temperature. This is in
disagreement with the experiment and with the fact that
the solid is expected to become less stable as temperature
increases. Apparently our model fails above 55 K, which
is not too surprising, as it should only be valid over a lim-
ited teinperature interval. The result of Sander and Haut-
man, ' the dashed curves in Fig. 3, are included for com-
parison. Our model result is much better than theirs over
the limited temperature range of the figure, whereas the
density-functional calculation shows reasonable agreement
with the experiment at all temperatures.

Next, consider the model predictions of the specific
heat, the solid lines in Fig. 2. There is reasonable agree-
ment in the fluid phase (high-temperature side of the
peaks}, but this is mostly a matter of having chosen Co
appropriately. The peak positions are basically correct
and the heights are mostly right. At higher coverages the
experimental curves show a shoulder on the high-
temperature side of the peak, and our calculations pro-
duce a qualitatively similar effect, though the final
discontinuity is sharper than- in the experimental data
(which may well be rounded due to finite-size or similar
effects). The location of this discontinuity is at too high a
temperatui'e at n =0.868, reflecting the fact that the
model phase boundary is, not in the right place, as dis-
cussed above. In fact, the model does not give a fluid
phase at coverages above n =0.896. For coverages of
n =0.868 and above the model specific heat is too large at
temperatures above the peak. On the other hand, the
specific heat at temperatures beneath the peak is quite
well represented in the model at all coverages.

Reasons have been given in the beginning of this section
for supposing that the experimental data indicate a transi-
tion from coexistence to solid at the coverage of 0.975.
Assuming that this is so, the model specific heat shows a
much larger discontinuity than the experiment. The latter
may be smoothed out due to the fact that the coexistence-
to-solid boundary is almost parallel to the temperature
axis. The model gives the correct specific heat on the
high-temperature side of this transition and also at
n = 1.01, that is, in the solid phase.

Next we consider the reliability of our model. The
model of the solid is completely phenomenological and
the parameters given above are based on fitting to the ex-
perimental data in the two-phase region. These data de-
pend on the free energy of the solid along the phase boun-
dary from solid to solid-fluid coexistence, and not on the
free energy of the solid at higher densities away from this
boundary. Thus the model of the solid should not be tak-
en very seriously. The model of the fluid, on the other
hand, is quite specific, but contains two approximations.
First, the continuum fluid phase is represented by the Is-
ing lattice-gas model, and second, the Ising-model proper-
ties are obtained from a renormalization-group approxi-
mation.

We now discuss the limitations of the fluid model in
more detail. First of all, the triangular symmetry of the
Ising model lattice does not seem to play any role in the
analysis. We have also employed the square-lattice Ising
model in our fits, but found no significant effect on the
results. This is reassuring as the real fluid does not have

the Ising-lattice symmetry. The fluid has been assumed to
be unregistered with respect to the graphite substrate, and
thus the substrate effects on the fluid free energy have
been neglected. This seems justified, at least at small and
intermediate coverages. ' However, as the fluid coverage
increases toward the commensurate coverage, the corruga-
tion of the substrate may become important. It is there-
fore quite possible that the neglected substrate effects are
the reason for the discrepancies seen at higher coverages.

Even in the case of a completely smooth substrate, the
lattice-gas model would be misleading in the limit of high
coverage. This is because the lattice-gas model is only de-
fined for a coverage range from 0 to 2n, = 1, but the fluid
may well exist at coverages higher than 1.0, at least at
high temperatures. Therefore the lattice-gas model has to
fail as n approaches 1.0. In particular, at high coverages
—TPTT is small and C~~(ni, T) is dominated by the
second term in Eq. (20):

Cii(ni, T)= TP„„(dn i/dT)

Since the model result for dn, /dT is equal to, or smaller
than, the experimental result in Fig. 3 (ni is roughly
correct until it reaches a maximum and starts to decrease},
the overestimate of C~~(n „T)implies that P„„is too large.
This is indeed what we would expect from a lattice-gas
model, since Q„„=Op/Bn diverges when n approaches its
maximum. In real systems Bp/Bn is always finite.

Kadanoff's variational renorrnalization-group scheme
seems to yield sufficient accuracy for the model fit to
make sense. In particular, we find that the uncertainty in
our critical-temperature estimate due to approximating
the Ising equation of state is less than +1 K. The specific
heat C~~(n &, T) should be affected by, at most, 10%. The
discrepancies with the experimental values, where they are
significant, are larger than this.

In summary, the model agrees quite we11 with the ex-
periment. The most notable exception occurs at high tern-
peratures (or high coverages) where the results seem to be
sensitive to the details of the model. It is quite plausible
that the discrepancies are due to intrinsic limitations of
the lattice-gas model, or the effects of the substrate corru-
gation.

D. Mean-field and van der Waals
equations of state for the fluid

We have found that the specific-heat data for nitrogen
can be reproduced by the model if the fluid critical tem-
perature is chosen to be 41 or 42 K. This is some 20%
below the region of rapid rise in the phase boundary. It is
therefore interesting to see whether the two-dimensional
Ising equation of state is really necessary this far from the
critical point. We have fitted both the mean-field and the
van der Waals equations of state to the experimental data
using the same procedures described above. The only
difference is that the free energy P(n, T) is now given by
Eqs. (4) and (5).

The mean-field model tends to give a smoother phase
boundary ni (T) for a given T, than the Ising model.
Thus the mean-field estimates of the critical temperature
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but with the curves obtained using the mean-field model.
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are higher. For T, =47 K, we find n f =n
&

and ff =0,
though n ~ does not agree with n ~ as well as in the Ising
case. For lower values of T, the model phase boundary
does not agree with experiment. Figure 6 depicts the
two-phase specific heat C~~(n f, T) for T, =43 and 47 K.
The critical coverage is chosen so that the model phase
boundary agrees with experiment as well as possible. As
the critical temperature is increased from 43 to 47 K, the
specific-heat curve becomes very asymmetric. On the
low-temperature side the specific heat is too small, and on
the high-temperature side, too large. Figure 6 should be
compared with Fig. 4.

It thus seems that the mean-field approximation is not
in as good agreement with the experiment as is the two-
dimensional Ising model. The steepness of the measured
phase boundary demands a high critical temperature.
However, a high T, leads to an asymmetric specific-heat
curve C~~(n f, T), which does not agree with the experi-
ment. Thus the phase boundary and the specific heat
along it cannot be described as consistently using the
mean-field equation of state as they can using the Ising
lattice gas.

The van der Waals model for the fluid phase gives even
worse results than mean-field theory. It lacks the liquid-
gas symmetry of the lattice-gas models, and as real fluids
in three dimensions also lack this symmetry, one might
have supposed that the van der Waals model would pro-
vide a better approximation than mean-field theory for a
lattice gas in two dimensions. However, this seems not to
be the case.

E. The data of Chung and Dash

Finally, we want to find out how sensitive our analysis
is to finite-size and other effects on the experimental data.
We compare the nitrogen data of Chung and Dash, -' ob-
tained with Grafoil as a substrate, with the data of Mi-
gone and Chan, ' who used graphite foam as substrate.

'- 10

048 52 56 60 48 52 56 60
T (K)

FIG. 7. The specific heat of nitrogen on Grafoil as measured
by Chung and Dash (the solid lines). The dashed lines are the
results of Migone and Chan at n =0.287, 0.401, 0.721, 0.821,
and 0.868. Note the different vertical scales of the top and bot-
tom portions of the figure.

0

Grafoil is a recompressed form of graphite foam with a
surface coherence length (size of the surface crystallites)
of 100 to 200 A. This is 5—10 times smaller than the 900
A characteristic of the foam. Thus we expect substrate
imperfections to be more apparent in the data on Grafoil
than on graphite foam. However, differences in the mac-
roscopic structure of the substrate material (e.g., proximi-
ty effects) and in the experimental techniques may also
have induced qualitative differences between the two sets
of data. Chung and Dash used a conventional
calorimetric technique which is possible because of the
compact structure of Grafoil, whereas Mig one and
Chan ' employed a sensitive ac technique.

Some of the specific-heat data measured by Chung and
Dash are displayed in Fig. 7 as solid curves along with
the corresponding data of Migone and Chan at approxi-
mately the same coverages, shown as dashed curves. The
peaks in the Chung-Dash data are smaller and the transi-
tion from coexistence to fluid is far less sharp. In general,
the peak values are at least 2 times smaller than in the
Migone-Chan data. In the high-coverage limit the nomi-
nal coverages given by Chung and Dash do not seem to be
consistent with the Migone-Chan scale, but some 10%
lower. In addition, the peaks in the specific-heat traces of
Chung and Dash move to higher temperatures as coverage



32 MODEL FOR INCIPIENT TRIPLE POINT IN KRYPTON AND. . . 5867

increases. This is qualitatively quite different from the
data of Migone and Chan, where the peaks stay at
To=49 3 K

The lower resolution of the Chung-Dash data means
that it is not worthwhile trying to fit the parameters of

n = 0,725

20—

the model of the solid. The model of the fluid, on the
other hand, is determined by just two parameters, the crit-
ical coverage and the critical temperature. The former is
close to 0.5, so that we only need to consider T, . We find
that the specific heat C~~(n &, T) is in fair agreement with
the experiment when T, is between 38 and 42 K. The
Migone-Chan data give T, between 41 and 42 K. Thus
the two experiments give consistent results for the critical
temperature despite the difference in substrates and exper-
imental techniques. As a consequence, we do not think
that our analysis of the Migone-Chan data is seriously af-
fected by the nonideal features of that experiment.

IV. KRYPTON ON GRAPHITE
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A few examples of the specific-heat results of Butler
et al. ' 5 are shown as points in Fig. 8. (The solid lines
are the results of our model calculations to be discussed
below. ) In each case we have included only a small
characteristic subset of the data; random scatter is of the
order of 2k~ per atom. The traces are more rounded than
the analogous results of Migone and Chan, shown in Fig.
2, and in that respect rather similar to those of Chung and
Dash, Fig. 7. Both Butler et al. and Chung and Dash
used Grafoil as a substrate and their experimental tech-
niques were essentially the same. On the other hand, Mi-
gone and Chan used the higher-quality graphite-foam sub-
strate and a different method of measurement. Therefore
the qualitative differences between the krypton results of
Butler et al. and the nitrogen results of Migone and Chan

may be due to the effects of the substrate or the measur-
ing technique.

Despite the larger rounding of the krypton data most of
the results we can infer from them are remarkably similar
to those for nitrogen (the data of Migone and Chan). In
Fig. 9 we compare the coexistence-to-fluid boundaries
and, in Fig. 10, the slopes of the two-phase specific heat
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FIG. 8. The dots give the specific heat per krypton atom ad-
sorbed on Grafoil as measured by Butler et ah. at a set of, fixed
coverages. The final model results are given by the solid lines.
The dashed lines are inferred from the experiment assuming
two-phase coexistence at the three highest coverages, and the er-
ror bars refer to the uncertainty in these values. Notice the dif-
ferent vertical scales of the two parts.

T(K)
FIG. 9. The submonolayer phase diagram of krypton on gra-

phite. The horizontal bars indicate the location of the
coexistence-to-fluid phase boundary as inferred from the experi-
ment. The solid lines are the final model results. The circles
with bars are the experimental phase boundary of nitrogen, with
the temperatures multiplied by the same constant as in Fig. 10.
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FIG. 10. The slope —Bcl~/Bn= Td pI)/dT of the two-
phase specific heat in units of N, k~, where N„ is the number of
atoms at n =1. The vertical bars give the experimental result
and the solid line the final model result. The nitrogen results
are indicated by circles with bars through them, with the tem-
peratures multiplied by a constant to bring the temperatures of
the peaks into coincidence.

( —BC~~/Bn= Td p~~ldT ) of the two systems after apply-
ing suitable scale factors. In particular, the temperatures
for the nitrogen results have been multiplied by a constant
to place the peak of Td p~~ jdT at the same temperature
as that for krypton. Well inside the two-phase region,
where the rounding of the transition does not seem to af-
fect the data, the krypton specific heat at a fixed tempera-
ture is still only roughly linear in coverage, and this is re-
flected in the fairly large error bars of —BC~~/Bn. Aside
from that, however, the results are very similar to those of
nitrogen. Only at the high-temperature end is there some
difference between the two results. In the case of the
phase boundary, Fig. 9, no real difference can be dis-
cerned once the coverage scale has been adjusted as ex-
plained below.

The krypton results of Butler et al. do differ from the
nitrogen results of Migone and Chan when coverage is
high. The peak in the specific heat shifts to higher tem-
peratures as the solid phase is approached. This behavior
is at least qualitatively the same as that observed in the
data of Chung and Dash. It seems therefore that this
behavior could be related to the substrate rather than to
the adsorbed species. The question of the similarity of ni-
trogen and krypton on an ideal graphite substrate remains,
therefore, unresolved. To our knowledge there is no fun-
damental reason why the peak in the specific heat could

not shift even in the case of an ideal experiment. As will
be shown below, our model is indeed consistent with the
data of Butler et al. , including a shift in this peak, apart
from rounding effects.

In Fig. 9 and henceforth we use the convention that
n =no ——1.0 is equivalent to the adsorption of 103.5 cm
of krypton at STP in Butler's apparatus, which is some-
what different from the coverage scale used by Butler
et al. , who set n =1 to correspond to 120 cm . Our
choice is motivated by the fact that the solid-to-
coexistence transition seems to occur at 100 cm, or
n =1.0 in our units. In analogy to nitrogen it seems plau-
sible that the boundary is located close to the complete
registered monolayer. It is possible that as much as 10%%uo

of the adsorbed atoms are affected by defects and edges of
the substrate crystallites. Therefore discrepancies of the
order discussed here in the absolute coverage values are
not impossible. %e wish to emphasize that the coverage
scale is purely a matter of convenience which does not af-
fect our model analysis.

We have estimated the location of the solid-to-
coexistence phase boundary from the specific-heat data in
the same way as in the nitrogen case. In the coexistence
region the specific heat measured at high coverage should
agree with a result that is linearly extrapolated from the
data at lower coverages. The result of such an extrapola-
tion is shown in Fig. 8 by the dashed line for the three
highest coverages. At n =0.919 the measurement is con-
sistent with the two-phase coexistence within the uncer-
tainty of the extrapolated values (note the error bar).
However, at n =0.966 and 1.014 this is not true around
T=86 K. The data at n =0.966 are consistent with
coexistence above perhaps 88 K, and for n =1.014 the
same is true above a somewhat higher temperature. In
both of these cases there is evidence of a transition from
coexistence to fluid at still higher temperatures, outside
the region shown in Fig. 8.

These observations can be explained consistently if the
solid-to-coexistence boundary increases in coverage as
temperature is increased. At n =0.966 and 1.014 the sys-
tem is then in the solid phase at low temperatures and in
the coexistence region above roughly 86 K. The smooth-
ness of the observed data in the region of the purported
transition is to be expected since the phase boundary is al-
most parallel to the constant-coverage paths followed in
the experiment. %e note that a boundary which decreases
monotonically as temperature is increased, as in the case
of nitrogen, . is not consistent with the high-coverage data.
In such a case there should be a decrease of some kind in
the specific heat at constant coverage as the boundary is
crossed. However, the specific heat is probably affected
to some extent by the quality of the substrate. Therefore
the apparent increase of the phase boundary as tempera-
ture increases may be induced by substrate imperfections.

In fitting our model to the data of Butler et al. we fol-
low the procedure of Sec. III. First, we note that the
specific heat measured at high temperature in the fluid
phase is consistent with our expectation of 2k~ per atom
in addition to a smaller interaction contribution. Thus
Co 2Nkz is subtracte——d from the experimental data,
which are subsequently integrated to yield the chemical
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FIG. 11. The two-phase specific heat along the solid-to-
coexistence phase boundary. The bars are obtained by extrapo-
lating the experimental two-phase result up to n =n&. The
solid curve is the model result.

potential p~~(T) and the free energy f~~(no, T) at coex-
istence; see Eqs. (14) and (16).

The parameters of the fluid model, n, and T„and the
constants of integration, are adjusted in the same way as
in the nitrogen case. We find that the estimate n i (T) is
consistent with ni(T), and f~ (T)=0, within the uncer-
tainty for a wide range of choices of the critical tempera-
ture, from 72 to 78 K. The two-phase specific heat
C~~(n i,T), on the other hand, is in reasonable agreement
with the experiment for T, between 74 and 76 K. At
high temperatures (above 92 K) the model fails, indepen-
dent of the choice of T„perhaps for the same reason as
in the case of nitrogen. If T, is chosen smaller than 73 K
or larger than 77 K, the model result of C~~(n i, T) will no
longer agree with the experimental estimate. However, in
view of the experimental uncertainty, it seems better to as-
sign a larger range of T, from 72 to 78 K. A critical tem-
perature as high as 80 K is definitely inconsistent with the
experiments. We use a critical coverage of n, =0.49 in
the units we introduced (50.7 cm in Butler's thesis). The
value of T, does not depend sensitively on this choice.

Next, we adjust the parameters of the solid model, de-
fined in Eqs. (6)—(9), again in the same way as in the ni-
trogen case. It turns out to be fairly easy to adjust fo and

fi so that p (x) can be subsequently fitted to the envelope
with satisfactory accuracy. It seems that p(x) is not as

asymmetric as in the nitrogen case. As a result, the pole
in p (x), see Eq. (9},is unnecessary and we set p, =0.

With a typical choice of the parameters, ni (T) is in-
creasing (by construction) from 0.96 at 80 K to 0.99 at 95
K. The result for the final choice of parameters is shown
in Fig. 9. The two-phase specific heat C~~(n2, T) for this
choice of parameters is shown in Fig. 11 and is typical of
what one obtains with other parameter choices. The
model is in qualitative agreement with the experiment,
though the model curve is somewhat too smooth. We are
not concerned about the high-temperature behavior as our
model will surely fail for high enough temperatures.

We now consider the final results shown in Figs. 8—10.
These correspond to the following parameters: T, =74 K,
To ——86 K, n, =0.49, $0 0———70.2 K, $0 i

——0. 15,
fo, p= —0 011 K, Qi o= —25.5 K, gi i= —11.5,
Qi 2 ——0.08 K ', x~ = —0.0345, pi ——3.32~ 103

p3 ——1.15)&10 K, p4. ——3.87&10 K, and p, =0.
The phase diagram in Fig. 9 is consistent with the ex-

perimental information. At the highest temperatures the
model predicts values for the coexistence-to-fluid boun-
dary n ~ which are somewhat too low. Analogous
behavior was observed for nitrogen. At low temperatures
a slightly steeper n i(T) might be in better agreement with
the experiment. Also, the slope of the two-phase specific
heat —BC~~/Bn= Td p~~/dT in Fig. 10 is consistent with
experiment, except at the highest temperatures.

Consider next the specific-heat traces in Fig. 8. At low
coverages the model gives much sharper peaks at the tran-
sition than what is measured. We think that below half a
monolayer the difference between the model and the ex-
periment is mainly due to the expected rounding of the
experimental data induced by substrate and instrumental
effects, rather than due to deficiences of the model. At
higher coverages, however, the model seems to overesti-
mate the specific heat above 86 K. This is quite similar to
what was observed in the case of nitrogen, see Fig. 2.

At n =0.919 the model predicts a maximum of the
specific heat at a somewhat lower temperature than exper-
imentally observed. At n =0.966 the transition from
solid to coexistence is located at 84 K, which is a lower
temperature than we inferred earlier on the basis of the
dashed line in the figure. Obviously the good agreement
of the model with the experiment at this coverage is, to
some extent, due to two errors that cancel each other: a
shift in the temperature of the phase boundary, and the
discrepancy in the heat capacity shown in Fig. 11. Final-
ly, at n =1.014 the model does not show any solid-to-
coexistence transition (at least not below 96 K). Accord-
ing to the experiment there has to be one below 108 K,
but an accurate location cannot be determined from the
measured data. The model for the solid, and hence the
calculated result at n =1.014, should not be taken too
seriously.

In summary, the model agrees quite well with the ex-
periment, provided the rounding of the transitions is ig-
nored.

V. INCIPIENT TRIPLE POINT IN GENERAL

In the preceding two sections we have shown that nitro-
gen and krypton on graphite seem to have an incipient tri-
ple point. There is no reason to believe that these two are
the only real systems with this behavior. It is therefore of
some interest to consider the general thermodynamic
properties of such systems, and, in particular, the cross-
over from an incipient to an ordinary triple point which
occurs at a critical endpoint. In this section we consider a
simple model of the general type employed above. The
general properties of phase boundaries and specific-heat
curves in systems close to the critical-endpoint situation
are discussed. The qualitative features of the phase dia-
grams are also apparent in the results of Sander and Haut-
man. '

We employ the following model. The fluid phases are
described by the Ising lattice-gas model. The free energy
P(n, T} of the fluid depends on the critical coverage n,
and the critical temperature T, . We choose, for simplici-
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FIG. 12. Submonolayer phase diagrams of model (23), with
a =0. 1 and T, /T, =0.96, 1.00, and 1.05.

ty, n, to be equal to half of the monolayer coverage,
n, =0.5, so that only T, is left as a free parameter. It is
assumed that the solid has zero specific heat and is com-
pletely incompressible, so that the free energy g(n, T) of
the solid is infinitely large everywhere, except at n =1.0,
where

Io—

o
I.OO

60 I

n =0,2

40

I.04
c

0.5

I.08

0.8

0.2—

P(n =1, T)=P, +a(T —T, ) . (23) o
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Here, P, =P(n„T, ), a and T, are the parameters of the
solid model, and a has to be chosen large enough so that

g(n =1, T) increases with temperature relative to P(n„T).
The ratio T, /T, controls the nature of the phase dia-

gram. If T, /T, & 1 an ordinary triple point and a critical
point are found, whereas if T, /T, & 1 the phase diagram
is of the incipient-triple-point type. If T, /T, =l there is
a critical endpoint at T =T, . The parameter a is of lesser
importance. In Fig. 12 we present three typical phase dia-

grams corresponding to T, /T, =0.96, T, /T, =1.00, and

T, /T, =1.05. We have chosen a =0. 1 so that the
incipient-triple-point case fits conveniently into the figure.
Notice that because of our model definition the solid-to-
coexistence phase boundary is always at n = 1.

For T, /T, =0.96 the phase diagram has, as expected, a
triple-point at T =T, and a liquid-gas critical point at
T = T, . The case T, /T, = 1.05 is an incipient triple point
of the type discussed above for nitrogen and krypton on
graphite. For T, /T, =1.00 there is no liquid phase and
the lower phase boundary is quite steep with an infinite
slope at the critical point n, =0.5. There is no reason to
expect n~ to be symmetric with respect to the inAection
point at T =T, and n =n„although the result in Fig. 12
happens to be quite close.

In Fig. 13 we depict the specific heat at constant cover-
age for the three value of T, /T, discussed above. Figure
13(a) corresponds to the incipient-triple-point case. The
specific heat is quite similar to the experimental results
for nitrogen and krypton on graphite (Secs. III and IV).
Below roughly half a monolayer the specific heat has a
sharp peak. The height of the peak increases with cover-
age but always remains finite. Above half a monolayer or

098 I 00 098 I 00 098 I 00 098 I 00 I 02 I 04
I/T

20
(c)

0
lo

0
IO

n = 0.92

0.8

0.7

gi 20—

o 0.5

IO—
0

IO— 0.2

I

0.92 0.96
I I

1.00 I.04

FICx. 13. Specific heat per atom at some fixed coverages,
with the same parameters as in Fig. 12. (a) T, /T, =1.05. (b}
T, /T, =1.00. The specific heat is infinite for n )0.5 at the
critical endpoint. (c) T, /T, =0.96. The specific heat is a Dirac
delta function at the triple-point temperature.
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so the peak is rounded and its height starts to decrease.
At high coverages the specific heat has a "shoulder" on
the high-temperature side of the peak.

Figure 13(b) corresponds to the critical endpoint
T, =T, . The specific heat diverges at T=T, =T, when
coverage is larger than n, =0.5. As coverage is increased
the specific-heat peaks become steeper on the low-
temperature side. This is quite different from the
behavior in Fig. 13(a). On the high-temperature side at
sufficiently large coverage the two-phase specific heat
again has a "shoulder. "

For T, /T, less than 1 there is both a triple point and a
critical point [Fig. 13(c)]. The logarithmic singularity in
the specific heat at the critical point is much weaker than
the singularity at the critical endpoint. There are rather
sinall discontinuities in the specific heat at the phase
boundaries of the liquid-gas coexistence region, even close
to the critical point. Most of the area under the specific-
heat peaks in Figs. 13(a) and 13(b) is now compressed
under the delta-function peak at the triple point. The
qualitative difference between the peaks in Figs. 13(a) and
13(c) is quite similar to that found experimentally in com-
paring nitrogen and methane on graphite. Specific heats
as large as 80k+ per molecule are measured at the inci-
pient triple point of nitrogen (Fig. 2), whereas at most
10k~ per molecule is observed at the liquid-gas phase
boundaries of methane' when a smooth background is
subtracted off.

VI. CONCLUSIONS

We have devised an internally consistent model of the
incipient triple point that gives a complete description of
the thermodynamics in the region of interest. The model
parameters are adjusted to fit the measured specific heat
of nitrogen and krypton adsorbed on graphite, and the
model is found to be consistent with the data. In particu-
lar, the measured specific-heat data are reproduced quite
accurately if the rounding at the transitions from one to
two-phase regions is ignored, except in the regime of high
coverage and temperature. In that regime it is plausible
that the quantitative discrepancies are due to the intrinsic
limitations of the lattice-gas model of the fluid phase and
do not signal the failure of the incipient-triple-point inter-
pretation. The experimental phase boundaries of the
coexistence region are reproduced within the experimental
uncertainty at temperatures below roughly 55 K for nitro-
gen and 94 K for krypton. Above these temperatures the
model is no longer reliable.

The basic conclusion of our study, that the experimen-
tal data are consistent with the incipient-triple-point
model, does not seem to be affected by the nonideality of
the substrates used in the experiments. In the case of ni-
trogen, the fits of the fluid model to the two available sets
of experimental data yield basically the same parameters.
The mean-field and van der Waals approximations for the
fluid phase are less consistent with the experimental data
than a two-dimensional Ising lattice gas. This suggests
that the agreement of the model with the data is nontrivi-
al.

The incipient-triple-point interpretation of nitrogen and
krypton on graphite is supported by the fact that there is
a well-defined physical mechanism which explains how
the incipient triple point can arise when the corrugation of
the adsorption potential favors the commensurate solid
phase. The density-functional calculations of Sander and
Hautman' indicate that the corrugation on graphite is .

strong enough to lower the free energy of the commensu-
rate solid phase of nitrogen and krypton by an amount
sufficient to produce an incipient triple point.

The model parameters we find are consistent with the
physical mechanism. The metastable liquid-gas critical
temperature of the model is, when properly scaled, close
to the experimental estimates of critical temperatures of
adsorbed systems that exhibit a genuine critical point. We
infer that it is indeed the properties of the solid phase that
are the reason for the difference in the behavior of nitro-
gen and krypton, on the one hand, and xenon and
methane, on the other hand, when these are adsorbed on
graphite. In units of the critical temperature T3, of the
three-dimensional bulk material, our estimates of
T, =41—42 K for nitrogen and T, =72—78 K for kryp-
ton correspond to T, =0.33T3, and T, =(0.35—0.38)T3g,
respectively. For argon, neon, and methane' the
best experimental estimates are T, =0.36T3„and for xe-

n, Te ——0.40T3c.
The existence of a genuine triple point, in contrast to an

incipient triple point, for nitrogen and krypton adsorbed
on graphite, is inconsistent with the experimental data. If
there were a triple point we would expect to see a very
narrow specific-heat peak, as is seen in xenon or
methane' on graphite. Instead, a much broader peak is
observed, and the qualitative difference should not be due
to experimental complications. There is also no indica-
tion of liquid-gas phase separation as such in krypton or
nitrogen on graphite, even though in the case of the nitro-
gen experiment, at least, the sensitivity should have been
sufficient to detect it. In addition, in the case of krypton
there is no evidence of liquid-gas phase separation in the
vapor-pressure isotherms of Larher.

Another alternative to an incipient triple point for these
cases is a tricritical point smeared out by various effects,
as proposed by Ostlund and Berker. ' In favor of their in-
terpretation is the fact that their calculation starts with
realistic (or at least plausible) interatomic potentials and
does not rely on adjustable parameters in order to predict
the basic phase diagram for the system on an ideal sub-
strate. On the other hand, the same authors showed in a
later calculation that small changes in the parameters of
their lattice-gas model can also lead to a phase diagram of
the incipient triple-point variety. Hence it is not incon-
ceivable that a somewhat different choice of interatomic
potentials or a different set of approximations in their
original calculation could have led to an incipient triple
point for krypton or nitrogen on graphite. Indeed, using a
rather different theoretical approach, but one which is
also based to some extent on interatomic potentials,
Sander and Hautman' have come to the conclusion that
an incipient triple point (in our terminology) occurs for
these two cases.

In this paper we have considered the incipient-triple-
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point picture in the two special cases of nitrogen and
krypton on graphite. The physical mechanism, however,
is quite general and we thus expect there will also be other
systems with this behavior. In particular, an incipient tri-
ple point may occur in some films adsorbed on lamellar
halides. ' The corrugation of the adsorption potential on
lamellar halides is stronger than that on graphite, and
therefore the commensurate solid phases can have an even
lower free energy than on graphite. The crossover from
an ordinary to an incipient triple point may be observed in
adsorbed films of binary mixtures where the effective size
of the adsorbed species can be varied. Bohr et al. have
found some evidence of an incipient triple point in mix-
tures of argon and xenon adsorbed on graphite.

It would be interesting to study in more detail under
what circumstances a commensurate solid phase is stable
enough to give rise to an incipient triple point. In particu-
lar, we would like to understand how the corrugation of
the adsorption potential and the mismatch between the
size of the adsorbed species and the substrate lattice af-
fects the phase diagram of adsorbed films.
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APPENDIX: THE APPROXIMATION
TO THE TWO-DIMENSIONAL

ISING MODEL

We use the variational real-space renormalization-group
method introduced by Kadanoff ' ' to generate the ther-
modynamic properties of the Ising model. The calcula-
tion consists of iterating the couplings of a plaquette of
four spins, and the same recursion relations can be applied
for the Ising model on both square and triangular lat-
tices. The only difference between the two cases is in
the Hamiltonian that is used to initiate the iteration.

For the square lattice it has been shown that the best
accuracy is obtained if every other spin of the original lat-
tice is decimated first, before applying the renormaliza-
tion group. This exact transformation leads to the Hamil-
tonian

PH =u(m) =hm/—4+ln[2cosh(KNNm +h)] (Al)

for each plaquette, where KNN is the nearest-neighbor
coupling of the original square lattice, h the magnetic
field (both divided by temperature), and m the sum of the
spins at the corners of the plaquette:

m =0]+O2+O3+a4 . (A2)

The total Hamiltonian of the system is just a sum over all
plaquettes.

For the triangular lattice the results of Southern sug-
gest that best accuracy is obtained if the triangular lattice
is treated as a square lattice with (locally) anisotropic
next-nearest-neighbor bonds. The initial Hamiltonian is
then given by

u(m)=hm/4+ENN(m —4)/4 . (A3)

In the renormalization-group calculation the Hamil-
tonian u (m) is iterated. In practice, u (m) is rewritten " as

u(m)= g K;s;(m), (A4)

where si ——m [cf. Eq. (A2)], sz ——oioq plus permutations,
s 3

——o-& o-2a3 plus permutations, s4 ——~]o.2o.3o.4, and
o i (T2 cT3 (T4 are the spins at the corners of the plaquette.
The recursion relations are then written for the couplings
E;.

Instead of optimizing the free parameter p of the
transformation separately at each iteration as Kadanoff
originally suggested, we have decided to use a single ex-
pression for p as a function of the coupling K2 [cf. Eq.
(A4)] only. The functional form is adjusted so that the
overall accuracy is reasonable. The following form is
found to be sufficiently flexible:

p(K2)=AiE2+A2(Kp)' exp( —A3K2) . (A5)

ENN ENN+~NN e P[ (ENN E ) /Eo]

Xexp( —h /h 0 ), (A6)

with LUCNN ——0.017 and EC*=0.4576. The widths are
Ko ——0.05 and ho=0. 12. Note that for these values KNN
is a monotonic function of KNN.

The accuracy of various quantities calculated for the
square lattice using the bond-moving method was estimat-
ed by comparing these results with information from ex-
act series expansions, the Tarko and Fisher approxi-
mants for the susceptibility, and the numerical values of
Gartenhaus. The errors are not serious (typically a few
percent), except for the susceptibility and the temperature

The two terms are sufficient to ensure qualitatively
correct behavior at the low- and high-temperature limits
(e.g., positive specific heat). In the case of the square lat-
tice we have found that the values Ai ——4.7, Aq ——0.86,
and A3 ——10 give reasonable accuracy for the thermo-
dynamic properties.

The above choice of p(Kq), and indeed any choice,
gives the critical point slightly displaced from the exact
value for the square lattice. Therefore an effective
nearest-neighbor coupling A NN is used in the initial Ham-
iltonian (Al) in place of ENN. We have adopted the fol-
lowing form:
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derivative of the magnetization in small fields below the
critical temperature. The inaccuracies do not affect our
model fits at temperatures well above the critical one.

For the triangular lattice the best results seen to corre-
spond to At ——5.1, Az ——0.73, and A3 ——10 in Eq. (AS).
The critical point is again slightly displaced from its exact
value, and thus the effective nearest-neighbor coupling

ANN of Eq. (A6), with ~NN ——0.003, E'=0.2777,
Eo ——0.05, and ho ——0. 12, is used in place of KNN in the
initial plaquette Hamiltonian, Eq. (A3). The accuracy of
the thermodynamic functions is basically comparable to
that for the square lattice, though the inaccuracies on the
low-temperature side seem to extend somewhat further
away from the critical point.
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