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We remind the reader of the important role that could be played in Monte ' Carlo
renormalization-group studies by redundant operators, defined to be changes in the Hamiltonian due
to infinitesimal changes of variables. We then overcome the problem of defining an infinitesimal
change of variables for discrete Ising spins and construct redundant operators in d =2 and 3. We
analyze how they may be seen in numerical experiments.

I. INTRODUCTION f ~ d~i(~. . . . ~~ )e[H($')~5H($')1

Under a change

P(x)~P'(x) =P(x)+5,
which leaves the measure invariant, we find

Z~Z'= d ' x eH'&'+'~'&'=Z,

(1.2)

(1.3)

where

(1.4)

The Monte Carlo renormalization-group (MCRG) tech-
nique is a powerful numerical scheme for studying the
critical behavior of statistical mechanical systems or Eu-
clidean field theories on a lattice. ' By numerical methods
one can study the flow of Hamiltonians under renormali-
zation, locate fixed points, measure the eigenvalues of the
linearized transformation (i.e., the critical exponents), and
so on.

In the numerical studies one expects that if one starts
with any critical Hamiltonian H„say critical nearest
neighbor (NN), then the flow under renormalization will
be towards the fixed point H, while if one begins with a
slightly noncritical system, the renormalized H would ini-
tially stay close to the critical surface and move towards
H but eventually veer away. This picture stems from
the classification of perturbations of H* into relevant and
irrelevant ones. (We ignore the rare case of truly margin-
al operators. )

There is, however, another class of operators, namely,
redundant operators, which can alter this picture. These
are defined by Wegner as changes in H' when an infini-
tesimal charge of variables is made in the functional in-
tegral. To be concrete, consider the example of

Z f ~ dy(x)eH(g(x)) (1.1)

where 5/=5. These ideas generalize readily to case where
5$ =5/(x). Each change of variables P~ttp+5$ generates
its own redundant operator 5H.

Let H be the fixed point of some renormalization-
group transformation R. In the vicinity of H, the flow
in a redundant direction 5H* is free of physical signifi-
cance. This is reflected in the fact that the eigenvalue as-
sociated with the direction 5H* varies with R. In the
study of Pawley et al. an odd operator with a spurious
eigenvalue occured and was identified as a redundant
operator. Fortunately, in this case the operator was odd
and the flow to a fixed point (restricted to the even sector
in MCRG) was not spoiled. On the other hand, one can
envisage the possibility of an even redundant eigenvalue
which is repulsive. In this case no fixed point will be
found if one starts with a critical (NN say) system and
generates a flow. The redundant operator is no longer just
a curiosity or nuisance.

With the above remarks to motivate a study of redun-
dant operators we ask how to generate them for Ising sys-
tems. Whereas for the case of continuous fields P the no-
tion of an infinitesimal change in P (and hence in H') ex-
ists, no obvious candidate exists for Ising spins S =+1.
In d =2, thinking of Ising systems in terms of continuous
fields is not very useful. Besides, MCRG studies are done
on H (S), and it will be useful to have examples of 5H (S)
that can be interpreted as redundant. These will be con-
structed in Sec. II. In Sec. III we will consider concrete
examples of 5H* in d =2 and 3.

The physics is unaffected by the change H~H+5H.
First, the free energy is unaffected since we can convert
H+5H to H by going backwards from Eq. (1.4) to Eq.
(1.1). Secondly, any correlation function (P'i . P„' )
with respect to H+ 5H has an image in the ensemble gen-
erated by H:

g s,. vis, )

Z= y H(s)—:y
S S

(2.1)

II. CONSTRUCTION OF REDUNDANT OPERATORS

Consider an Ising system described by
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where i is the site label, i is any site not equal to i, and
V(S) is any function. For example, in the case of HNN,
the nearest-neighbor interaction, V =Xg.SJ, where j isJP

a NN of i
We shall now derive the redundant operators 5H for

this H. Of course we are interested in redundant opera-
tors 5H associated with a fixed point H*. Since the
derivation works for any H, let us first find 5H in general.

As mentioned earlier, the problem with mimicking the
derivation of 5H associated with H(P) is that in the case
of H (S), S = + 1, there is no obvious infinitesimal change
of variables S~s+5S that respects

~

S
~

=1. We cir-
cumvent this problem as follows.

Let us introduce a matrix Q (S',S) (where S and S' are
each collective labels for all the spins) such that

~

S
~

= 1, all of which allow us to view the change
H~H' as the result of a change of variables. To generate
an infinitesimal transformation we start with the identity
transformation

1+S S,II ' ' =—H5(s, ',s, )
2

(2.5)

and add an infinitesimal generator:

Q, = Q [5(S,S;)+us f(S)] . (2.6)

Here f(S) is any function of the "old" spins S, and the
S in front off ensures Eq. (2.2) is valid. We then have

g Q(S',S)=1 .
S'

(2.2)
e ' '= g II [5(s,s;)+as,"f(s)]e

Similar functions, I'(S',S), called projection operators,
were introduced to generate block-spin transformations. '

In those cases, however, S' was defined on a smaller lat-
tice than S, i.e., one was trying to thin out degrees of free-
dom. Here we want S' and S to be defined on the same
lattice. Clearly,

Z g eH(s) y Q (SI S)eH(s)
S S'S

S i

Let us expand f(S) as

II 5(s,'s, ) s,'f(s)
i S i

xe " '+o(~') .H{S;,S;) (2.7)

S'

H'(S') (2.3) f(S)=f(S(,S;)=f) (S; ) +Sgfz(S; )

and define

(2.8)

By construction S'=+ 1, and H'(S') is defined by
H'(S') g Q(st S) H(S)

S
(2.4)

AH=H(S;, S ) H(S,S )—
=(S;—S )V(S ),

(2.9)

(2.10)

In going from H(S) to H'(S') we have preserved the
partition function, the lattice size, and the condition

where V stands for the terms coupled to the spin at i [see
Eq. (2.1)]. Then

e ' '=e ' ' I+eggs [f)(SI )+Sf2(S )]e
S;

t'

=e ' ' 1+@ps e ' ' I2f((s )cosh[V(S )]+2f2(S )sinh[V(S )]I

e H {S')+5H{S')
(2.11)

which gives us

5H(s')=2e+S e ' ' [f)(S )coshV(S )

+f2(S )sinhV(S )] . (2.12)

Before considering explicit examples of 5H, let us present
the evidence that these are indeed redundant operators as-
sociated with H. First, they are generated by a change of
coordinates S~S' and they do not affect Z (to first order
in e, just as is required in the case of continuous fields
also) or the lattice size. The sum of any two redundant
operators is redundant, as can be seen by compounding

the infinitesimal transformation associated with each.
For the case H =Hqw, the critical nearest-neighbor sys-
tem with X =X=——,

' 1ntanhK, we have verified for the
various cases we studied that HNN+5HNN lies on the
critical surface (CS) by using our earlier work where the
equation for the CS near HNN was derived. (This test is
useful because it eliminates operators kH which keep Z
the same to first order because (hH) =0, but which take
us out of the CS. These cannot be called redundant since
they change by physics, i.e., the correlation length. The
redundant 5H are characterized by the fact that they are
linear combinations of interactions with coefficients ana-
lytic in the parameters of H. ) Next we would like to es-
tablish the analog of Eq. (1.5). Consider, for example,
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T

(S'iS2 )H sH ——Z 'g QS~Sz g [5(S;,S )+eS f(S)] e
S' S l

=&S„S,)„+Z-'eg g g5(S, ,S,') S,'f(S)e "'S',S;+O(e') .
ss.'l

(2.13)

A =TrT

where R is the number of rows (in d =2) or layers
(ind =3). The trace is originally taken in the eigenbasis
of cr3, the eigenvalues +S being the spins summed over in
the nonoperator version. However, as the trace can be
taken in any basis related by a unitary transformation U,
let us take it in the basis of o = U o U. Let us now ex-

press every cr in T in terms of o. This amounts to mak-
ing an infinitesimal (operator) change of variables
o ~cr+5o, where 5o'=ie[A, o] for the case U =I +ieQ
(We restrict ourselves to unitary rather than similarity
transformations since we want cr to be isomorphic to cr

and, in particular, Hermitian. ) Under this change

T~UTU =T+bT=T(1+ep) .

If we now go back to S language, ep will correspond to
the additional interaction 5HNN which is clearly redun-
dant. In Appendix A we give a concrete example of such
a 5H for d =2 and it agrees with the redundant 5H found
via Eq. (2.12) for a certain choice of f. The transfer-
matrix approach is much more cumbersome and for prac-
tical reasons limited to 5H~~. It is presented here only to
corraborate the fact that what we are doing indeed corre-
sponds to a change of variables.

Finally, we would like to show that if 5H* is redun-
dant, then under any RG transformation it goes into
6H*, which is also redundant in the sense that 5H* is
generated from H by a change of variables.

Consider a vector V(H) which has 2 components la-
beled by the spins S on a lattice with X sites, and having
values

V, (H)=e '". (2.15)

The first term comes from taking the 5 from each site and
doing the sum over S' first, while the second comes from
taking 5 at all sites but one where eS'f is taken instead.
Consider a given value of i If. we sum over S we will

get 0 (because of the factor S ) unless S'i or S2 gets rid of
it, i.e., unless i = 1 or 2. It is evident that

( S i S2 )H+s~ ——(Si,S2 )~+ (ef(S)i,S2 ) + (Si,ef(S)2 )H

=([S+ef(S)]„[S+ef(S)]~)H. (2.14)

Thus the correlation functions transform as if the
change S—&S+ef(S) has been made. We say "as if ", be-
cause the literal change S~S+ef(S) cannot be made
without violating

~

S
~

= 1. For those readers who would
like to see redundant operators arising from a literal infin-
itesimal change of variables (as in the case of P) we pro-
vide the following alternate version, which for practical
reasons is limited to the case HNN. Let us work with the
transfer matrix T(o), written in terms of Pauli matrices
such that

or in an compact notation

V(H')=QV(H) . (2.16)

Although Q acts linearly on V the action on H is non-
linear. To find Q:H~H', we must start with Vq(H),
transform by Q, extract the couplings from Vs (H'), and
reconstruct H. (This can be done since there are 2
known Boltzmann weights and 2 interactions. ) The usu-
al block-spin transformation generated by P (S',S) is
represented in this notation as

V'(H') =PV(H), (2.17)

where I' is a rectangular matrix with 2 rows and 2
columns where L is the "block size, " i.e., L equals the
number of spins after divided by the number of spins be-
fore.

As the matrix P becomes infinitely large, the fact that
V(H) can carry more interactions than V'(H') becomes
unimportant. If H' is a fixed point of P, we cannot of
course say V'(H*)= V(H') since they have different di-
mensions, but we can say that if H' is extracted from V',
it agrees with the H put into V for all couplings of finite
range.

If we start with V(H') and let Q =I+eF act on it, it
produces a redundant change

b, V(H*) =eFV(H*) . (2.18)

We wish to show that if one implements a blocking P
[which takes V(H') to V'(K )] on V(H*)+hV(H ),
the result is V'(H*)+ b, V'(H ), where 5V'(H*)
=eF'V'(H ) where F' is some generator, like F. There-
fore, let us consider

P(V+XV)=PV(H')+PA V(H')

= V'(H*)+ePFV(H*)

= V'(H*)+b, V'(H') .

Therefore,

b, V'(H*) =ePFV(H*) .

(2.19)

(2.20)

Suppose we can write

PF =F'P for some F',
then

b. V'(H') =eF'PV(H')

=eF'V'(H* ),

(2.21)

(2.22)

We may view Q, Eq. (2.6) as a square (2 &&2 ) matrix in
this space:

V,.(H') = g Q, ,V, (H),
S
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F' =PFP (2.23)

where P ' is the right inverse of P. There is no problem
constructing such an inverse; in fact, there is an infinite
number of them since P corresponds to m equations
among M unknowns. (We are making the mild assump-
tion that the m rows of P are linearly independent. ) Dif-
ferent choices of F' will correspond to different changes
of variables, but AV' generated by them will be the same
in all cases since they differ by the annihilators of V'.
One can also check that Q'=I+EF' obeys Eq. (2.2), i.e.,

g Q'(S', S)= 1
S'

or

i.e., 5V'(H ) is the redundant change produced by
N/L ~

the generator eF'. If we set 2 =M, 2 =m, then Q is
MXM; P is m &M; F is M)&M, F' is m &(m. Equation
(2.21) can be solved for F':

choice of A will generate a redundant operator. Clearly
the simpler H* and 3 are, the simples 6H* will be. We
will choose H =HNN, the critical nearest-neighbor in-
teraction first in d =2 and then in d =3. Although HNN
is not the fixed point for the usual 2&(2 or 3&C3 block-
ings, "' Swendsen has shown' that "optimized" RG
transformations for which this is the fixed point do exist.

In d =2, if we want redundant operators involving just
the coupling of any spin and its four nearest neighbors, we
can choose

A =A pcs ——S]S~2S)S4,

where S], . . . , S& are the four neighbors and a through
y=0 or 1. These 16 relations yield (upon using various
symmetries) six redundant operators which are listed in
Ref. 8. We mention just the even ones here:

5H] E g [S H]357 +2C (2C —. 1 )Hp] —2SC Hp4
sites

gF'(S', S)=0 . SC H—pz
—S(3C —1)] (3.2a)

III. CONCRETE EXAMPLES

Let us return to Eq. (2.12) and generate different exam-
ples of 5H by choosing f] and f2 at will. First, let us
note that in Eq. (2.12) the quantity in brackets is just
some function 2 (S;). The breakdown into f] and f2 will
no longer interest us since we do not want to follow the
change of correlation functions as per Eq. (2.14). There-
fore, we write

5H =e+Se ' ' A(S;); (3.1)

written this way, 5H coincides with Eq. (3) of Dekeyser
and Rogiers, who derived linear relations between corre-
lation functions by finding operators X for which (X)=0
due to the symmetry of the measure. Such relations
which also occured elsewhere ' were, however, not seen
as resulting from infinitesimal transformations, and X
was not viewed as a redundant operator.

Since we are interested in a 5H' associated with a fixed
point H*, we must first pick our H* and then each

I

where C =cosh(2K) and S =sinh(2K), so that at
X =O.44' 68. . . ,

+ 2 S CHp]24 SC Hp2 —2C —S] (3.3a)

which implies

5H2 =eg(5]/2Hp] —4Hp4+2 Hp]24. —2Hp2 —4) .

(3.3b)

The convention for the naming and normalization of
these operators H,zk is given in Appendix A following
Eq. (A19). Note incidentally that the 5H in Eq. (A19), de-
rived in the transfer-matrix approach, agrees with 5H2
above.

In d =3 we shall focus on odd redundant operators
since one may have been seen in numerical studies. Here
are six with the shortest possible ranges of interactions:

5H] =E Q (H]357+6v 2Hp] —4Hp4 —2Hp2 —5) (3.2b)
sites

5H2=cg [(C +2S C+C)H]]] 2C SHp4—

5H] (1—6a)A+a B——+a C aD aE+a F+a——G aH+a M, —
5H2 ——(a2 —2a —4a3)A+(1+6a2+5a )B/12+(2a +a )C/3 —(2a+8a +2a )D/12

—(2a+4a +2a )E/8+(a +2a )F/3+(5a +6a +a )6/12 (4a +2a )H/6—+a M,
5H3 —( —2a +a —4a )A +(8a +4a )B/12+( 1 +2a )C/3 —(4a +4a +4a )D/12

—8a E/8+(2a +a )F/3+(4a +8a )6/12 (4a +2a )H/6+a —M,

(3.4a)

(3.4b)

where a =tanhK and should be set equal to tanh
(0.221 654) to get 5H*. There are three more such opera-
tors 5H4, 5H5, and 5H7) obtained by changing a —+I/a
and multiplying by a .

The operators A —M are defined as follows. Imagine
spins numbered in a plane as in Appendix A [following
Eq. A19)] with an identical layer above, numbered 0+

I

through 9+. Then A =Ho B =Ho13 C =Ho12
D =H135, 130+ ' F =H134g7, G =H01241
H H

13574+ and hf is the product of a spin with its six
nearest neighbors. The multiplicity of each term is as in
d =2. For example, there are 12 terms per site implied in
D or G, eight per site in E, etc.
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5H7 ——(1—6a+3a —12a +3a —6a +a )a A

+(1+a )B aE—,

5Hs=(1 —6a+3a —12a +3a —6a +a )a

+2(1+a )B/3+4(1+a )C/3 2aD—/3 .

(3.5)

(3.6)

By forming linear combinations of these operators we
can get new ones involving just three or four:

T", and that they are linear combinations of eigenvectors
which are predominantly outside the subspace in question.
(We are ignoring the freak case of a redundant eigenvalue
being accidentally integer. )

In d =3, if a stable odd repulsive eigenvector besides
the leading one is found, and it is saturated by short-range
couplings, we can expect it to be a linear combination of
the six 5H's given earlier. It must also be true that the
leading relevant one is linearly independent of these.

IV. CONCLUSION

Now that we have a few short-range redundant opera-
tors, can we ask how they tie in with the numerical work?
This turns out to be a difficult question. First of all, we
do not have redundant eigenvectors, simply redundant
operators. Next, we have no idea what the redundant
eigenvalues will be since they depend on the optimized
transformations that make H~~ the fixed point. Lastly,
in the numerical work one finds the eigenvectors and
eigenvalues of T ti, which is the linearized transformation
matrix T truncated to a finite-dimensional subspace of
interactions. The connection between the solution to this
problem and that of the exact one in infinite dimensions is
unclear. Also, given that in practice one must work with
a finite number of couplings, say 15, it is not clear which
15 to choose to get the leading eigenvalues. For the physi-
cal (i.e, relevant and irrelevant couplings ) there is reason
to believe that one must start within the shortest-range
couplings and work upwards in range, i.e., the belief is
that the leading eigenvectors will be saturated by a few
short-range interactions and hence recovered without
much mutilation in a small subspace calculation. We do
not know if this applies to the unphysical redundant ones,
although it seems plausible in momentum space renormal-
ization.

In view of all this we can say only the following. Con-
sider the even redundant operators 5Hi and 5Hz in
d =2. We know from the exact solution that all ir-
relevant eigenvalues are integers. If the eigenvalue prob-
lem of T" is solved any noninteger eigenvalue must be as-
sociated with a redundant operator. If the eigenvector is
saturated by short-range couplings one can reasonably
hope to see it as an eigenvector of the truncated T~ti. The
only way in practice that we will know this is happening
is that as T p is made larger, the eigenvector and eigen-
value remain stable. If the vector lies in the subspace
H)357 Ho] H~ and H02, we can expect it to be close to
5Hi [Eq. (3.2b)]; if it lies in the space Ho, , H~, Hoi2&,
and Ho& it will be close to 5H2, and if it involves all of
the above interactions it must be a linear combination of
5Hi and 5H2. Conversely, any eigenvector (stable under
enlargement of T~p) that lies in this subspace must be
linearly independent of 5Hi and 5H @if the correspond'-

ing eigenvalue is an integer. It is also clear that we must
work in spaces involving the above couplings before a
redundant operator could possibly enter.

What if no redundant eigenvectors (i.e., noninteger
eigenvalues) are found if T t3 is studied in the space of the
H's mentioned above? Then we would have to conclude
that 5H i and 5Hz are nowhere near being eigenvectors of

We have shown that redundant operators can be derived
for discrete spins despite the fact that there seems to be no
obvious .way to perform an infinitesimal change of vari-
ables. Although a literal infinitesimal change is still out
of the question, we found a way to induce infinitesimal
transformations in which H is charged by an infinitesimal
amount 5H. We showed that the 5H's so obtained met all
the tests for redundancy: They formed a subspace, they
left the physics invariant, they were closed under renor-
malization.

Note added in proof. For clear evidence of redundant
operators (that were derived by these methods) occurring
in the odd sector in d =2, see Ref. 14.
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APPENDIX A

Z =[2sinh(2K)] ~ TrT (Al)

T =exp K g o3(n)o3(n +1) exp K g o i(n)
n n

(A2)

Here K= ——, ln tanhK and o(n) are the Pauli matrices at
the sites of a one-dimensional lattice labeled by the in-
terger n. The sum over S in Z is now viewed as the trace
over the combined eigenvalues of the o3(n)'s. We now re-
place the sum over S by the sum over S' (again =+1)
which are the eigenvalues of the transformed operators

0 3(n) = U to3(n) U (A3)

This leaves Z invariant since the trace is invariant under a
unitary change of basis. If we now replace all the o's by
o. 's in T and reconstruct the new Boltzmann weights we

Here we will derive a redundant operator associated
with H~~ in d =2 in the transfer-matrix formalism. As
explained earlier the chief attraction of this approach is
that a literal, infinitesimal change of (operator) variables
generates 5H.

Let us first write (for general K) the partition function
on a lattice with M rows and N columns (numbered by in-
tegers m and n, respectively) in terms of the transfer ma-
trix T:
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will find these correspond to HNN(S')+5H(S'). Since U
can be chosen close to the identity

U=I+ieQ (Q=Q ), (A4)

5H(S ) will really be infinitesimal and redundant by con-
struction. At the end we will of course set K=K, the
critical value, to get the redundant operator for HzN.

To illustrate our procedure we choose

ee ' ' E(S',$)=(S'
I
eTp

I
S) . (A16)

Let E (S',S)=a (S +S')+bSS'. We can get all these
terms to occur on the right-hand side by replacing every S
by a cr3 acting to the right on

I
S) and every S' by a o3

acting to the left on (S'
I
. For example,

e
' S'S=S'S(S'

I
T

I
S)=(S'

I
cr3Tcr3 IS)

g cr2(n)cr3(n + 1) .

Under the action of Q, T changes as follows:

T~ UTU ~

= T +ie[Q. , T]

=(1+ieT '[Q, T])
= T[I+e(T 'QT —Q)]
—:T[l+ep] .

(AS)

sites
ll, mSn, m+1 S ll+iimSliim+i) (A18)

S'
I
TT '~3TCT3

I
S

=(S
I

Tcr3(r3 IS) . (A17)

Conversely a term eo.30.3 in ep translates into an interac-
tion eS'S. The extension to d =2 (or 3) is direct, one lets
S' and S be a shorthand for the spins in two adjacent
rows (or layers). Given all this we can see that Eq. (A13)
translates into the following interaction among the Ising
spins (if we remember to reinstate the sum over n):

In order to calculate

p=i [T 'QT —Q]=iQ iQ— (A7)

we shall exploit the linear relation between p and Q. We
will first calculate p due to just one term in Eq. (A5), with
n =0; and then do the sum over n in the answer so ob-
tained. In terms of o—:cr(0), cr =o( —1), cr'=cr(1),

We must next treat the first term in Eq. (A8), io2o3, in
a similar fashion, expressing all operators in terms of o 3's

and cr3's, with all quantities with carets on the left. In
this "normal ordered" form, the classical interaction can
be read off by inspection. The final outcome of the calcu-
lation (relegated to Appendix B) is that

5H =e g[(C +2S C+C)Hpi 2C SHp4—
sites

~ w
P = l 0'p0 3

—l 020'3

where

(A8) + ,' S CHp—i24 SC Hpi —2C S—] (A19)

O=T OT .

Consider first

(A9)
The interaction Hpi24, for example, stands for a coupling
SpS&SzS4 in the following notation:

l0203 —0 )0303 ~ (A10)

Now one can check, ' by computing 0.
3

——T '0.3T, that

o i
——(C —Scr3o 3),

where

C =cosh2K, S =sinh2K .

Setting this into Eq. (A10), we get

l 020 3 —CO 303 SO 30 3 ~

(A 1 1)

(A12)

(A13)

Our motivation for writing everything in terms of o3 and
cr3 is that one can read off the corresponding change 5H
in the Ising interaction by inspection. For illustration let
us consider the d = 1 case. Let Ep(S',S) be the energy of
two adjacent "rows" with spins S' and S. Then the
transfer matrix T obeys

exp E (S',S)= (S'
I
T

I
S) . (A14)

Let us now add a term eE(S',S) to Ep. The new T given
by T(1+ep) obeys

exp[Ep(S', S)][1+eE(S',S)]=(S'
I
T(1+ep)

I
S), (A15)

so that

0 1 2

3 4 5

6 7 8

as well as three other terms (per site) obtained by rotating
and reflecting the triangle 0124. Likewise Hp2 stands for
the coupling SOS2 and its partner related by a +90' rota-
tion. (The multiplicity of each term is such that each in-
teracting pair or quartet of spins is represented once and
once only when the sum over sites is carried out. )

The careful reader may ask how we could get a cou-
pling between two spins that are separated by two sites in
the y direction when our transfer-matrix formalism can
accomodate only coupling between adjacent rows. The
answer is that the 0 we began with only generates the
coupling S0S2 but not its partner, S6SO. Likewise it only
generates the triangle 0124 but not its three companions.
Thus if we imagine HNN einbedded in a space of general-
ly anisotropic couplings, Q generates a redundant direc-
tion 5Hn that points in the space of anisotropic (but
translationally invariant) interactions. What this means is
that if one perturbes HNN with anistropic terms and car-
ries out the isotropic RG of Swendsen, one of the direc-
tions, 5H~, is redundant. Suppose we repeat the analysis
using an Q' which is obtained by reflecting 0 about a
column. This will generate 5H&' which is related to 6H~
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by the same reflection since T is reflection symmetric.
Since the sum of two redundant operators is also redun-
dant, 5H~+5H~' is also a redundant operator. Likewise
if we use the column-to-column transfer matrix we will
generate a 5H that will be related to 5Hn by a 90' rota-
tion. More generally, we could argue that given a 5H~
which is redundant, there must be other redundant opera-
tors related to it by the symmetries of H' and the RG
transformation. The sum of all such operators will then
be redundant and lie in the space of symmetric interac-
tions. This is what is given by Eq. (A19). Finally, we
must put C =V 2 and S =1 to get 5H*, the redundant
operator assocated with H ~N.

APPENDIX B
I

Here we convert the term icr2o3 in p [Eq. (AS)] to a
classical interaction by expressing everything in terIns of
0 3 s and 0.3's, with all quantities with carets situated to
the left. Therefore, let us begin with

E0203 =030 ]0'3

and try to eliminate (r(. Since o)= o((0),

r

e ' ' =coshK +o 3o3sinhK

[bccause (o3o3) =1]we get
—K ICE )01——e (C o)+SCo)cr3O3+SCO Io'3o3

K rr(+S o Io 3o3)e

(83)

(84)

o.
~

——C —Scr3cr3,

and take all quantities with carets on the left using

[o3 o'3 OI (T3]=0, [o3(n),o3(m)]=0, rn&n

o'3o'3 = —o3o3+2C/S,

When we take exp( —K go)) through the parentheses
and pair it with exp(E g oI), (i) it leaves all o(s alone,

r
and (11) Icplaccs cvcI y (T3 cT3 and 0 3 by cT3 0 3 and (T3
since as far as these are concerned, it is like taking T
through the parentheses and pairing it with T.

We next feed this expression with carets in the right
places back in Eq. (AS), eliminate o1 using

—)rgb, —)r(n, n', +~,r, )

~& ——T o.&T =e e

K(rr&rr&+ rr&rr3 ) E g n)
Q o.~e e

If we now use relations like

(82)

and read off the classical interaction. Finally, we add the
two terms coming from the second piece, —I'o2o'3 in Eq.
(AS) for p, symmetrize the expression using reflections,
rotations, etc., to get Eq. (A19).
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