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We state the conditions under which the general spin-s quantum XFZ ferromagnet (H ) and
antiferromagnet (H+) with an external magnetic field along one axis, specified by the Hamiltonian
H+=+g, , (J„SlSl+~+J~SfSf+&+JSfSf+,) —h Q, ,Sf exhibits a fully ordered ground state
described by a wave function which is a direct product of single-site wave functions. We present a
detailed analysis of the implications for the zero-temperature dynamical properties of this model. In
particular, we derive a rigorous relation between the three dynamic structure factors S„„(q,~),
p=x,y, z at T =0. For the special case of the s =

~ anisotropic XY'model (J,=O), these relations

are used to determine the dynamic structure factors S (q, cu) and S~„(q,cu) at T =0 and
h =(J„J~)' in terms of the known dynamic structure factor S„(q,co).

I. INTRODUCTION

Quantum spin chains with short-range interactions be-
long to the category of strongly fluctuating statistical sys-
tems at all temperatures. Thermal fluctuations prevent
the existence of spontaneous magnetic Iong-range order
(LRO) at any T&0. At T=O, in general, quantum fluc-
tuations still cause a considerable reduction of the LRO,
indeed, sometimes a complete removal of it. The presence
of strong zero-point fluctuations is commonly used as an
argument for explaining the fact that the standard spin-
wave-type approximation techniques routinely employed
in the analysis of the collective excitations of magnetic in-
sulators in two and three spatial dimensions (2D and 3D)
frequently fail to reproduce the known properties of 1D
quantum spin models amenable to rigorous analysis. Of
considerable interest in this context are the results of a re-
cent work. ' in which it was found that there exist special
circumstances where a spontaneously ordered ground state
of the 1D spin-s XYZ antiferromagnet with no residual
correlated quantum fluctuations can be stabilized by an
external magnetic field. In a subsequent critical analysis
of the validity of spin-wave theory for T=0 spin dynam-
ics, it was demonstrated, for the example of an exactly
solvable case, that the presence of a fully ordered ground
state is an insufficient criterion for the existence of linear
spin-wave eigenstates, except in the classical limit s~ ~.
For s = —,', the T=0 dynamic structure factors were
shown to exhibit complicated behavior incompatible with
the predictions of spin-wave theory, despite the fact that
the ground state is characterized by zero spin reduction.

In this paper we present a comprehensive study of the

circumstances under which the general spin-s XFZ model
with an external magnetic field along one axis exhibits a
fully ordered ground state and its implications for the
T =0 dynamical properties of this model. We derive a
rigorous relation between the three dynamic structure fac-
tors Su&(q, co), p=x,y, z, at T=O, which holds only for
these special circumstances. For the s = —, anisotropic XY
model, these relations are used to determine the dynamic
structure factors S~(q, co) and S~~(q, co) in terms of the
known function S (q, co). In the light of our new work,
we discuss a previous calculation by McCoy, Barouch,
and Abraham based on the analysis of infinite Toeplitz
determinants. Finally, we use our new results to calculate
exact expressions for the T=O wave-number-dependent
susceptibilities of the s = —, anisotropic XYmodel.

II. HAMILTONIAN AND GROUND STATE

In this section we analyze the conditions under which
the ground state of the quantum 1D spin-s XYZ model in
an external field, specified by the Hamiltonian

N N

H+ =+ g (JxSI Sl+1+~ySlSf+1+JzSISI+1) h X Sl
I —1 1=1

(2.1)

exhibits a ground state whose wave function is a direct
product of single-site states. In (2.1) we assume that
J& & 0 for p =x,y, z and, without loss of generality,
J„&Js. H+ then characterizes the XYZ antiferromagnet
(AFM) and H the XYZ ferromagnet (FM). For techni-
cal convenienc, only even X and periodic boundary con-
ditions are considered.
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We search for realizations of a ground-state wave func-
tion with the following structure:

iG)=, iOi, »,
where

Oi, l) = Ui(OI)
I
s, l)

S

i
m, l )D",(Oi)

Oi
———(+1)'8+(J—„,Jy,J„h ) (2.4)

for H+, respectively. In both cases, the state (2.2) with Og

from (2.4) is degenerate . with a state specified by
OI ———OI—,obtained by rotating all spins by 180' about the
axis of the magnetic field.

Applying the unitary transformation Ui(8i) to the spin
operators St' defines a set of new spin operators S~i,
through the relation

S i = Ui S("Ui =Si"cos(8i)+S('sin(0i),
$ (2s )!

(s+m)!(s —m)!

1/2

[cos(0i /2) ]'+ S i = UI SfUr =Sf,
S i ——U~ 'Sf Ui =Sf cos(0i) SP—sin(0i) .

(2.5)

X [sin(8i /2)]'
i
m, l) . (2.2)

M= (Ol, l
i S&

i
Oi, l ) = [s sin(8i), 0,s cos(0i)] . (2.3)

Note that there are no correlated fluctuations in this state.
Its ordering is thus as complete as it can be for quantum
spins. Obviously, we can assume that the ground state is
uniform in the FM case and has a two-sublattice structure
in the AFM case. This is incorporated in our ansatz

Here Ui(8i) describes a unitary transformation represent-
ing a rotation of the spin direction at site l by an angle Oi

away from the z axis in the xz plane. This rotation is
generated by the (2s+ 1)-dimensional irreducible represen-
tation of the group SU(2) with matrix elements D~, as
given above. The states

i
m, l) are the 2s+1 eigenfunc-

tions of Si and Sf with eigenvalues s(s+1) and m,
respectively.

For Oi&0, such a ground state is characterized by the
presence of spontaneous LRO. The order parameter is

The problem of finding special cases of the Hamiltonian
H for which the ground-state wave function

i
G ) has the

form (2.2), is then equivalent to finding special cases of
the Hamiltonian

N

H=U 'HU, U= Ui(0i)
1=1

for which the ground-. state wave function is

N

i
G)=U 'iG)= is, l),

(2.6)

(2.7)

with all spins aligned parallel to the z axis. The ground-
state energy is invariant under this transformation by vir-
tue of the relation

(G fH i
G) =(G iH i

G) =EG . (2.8)

The transformed Hamiltonian H, if expressed in terms of
the original spin operators, has the form

N
H+ ——+ g I[J„cos (8+-)+J, sin (8+-)]Si"SP+,+J„SfSf+,

1=1

+ [J,cos (8+—)+J„sin (8+—)]Si'SI'+i+h cos(8—+)Si'

+(+ 1)'(J„+J, ) sin(8-+ ) cos(8+-)(Sf'+ i +St Sf +, )+(+ 1)'(h /2)»n(8+-)(Sf+St+, ) I (2 9)

for the AFM (upper sign) and FM (lower sign), respectively. The condition for (2.7) to be an eigenstate of (2.9) implies
that the first two terms in H have the same coefficient, and that the last two terms cancel each other for S~' Sf+ i ——s:——

J„cos (8—+)+J, sin (8+—)=J~,
s(J„+J,) cos(8 +—

) =h/2 .

(2.10a)

(2.10b)

These conditions determine the magnitude of the magnetic field h and the angle 8 of (2.4) entering in the wave function
(2.2) as follows:

h =h~ ——2s[(J„+Jy)(Jy+J,)]'~

cos(8 +—
) =[(J„+J, )/(J„+J,)]'

(2.11)

(2.12)

where the subscript N denotes Neel. For these special parameter values, (2.9) becomes

N

H+ = g IJ„(Si"Si"+i+SfS!+i)+(J„—Ji, +J, )Si'Si'+i+2s(J~+J, )SI'
I=1

+(+ 1)'[(J„—J~ )(J~+J,)]' [S~'Si+ i +Si Si'+ i
—s(Si+ i +Si")]I, (2.13)
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and the energy of the eigenstate
~
6), as obtained from

(2.8), is

Eg —— N—s (J„+J»+J,), (2.14)

whereas the exchange constants J„, J~, and J, can have
arbitrary (positive) values in the AFM case, they must
satisfy the condition J, (J» or J, &J„ in the FM case.

For the proof that
~

6 ) is the ground state of H or,
equivalently, that

~
6) is the ground state of H, it is use-

ful to expr ss the Hamiltonian (2.1) in terms of spin
operators St, SP, and St, which are obtained from the
operators S t, S»t, and S f of (2.5) by

St =(+1)'St, SP=(+1)'S»t, St =(+1)'St, (2.15)

and in terms of the operators St, SP, and St, which are
obtained from Sf, SP, and S~ via substitution of the angle
8t by 8t= —81 in the definition (2.5). The XFZ Hamil-
tonian (2.1) at h =h~ can then be expressed in the follow-
ing form:

H+ Eg ——g—I 2~ (J„+J,)[(s St )(s—St+i—)
l=l

+ (s —SI )(s —SI + ( ) ]

+J»[s —(S&SI+&+St s&+&+S,St+&)]j .2 44 g g 04

(2.16)

For the AFM (H+ ), the right-hand side of (2.15) is a sum
of positive operators for arbitrary (nonnegative) values of

J„J»,and J„which proves that
~

6 ) is the ground state.
For the FM (H ), on the other hand, the argument holds
only for J„&J, , In conjunction with the condition stated
after Eq. (2.14), this proves that

~

6) is the ground state
ofH if

J„&J» & J, & 0 (for H ) . (2.17)

We consider the time-dependent two-spin correlation
functions,

(SP(t)SI"+,)H ——Tr[e' 'SI'e ' 'Sf+„e ~ ]/Tr[e ~"],
(3.1)

of a given quantum spin Hamiltonian H at temperature
T, with f3=(k~T) '. The unitary transformation (2.5),
which relates the XFZ Hamiltonian H, Eq. (2.1), to the
Hamiltonian H, Eq. (2.13), also provides a set of relations
between the two-spin correlation functions of the two
1110dels:

(St (t)St"+, )lt ——( St (t)St+„)~; p, v=x,p,z . (3.2)

Expressed in terms of the spin operators St", St', and Sf,
this becomes

Having established these special circumstances under
which the ground state of the XYZ Hamiltonian (2.1) is
characterized by a very simple wave function —a wave
function of maximum spin ordering —we will next address
the important question of the consequences of this simpli-
fying feature on the structure of the zero-temperature
dynamic correlation functions.

III. DYNAMIC STRUCTURE FACTORS

( St"(t)St+ „)H ——(St"(t )St+„)— cos (8+—)+ (St'(t)St'+, ) — (+ 1)"sin (8+—)

1

+ [(S~'(t )St"+, )H (+1) + (S~"(t)St'+„)H (+1) +'] sin(8 +—
) cos(8—+),

(St'(t)sf „),=(SP(t)sf „)—

(Sl(t)Sf+„)H =(St(t)St+„)H cos (8-)+(SP(t)St+„)H (+1)'sin (8+-)

—[(SP(t)St'+„)H (+1)'+ (SI'(t)St+„)H (+1)'+"]sin(8-) cos(8-) .

(3.3a)

(3.3b)

(3.3c)

Analogous relations hold between the dynamic struc-
ture factors

N
Sg=N g e '«St', p=x,y,z;

1=1
(3.6)

S»(q, co) = g e '«' J dte'"'(St'(t)St+„) (3.4)

X5(co+Eg —Eg ), (3.5)

where

of the two Hamiltonians H and H, respectively. For our
purposes it is useful to express S&„(q,co) in its spectral
representation. For the model described by H at T=O
and h=hN this is

S„„(q,co)H=2~+ (6 ~Sg ~

k)(A, ~S « ~
6)

~

6 ) is the ground-state wave function (2.7); and the sum
in (3.5) runs over all excited states

~

A. ) of H with energy
Eq. Owing to the fact that

~

6 ) describes a state with all
spins aligned in the z direction, we have

S~(q,co)~ ——S»»(q, to)H ———,'S+ (q, co)- (T=0),

S (q, co)H =4m s 5(q)5(co) (T=O),

S»(q, co)~=0 for p&v (T=O),

(3.7a)

(3.7b)

(3.7c)

where S+ (q, to) is the Fourier transform of
(St+(t )St+„)with St =St"+iSt". - —
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Using the unitary transformation (2.5), we can now ex-
press the dynamic structure factors S&„(q,co)H of the
XYZ model at T=O and h =h~ in terms of the function
S+ (q, co)H. From (3.7) with (3.3) and (3.4) we obtain

(q, to)H+ ———,'S+ (q, co)g cos2(8+-)

+4m s sin (8—)5(co)5(q+Q+), (3.8a)

From (3.12) with (3.13) we also conclude that in the classi-
cal limit s —+ ao, these anharmonic terms are always negli-
gible for the T=0 dynamic structure factor.

In the following, we focus on a case for which the rela-
tions (3.8) lead directly to new nontrivial exact results.
This is the s = —, anisotropic XI' model, specified by the
Hamiltonian (2.1) with J„=J(1+y), J» ——J(l —y), and
J, =O, i.e.,

S»»(q, co)H+ =
g S+ (q, co)H

S (q, co)0+ ———,'S+ (q+Q+, co)H sin (8-+)

(3.8b) H+ =+J g I(1+y)St"Sf+i+(I y)Sf—Sf+, I
—h g St'.

(3.14)

[ q)=Sq
/
G) (3.9)

is an exact eigenstate of H, then it is the only state which
can contribute to S+ (q, to) at T=O. If this is the case,
then the general expression (3.5) for S+ (q, co)~ reduces
to the simple result

S+ (q, co)- =2m5[co —cosw(q)] (3.10)

where cosw(q) is the spin-wave excitation energy. The
condition for (3.9) to be an exact eigenstate of H can be
stated by the equation

[H~,S;] l
G) =cosw(q)Sq I

G) .

With H from (2.9), the left-hand side of (3.11) becomes

[ H+, Sq ] ~
G)=cosw(q)Sq

~
G)

+ —,[(J„—J»)(J»+J, )]'

(3.11)

—iq)~ —1/2

+4m. s cos (8+—)5(to)5(q), (3.8c)

where Q+ na—n—d .
Q =0 for H+, respectively. Thus,

the special structure of the ground-state wave function of
the XYZ model at h =h~ has the consequence that the
three diagonal dynamic structure factors S» (q, co )H,
p=x,y, z at T=O are expressible in terms of a single
function, S+ (q, co)-, which, in general, is nontrivial.

One category of circumstances under which the func-
tion S+ (q, to)H can be determined explicitly is the fol-

lowing. If for any given wave number q, the ferromagnet-
ic linear spin-wave excitation whose wave function is de-
fined by

This model, which can be expressed as a system of nonin-
teracting fermions, has been the object of numerous stud-
ies which have yielded exact results for its thermodynamic
properties and its static ' ' and dynamic ' '
correlation functions. The structure of the Jordan-Wigner
transformation between spin operators and fermion opera-
tors implies that the correlation function (St'(t)Si'+„) can
be expressed as a fermion density-density correlation func-
tion, i.e., a function involving a product of four fermion
operators. ' In contrast, the functions (St"(t)St"+„) and
(Sf(t)Sf+, ) are represented by infinite block Toeplitz
determinants in terms of fermion operators, i.e., quantities
involving infinite products of these operators. The spec-
trum of the corresponding T=0 dynamic structure fac-
tors S~(q, to) and S»»(q, co) thus represents not just two-
fermion excitations as is the case for S (q, co), but rather
the excitation of m-fermion states with m arbitrarily
large. It is thus understandable that whereas the evalua-
tion of (St'(t)St'+„) is straightforward (although quite
tedious if pursued to the stage of explicit analytic expres-
sions), explicit results for (St"(t)Si+„) and (Sf(t)Sf+„)
have been rather limited. A detailed analysis of the latter
correlation functions at T=O was carried out recently for
two special cases: the transverse Ising model at the criti-
cal field (y=O, h =J); and the isotropic XY' model in
zero field (y=O, h =0).2 This study revealed, among
many other interesting features, that the dynamic struc-
ture factors S~(q, to) and S»»(q, co) have contributions
from excitations at arbitrarily high energies co, whereas
S (q, cu) is of compact support as a function of co and is
governed by the two-particle excitations alone.

Here we are interested in the special case of the Hamil-
tonian (3.14) with

xg (+ 1)e 'q'St St+ i ~

G ),
1

(3.12)
h =h~ ——J(1—y )'~ (3.15)

where

cosw(q) =2s[J„+J» cos(q)] (3.13)

is the dispersion relation predicted by linear-spin-wave
theory.

From (3.12) we thus conclude that linear spin waves are
exact eigenstates of H (i) for arbitrary q if J„=J» or (for
Honly) J» =J, and '(ii) for arbitrary J&, J», and J, (sub-
ject to our conventions) if q=O (for H+) or q=ir (for
H ). The second term on the right-hand side of (3.12)
reflects the anharmonic terms which cause the dynamic
structure factor to become nontrivial in all other cases,
even though they have no effect on the ground state.

for which we have established the relations (3.8) between
the dynamic structure factors at T=O. These exact rela-
tions lead to the important conclusion that for h =h~, the
T=O dynamic structure factors S~(q, co) and S»»(q, co) do
not have a more complicated structure than S (q, co), in
sharp contrast to what was found for the cases studied
previously. We can then obtain the former two functions
from the latter one, which was recently calculated in
closed form, via the relations (3.8):

S (q, co) = cr(q+ Q+, co)+ ~ 5(co)5(q+ Q+ ),1 —y 2y 2

1+y ' 1+y
(3.16a)
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(3.16b)

(3.16c)

S~(q, co) =o(q+Q+, co),

S (q, co) = cr(q, co)+ n. 5(co)5(q),1+y ' 1+y

o(q, co)= y [4J (1—y ) cos (q/2) —(co —2J)z]'~~
2(1—)') [co—2Jsin (q/2)] +J y sin (q/2)

and

M„(q)=X ' g e '~t(SP),
I

h„(q):—X ' g e '~'hp,
I

(3.17b)

(3.17c)

X8[4J (1—y ) cos (q/2) —(co —2J) ], (3.16d)

for H+ ' at h =h& and T=0. Note that all three of these
components of the dynamics structure factor are nonzero
only for (q, co) in the range of the two-particle spectrum,
i e , f. o.r ~co —2~ ) cos(q/2). Apart from the 5(co) terms,
they differ only by y-dependent factors, a property which
was previously found to hold for the frequency integrals.

In a previous study of the correlation functions
(SI"(t)S~+,) and (Sf(t)Sf+„) based on an analysis of in-
finite Toeplitz determinants, McCoy, Barouch, and Abra-
ham presented a result for S~(q, co) and Sz~(q, co) [Eqs.
(5.10) and (5.11) of Ref. 3] originating from the two-
particle contribution and thus constituting the first term
in an expansion indexed by the contributions of I-
particle excitations with m=2, 4,6, . . . . Since it is the
two-particle contribution, their result is kinematically re-
stricted to be nonzero over the same range as our exact
answer, but it differs from (3.16) in its functional depen-
dence on q and m. The only way to render their result
compatible with our exact answer (3.16) is to invoke the
contributions of the higher-lying excitations with
m =4,6, . . . ; however, if one tries to do this, one must ex-
plain how these additional terms can contribute only in
the (q, co) range of the two-particle spectrum while mira-
culously cancelling to zero for all (q, co) outside this range.
If, in particular, the terms with m & 2 vanish at h =h~,
which would provide a natural explanation of why our ex-
act result is nonzero only in the range of the two-particle
excitations, then our result is clearly incompatible with
the one given in Ref. 3.

As an immediate consequence of our exact result (3.16)
for the T=0 dynamic structure factors, we can infer new
exact results for the q-dependent susceptibilities of the 10
s = —, anisotropic X1' model (3.14). These susceptibilities
are defined as follows:

X&z (q) =5M&(q)/'dhz (q), p, p, '=x,y,z, (3.17a)

where

X (q) =— S„„(q,c0) .1 dCO (3.18)

Using the exact results (3.16), we thus obtain

Xyy(q) =f(q+Q+),

(3.19a)

(3.19b)

X (q)= f(q),1++
(3.19c)

where

f(q) = 1

J(1—y) sin (q/2)

x y
[ sin (q/2)+ycos (q/2)]'~z

(3.19d)

for H+r' at T=O. These expressions thus extend the list
of exact results for T=0 susceptibilities of the 1D s = —,

anisotropic XF model which have been reported in a re-
cent comprehensive study.
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and hp denotes an inhomogeneous magnetic field. For
given dynamic structure factors S&&(q,co), the q-
dependent susceptibilities are determined, as discussed,
e.g., in Refs. 29 and 30, through the relation
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