Paramagnetic resonance and local position of Cr^{3+} in ferroelectric BaTiO₃

K. A. Muller and W. Berlinger

IBM Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

J. Albers

Physics Department, Universität des Saarlandes, 6600 Saarbrücken, West Germany (Received 6 June 1985)

EPR spectra of Cr³⁺, $S = \frac{3}{2}$, substituting for Ti⁴⁺ are reported as a function of temperature T in all four phases of BaTiO₃. In the three ferroelectric phases (FEP's), the principal axis of the Hamiltonian is always along the polar axis. There are two crystal-field terms, one proportional to the square of the polarization and a large one linear in T . The latter is the same in all FEP's. The existence of the first term shows that the $Cr³⁺$ remains centered in the octahedral cell. The existence of the latter, not observed for Fe^{3+} , points to large thermal fluctuations of the Cr^{3+} . These are ascribed to the absence of antibonding, repelling e_g electrons directed towards the oxygen atoms which are present for Fe³⁺. Saturation of the $b_2^0(T)$ term for low T is accounted for by a Debye model for Cr^{3+} with an energy of only 236.6 K, proving independently a flat ionic potential for Cr^{3+} . The picture of considerable Cr^{3+} amplitude fluctuations agrees with an effectively reduced Cr^{3+} -O²⁻ distance of 0.02 Å compared to the Fe³⁺-O²⁻ distance obtained from the superposition-model analysis. The latter yields the correct sign and magnitude of the crystal-field b_2^0 terms in all FEP's. It confirms that a maximum of the intrinsic superposition-model parameter $\overline{b_2}(R)$ for Cr³⁺, derived earlier by Miiller and Berlinger, occurs for R between 1.95 and 1.96 A.

I. INTRODUCTION

Recently, Siegel and Miiller' were able to interpret some two-decade-old paramagnetic resonance experiments on $Fe³⁺$ substituting for $Ti⁴⁺$ in BaTiO₃. These early experiments of Hornig, Rempel, and Weaver² were carried out as a function of temperature in the cubic and tetragonal ferroelectric phases (FEP's). Studies of Sakudo and Unoki³ extended the investigations to the orthorhombic and rhombohedral phases for one specific temperature in each of the two phases. It was shown in the aforementioned analysis, using the superposition model with parameters determined earlier,⁴ that the $Fe³⁺$ participates by less than an order of magnitude in the collective motion of the Ti^{4+} ions responsible for ferroelectricity, i.e., the $Fe³⁺$ remains at the center of the oxygen octahedron in all three ferroelectric phases.

The sizes of Ti^{4+} and Fe^{3+} in octahedral oxygen coordination are nearly the same. The difference in behavior, that one undergoes a cooperative transition and the other remains centered, can have two origins. (a) The $Ti⁴⁺$ has an empty 3d shell, whereas that of the $Fe³⁺$ is half-filled. It has been discussed that the emptiness of the Ti^{4+} d shell is crucial for the occurrence of the ferroelectricity. ' (b) There is a charge difference of one unit between Ti^{4+} and $Fe³⁺$. In a recent theoretical study, Sangster⁵ showed the occurrence of radial enhancement of ions owing to the charge misfit between the substituted ion and the impurity. Thus the radius of Fe^{3+} is enhanced in BaTiO₃ as compared to that in an oxide, where it replaces an intrinsic trivalent ion. In order to elucidate further the two possible reasons for the centering of the $Fe³⁺$ just mentioned, another trivalent ion with nearly the same ionic radius as that of Fe^{3+} , but with a different 3d configuration, has been studied.

 $Cr³⁺$ is such an ion, but with an electron configuration $3d³$ as compared to Fe³⁺ with $3d⁵$. Whereas Fe³⁺ in the high-spin configuration has its two subshells with t_{2g} and e_g character half-filled, $(t_{2g})^3$, $(e_g)^2$, Cr^{3+} has only the t_{2g} subshell half filled with configuration $(t_{2g})^3$ and the (e_g) shell empty. The $(e_g)^2$ are antibonding σ orbitals and will cause a larger repulsion from the negative oxygen shells to keep the $Fe³⁺$ centered; see Fig. 1. On the other hand, the $(t_{2g})^3$ are essentially nonbonding, having their charge density pointing midway between the oxygen electron density. Recent uniaxial stress experiments on $Cr³⁺$ in cubic MgO at room temperature indicated that Cr^{3+} may be slightly off center along the $\langle 100 \rangle$ cubic positions.⁷ Thus Cr^{3+} appeared as a valid candidate to decide whether the $3d^n$ configuration or the size enhancement, owing to the charge misfit, is more important.

FIG. 1. Shapes of e_g and t_{2g} orbitals in octahedral coordination.

32 5837 C 1985 The American Physical Society

In order to investigate quantitatively the Cr^{3+} position in BaTiO₃, a paramagnetic resonance study of $Cr³⁺$ was carried out in such a doped single crystal. EPR spectra were investigated in all four phases as a function of temperature. The spectra obtained are very different from those observed for Fe^{3+} as far as the size of the splittings, their signs, and the orientation of the principal magnetic axis in the orthorhombic phase are concerned. These findings are described in Sec. II.

The main EPR crystal-field term $b_2^0(T) \equiv D(T)$ in the Hamiltonian for the three FEP's between ¹00 K and the highest T_c at 410 K could be accounted for by just two terms for each phase, one proportional to the square of the lattice polarization $P(T)$ and a large one linear in temperature, the latter being the same for all FEP's. The term proportional to $P^2(T)$ is direct evidence for Cr^{3+} remaining centered. The Cr^{3+} however is barely centered because of the term linear in T which is a result of large local fluctuations; such a linear term is not observed for $Fe³⁺$. The Cr³⁺ fluctuations are confirmed by the lowtemperature behavior of $D(T)$ between 4.2 and 100 K which can be accounted for by a Debye model for Cr^{3+} with quite a low oscillator energy of only 236.6 K as compared to that for Fe^{3+} in BaTiO₃ with a Debye temperature of Θ =450 K. This part of the analysis is given in Sec. III.

The analysis of the observed b_2^m crystal-field term was rendered possible by the superposition model parameters for Cr^{3+} in the octahedral oxygen position obtained recently by Müller and Berlinger.⁷ For that model, the authors computed an intrinsic $b_2(R)$ function from uniaxial stress experiments on Cr^{3+} in SrTiO₃ and MgO. This function was deduced to be positive and to have a maximum near $R = 1.957$ Å, in contrast to the case for Fe^{3+} where $\bar{b}_2(R)$ is negative with no extremum in that range. The b_2^m terms observed for Cr^{3+} in BaTiO₃ are accounted for, as far as the sign and orientation of magnetic axes are concerned. They also prove that the $\overline{b}_2(R)$ function does indeed have a maximum. A satisfactory agreement regarding the magnitude could be reached by assuming the effective $Cr^{3+}-O^{2-}$ distance is reduced by 0.02 Å from the intrinsic six oxygen positions towards the center. This can be regarded as a consequence of the large Cr^{3+} ionic fluctuation towards the oxygen atoms, absent for $Fe³⁺$. Thus the absence of e_g electrons for Cr^{3+} in BaTiO₃ does indeed render the potential considerably flatter than that for $Fe³⁺$, but the charge misfit suffices to keep a potential minimum at the center of the octahedron. This part of the analysis is detailed in Sec. IV followed by a short conclusion in Sec. V.

II. EXPERIMENTS

A. Crystal growth and sample preparation

The Cr-doped BaTiO₃ single crystal was pulled from a nonstoichiometric melt by the top-seeded solution technique.^{8,9} The raw materials were BaTiO₃—obtained by thermal decomposition of barium titanyl oxalate (Merck Selectipur)—and $TiO₂$ (Merck Optipur) in a ratio of 51 mol $\%$ BaTiO₃ and 49 mol $\%$ TiO₂, with a total weight of 129 g. After the addition of 0.193 g of Cr_2O_3 , the materials were melted in a ¹00-ml platinum crucible at ¹400 'C. Single-crystal growth with an undoped $BaTiO₃$ seed was achieved by cooling the melt from 1380° C to 1320° C at a rate of about 0.8'C/h. The crucible was cooled slowly within the oven to room temperature (10'C/h from 1320 °C to 150 °C, 3 °C/h below 150 °C).

The ¹2-g crystal could be oriented roughly on an optical goniometer with the aid of its pseudocubic natural faces. Atomic absorption spectroscopy revealed a chromium content of 0.023 ± 0.003 wt% Cr, which is about onefourth of that present in the melt.

Cylindrically shaped samples with a diameter of 0.7 mm and length of 0.9 mm, were machined from the single-crystal boule with a very fine diamond grinding wheel. While shaping this brittle material, the temperature was kept around ambient temperature to prevent the sample from passing from its tetragonal into the orthorhombic phase. These samples were located with their axes centered along that of the cylindrical cavity of the superheterodyne spectrometer working at 19.2 GHz.¹⁰ Accurate centering minimized the losses in the cavity. The sample cylinder axis was chosen to be a $[1\overline{1}0]$ direction. The external magnetic field could be rotated perpendicularly to this axis, in the (110) plane. This allowed spectra to be recorded with H along the $[100]$, $[110]$, and [111] pseudocubic crystal directions. Such spectra sufficed to evaluate the fine structure of the spin Hamiltonian in all phases of BaTiO₃.

B. Cr^{3+} EPR spectra

In the cubic phase, an isotropic single EPR line of Cr^{3+} , $S = \frac{3}{2}$, is observed at $g = 1.975 \pm 0.002$. This g value is close to that found for the ion in the octahedral environment of MgO $(g=1.980)$ (Ref. 11) and SrTiO₃ $g= 1.978$,¹² and allows one to conclude that $Cr³⁺$ is substitutional on the Ti^{4+} lattice site. Below the cubic-totetragonal phase transition of BaTiO₃ at 282.5 \pm 2.5 K, three mutually perpendicular axial spectra appear corresponding to the six tetragonal (100) ferroelectric domains. Each of these sets can be described by the usual axial spin Hamiltonian, 13

$$
\mathcal{H} = g\beta S \cdot H + D_t[S_z^2 - \frac{1}{3}S(S+1)] \tag{1}
$$

with $\hat{\mathbf{z}}'$ (100). Within the accuracy of our experiments, he g value was isotropic. For a magnetic field parallel to a [100] direction of the crystal, two $S = \pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2}$ finethe g value was isotropic. For a magnetic field parallel to

a [100] direction of the crystal, two $S = \pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2}$ fine-

structure lines at $H = H_0 \pm 2D + \cdots$, where ellipses

represent higher-order terms, from th represent higher-order terms, from the domains parallel to the $[100]$ and $[100]$ directions and two lines at $H = H_0 \pm D + \cdots$ from the {010}, {010} and {001}, {001} domains are observed. In addition, the $\pm \frac{1}{2}$ line at $H_0=h\nu/g\beta$ is of course seen in each case. Such a spectrum is shown in Fig. 2(a). The distances of $4D$ between the outer lines (marked) and $2D$ between the inner lines are accurate to second-order perturbation, an accuracy sufficient for the evaluation of $D_t(T)=b_2^0(T)$.⁴

In the orthorhombic Amm2 phase, there are 12 domains with polarization vectors along the (110) general cubic directions. The Cr^{3+} EPR spectra have their principal

FIG. 2. EPR spectra of Cr^{3+} in BaTiO₃, measured at 19.2 GHz. (a) Tetragonal, (b) orthorhombic, (c) rhombohedral phases.

axial vector \hat{z} " parallel to the polarization vector, i.e., along a $[110]$ direction for $P||[110]$ plus a smaller orthorhombic component parallel to [001]. Thus, the Hamiltonian is of the form

$$
\mathcal{H} = g\beta S \cdot H + D_0[S_{z}^2 - \frac{1}{3}S(S+1)] + E_0(S_{x}^2 - S_{y'}^2)
$$
 (2)

with $\hat{\mathbf{x}}$ "||[110] and $\hat{\mathbf{y}}$ "||[001].

To first order, the $\pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2}$ fine-structure lines follow the angular dependence¹³

$$
\mathcal{H} = H_0 \pm D_0 (3n^2 - 1) + 3E_0 (l^2 - m^2) , \qquad (3)
$$

where l , m , and n are the direction cosines of the magnetic field with respect to the x'' , y'' , and z'' axes. Applying the magnetic field parallel to the cubic [110] direction, two lines at $H_0 \pm \frac{1}{2} (D_0 + 3E_0)$ are observed for the $\{110\},\$ ${1\overline{10}}$, ${1\overline{10}}$, and ${1\overline{10}}$ domains, i.e., general ${10}$ directions, and those with general (101) polarization. Furthermore, two lines at $H = H_0 \pm (D_0 + 3E_0)$ occur for the $\{011\}$, $\{0\overline{1}1\}$, $\{01\overline{1}\}$, and $\{0\overline{1}1\}$ domains, i.e., general (011) directions.

Upon application of the magnetic field H parallel to a pseudocubic [110] direction, six fine-structure lines in addition to the magnetic $\pm \frac{1}{2}$ transition at H_0 are seen; two lines from the $\{110\}$ and $\{\overline{110}\}$ domains at $H=H_0\pm 2D_0+\cdots$; two others at $H = H_0\pm (D_0 - 3E_0)$ from the domains perpendicular to [110], and two unresolved lines at $H=H_0\pm(D_0+3E_0)/4$ from domains with general (101) polarization. Such a spectrum is displayed in Fig. 2(b). From the data, the values of the D_0 and E_0 parameters and relative signs can be evaluated and cross checked. Figure 3 displays the angular varia-

FIG. 3. Angular variation of $Cr³⁺$ lines in the orthorhombic phase at 280 K.

tion of the various fine-structure lines for orientations of H between the [100] and [110] directions as experimentally observed at $T=280$ K, and computed electronically
from Eq. (2) with $D_0=185.0\times10^{-4}$ cm⁻¹, from Eq. (2) with $D_0 = 185.0 \times 10^{-4}$ cm Eq. (2)
 $E_0 = 32.0 \times 10^{-4}$ cm

In the rhombohedral R 3m phase, the EPR spectra are again axial and directed along the eight possible trigonal $\langle 111 \rangle$ ferroelectric axes. The Hamiltonian describing the spectrum for one domain along ${111}$ is

$$
\mathcal{H} = g\beta S \cdot H + D_r[S_{z'''}^2 - \frac{1}{3}S(S+1)] \tag{4}
$$

with \hat{z} "'||[111].

Applying a magnetic field parallel to a $[111]$ direction yields two fine-structure lines at $H = H_0 \pm 2D_r$ from the 111] and $(\overline{111})$ domains, and two other fine-structure ines at $H = H_0 \pm \frac{2}{3} D_r$, from the other six symmetry equivalent domains. Such a spectrum is shown in Fig. $2(c)$. Here, as for the tetragonal case, the value of D_r can be evaluated and double checked for one single spectrum as the distances between each of the two inner and outer lines are $\frac{4}{3}$ D and 4D, respectively.

C. Temperature dependence of the fine-structure terms

The dependence of the $b_2^m(T)$ spin-Hamiltonian parameters has been measured as a function of temperature in

FIG. 4. Temperature dependence of $|D(T)|$ in the three ferroelectric phases of BaTiO₃.

FIG. 5. Variation of parameter $E(T)$ in the orthorhombic phase of Cr^{3+} in BaTiO₃.

the three ferroelectric phases down to liquid-helium temperature. This was carried out by recording the spectra as shown in Fig. 2, and evaluating according to the preceding section. The b_2^m values change abruptly at the firstorder transitions; their signs in the tetragonal and orthorhombic phases could not be determined. This is in contrast to those of Fe³⁺, $S = \frac{5}{2}$, which has a positive cubic splitting parameter a relative to which the $b_2^0 \equiv D$ term signs could be evaluated. In Fig. 4 the variation of the $|D|$ terms with temperature is shown. Of interest are the maximum in the tetragonal phase and the marked linear increase in the orthorhombic and trigonal phases upon cooling. The discontinuities at all three first-order transitions are clearly visible. Figure 5 shows the temperature dependence of the $|E(T)|$ term in the orthorhombic phase.

Before concluding this section, we draw attention to the $D_r(T)$ behavior below 50 K in Fig. 4. A leveling off is clearly visible upon approaching 4.2 K, the lowest temperature at which data were taken. In the quantum regime, all parameters have to become temperature independent, therefore, $d[D(T)]/dT = 0$ as observed.

III. ANALYSIS OF THE TEMPERATURE DEPENDENCE OF $D(T)$

A. High-temperature behavior

In the temperature dependence of $|D|$ depicted in Fig. 4, there are three unexpected features: A maximum in the tetragonal phase, a larger magnitude in the orthorhombic phase with a marked linear progression in this phase and above 100 K in the trigonal phase. In the latter phase at low temperatures, the polarization is nearly temperature independent.¹⁴ This suggests a large component of $D(T)$ is proportional to $T (D^T)$, at least in this phase above 100 K in addition to one (D^P) that is explicitly dependent on

the polarization P . Terms linear in T are well known to occur in axial EPR spectra at higher temperatures owing to thermal fluctuations.¹⁵ Therefore, we use the following ansatz for the analysis. In each ferroelectric phase, there exists an explicit polarization dependence D^P as well as one on temperature D^T ,

$$
D(T) = DP + DT
$$
 (5)

For D^P , the first two terms of a Taylor-series expansion in P are taken into account, i.e., terms linearly and quadratically proportional to P, and in the range $T > 100$ K, D^T was assumed to be proportional to $T-T_0$,

$$
D(T) = \alpha_i^{(1)} P(T) + \alpha_i^{(2)} P(T)^2 + \beta_i (T - T_0)
$$
 (6)

with $i = t, o, r$ denoting the tetragonal, orthorhombic, and trigonal ferroelectric phases, respectively.

Close to the tetragonal-cubic phase transition, it is difficult to analyze the occurrence of particular terms in Eq. (6). However, using the whole tetragonal range and the measured polarization P below T_c from samples cut from the same boule, a unique fit with

$$
\alpha_t^{(1)} = 0, \quad |\alpha_t^{(2)}| = 0.28(3) \text{ G cm}^4 / \mu\text{C}^2 \,,
$$

$$
|\beta_t| = 0.56(5) \text{ G/K} \tag{7}
$$

could be obtained, see Fig. 6. The sign of β_t is opposite to that of $\alpha_t^{(2)}$, and yields the extremum of $D(T)$. The absolute signs, of course, have so far been undetermined in the analysis. They are fixed in the next section. A really important consequence of the simple assumptions (5) and (6) is that the slope β_t of D^T in the tetragonal phase is within experimental error the same as $\beta_r = 0.61$ in the rhombohedral phase. We have therefore assumed that the slope of the D^T term in the orthorhombic phase is equal, too,

$$
\beta_t = \beta_0 = \beta_r = 0.58(5) \text{ G/K} , \qquad (8)
$$

where the first and last are fixed by experiment. With (8), D^T in (5) is given in all FEP's which allows us to determine D^P in them by subtraction of D^T from the measured $D(T)$. This is also shown in Fig. 6. It should be noted that the data require D^T and D^P to be of the same sign in the orthorhombic and rhombohedral phases.

The absence of a term proportional to $P(T)$, $\alpha_t^{(1)} = 0$, in the tetragonal phase indicates Cr^{3+} is centered in the octahedron of BaTiO₃ like $Fe³⁺$ and does not participate in the cooperative polar Ti^{4+} motion of this phase. Therefore, it is likely that Cr^{3+} also remains centered in the orthorhombic and rhombohedral phases, like $Fe³⁺$. Furthermore, the magnitude of the polarization P in the orthorhombic and rhombohedral phases is nearly the same as the saturation magnitude in the tetragonal one.¹⁴ Thus it is difficult to imagine a mechanism to drive the Cr^{3+} off center in the orthorhombic or rhombohedral phases if it is centered in the tetragonal phase. Therefore, it is a likely assumption to set $\alpha_0^{(1)} = \alpha_{\zeta_1}^{(1)} = 0$, but in the next section we shall account for $D_t = \alpha_t^{(2)} P_t^2$, $D_0 = \alpha_0^{(2)} P_0^2$, and $D_r = \alpha_r^{(2)} P_r^2$, with the superposition model. An open question remains why T_0 in the D^T term is close to but not coincident with the cubic-to-tetragonal transition T_c . Possibly this is related to the order-disorder character of

FIG. 6. Analysis of $D(T)$ of Fig. 4 with Eq. (6), and $\alpha_i^{(1)}=0$, $\beta_i = \beta$; i = t, o, r.

the transition,¹⁶ but no mechanism is immediately obvious. Another possibility is the occurrence of an incommensurate phase near \tilde{T}_c , an idea advocated recently by Toledano.¹⁷ Toledano.¹⁷

B. Low-temperature behavior

Figure 7 shows the temperature dependence of the quantity $D_r^T = D(T) - \alpha_r^{(2)} P_r^2$ below 200 K. In this region, $P_r(T)$ is temperature independent.¹⁴ Thus, we can ascribe the temperature dependence D^T to the spin-phonon in-
terrorion. If interaction with a Debye phonon encotrum is teraction. If interaction with a Debye-phonon spectrum is assumed, then in the long-wavelength limit^{15,18}

$$
D_r^T = D(0) \left[1 - C \frac{T^4}{\Theta_D^4} \int_0^{\Theta_D/T} \frac{x^3}{e^x - 1} dx \right],
$$
 (9)

where C is a constant and Θ_D is the Debye temperature.

An alternative model involving a single Einstein oscillator gives

$$
D_r^T(T) = D(0) \left\{ 1 - C \left[\coth\left[\frac{\hbar v}{2kT} \right] - 1 \right] \right\},\qquad (10)
$$

where $h\nu$ is the energy of the interacting phonon mode. Formulas (9) and (10) are transposed from those used by Blazey et al. for the temperature dependence of the hyperfine parameter of anomalous muonium in germanium,

FIG. 7. Temperature variations of D^T for Cr³⁺ in the rhombohedral phase of BaTiO₃ (circles) and computed values (line) according to Eq. {10).

and we follow their treatment closely.¹⁸

The parameters derived for the best fit to the Debye model are

$$
D^{T}(0) = 183.0 \pm 0.6 \text{ G},
$$

\n
$$
C = 2.58 \pm 0.25,
$$

\n
$$
\Theta_{D} = 236.6 \pm 14.6 \text{ K},
$$

\n
$$
\beta = D(0) \frac{C}{3\Theta_{D}} = 0.67 \pm 0.12 \text{ G/K}.
$$
\n(11)

On the other hand, the parameters providing the best fit to the Einstein oscillator formula (10) are

$$
D^{T}(0) = 182.8 \pm 0.6 \text{ G}, C = 0.298 \pm 0.028 ,
$$

\n
$$
h\nu/2k = 84.2 \pm 5.2 \text{ K} ,
$$

\n
$$
\beta = D(0)C \frac{2k}{h\nu} = 0.65 \pm 0.10 \text{ G/K} .
$$
 (12)

The agreement between the $T = 0$ splitting $D^T(0)$ of both models is, as it should be, very good. The values of β are larger than those from Eq. (8) but still within the experimental limits. The ratio of Θ_D to $h\nu/k$ in Eqs. (11) and (12) amounts to 1.4, This means that either model yields an interaction with low-frequency phonons. Considering that Θ_D for Fe³⁺ in BaTiO₃ is 450 K,¹⁹ which is a factor 1.9 larger than Θ_D for Cr^{3+} or a factor 2.7 larger than $h\nu/k$, our data on $D^T(T)$ at low temperatures indicate a local soft-frequency oscillation of the Cr^{3+} . Analysis with the superposition model confirms this, as outlined in the next section.

IV. SUPERPOSITION-MODEL ANALYSIS

The success in analyzing the Fe^{3+} EPR in BaTiO₃ with the superposition model" and the availability of the ^b (R) 3+ ² curves for Cr^{3+} (Ref. 7) was a challenge in trying the model for BaTiO₃. The ratio of axial terms The ratio of axial terms b_2^0 (Fe³⁺)/ b_2^0 (Cr³⁺)=-0.87 in *trigonal* Al₂O₃ as well as LaAlO₃ could be accounted for with the model.⁷ In

BaTiO₃, the high-temperature phases have tetragonal and orthorhombic symmetries. The model for Cr^{3+} has not been tried so far for these symmetries. As shown below, it does indeed account quantitatively for the data.

The second-order fine-structure terms in the general spin Hamiltonian $H_F = \sum_{m=2}^{m+2} b_2^m O_2^m$, where the b_2^m are constants and the O_2^m are normalized spin operators, can be transformed to axes whereby only the O_2^0 and O_2^2 terms do not vanish, $\mathcal{H}_F = b_2^0[S_2^2 - \frac{1}{3}S(S+1)] + \frac{1}{3}b_2^2(S_2^2 - S_2^2)$. In the superposition model, the two remaining constants b_2^0 and b_2^2 are evaluated from the contributions of nearest-neighbor ligands owing to their distance and position,

$$
b_2^0 = \overline{b}_2(R_0) \frac{3}{2} \sum_{i=1}^{n} \left[\frac{R_0}{R_i} \right]^{t_2} (\cos^2 \Theta_i - \frac{1}{3}),
$$

\n
$$
b_2^2 = \overline{b}_2(R_0) \frac{3}{2} \sum_{i=1}^{n} \left[\frac{R_0}{R_i} \right]^{t_2} [\sin^2 \Theta_i \cos(2\psi_i)].
$$
\n(13)

Here, R_0 is the reference point chosen nominally near the distances R_i between the paramagnetic ion and the *i*th ligand. Θ_i is the angle between the paramagnetic ion towards the *i*th ligand and the main EPR axis; ψ_i is the angle between the EPR axis and the projection of the ith ligand coordinate in the xy plane.

The two parameters $\overline{b}_2(R_0)$ and t_2 appearing in Eq. (13), have been evaluated⁵ for Cr³⁺ on a Me⁴⁺-ion site. In Eq. (13), $b_2(R_0)(R_0/R)^2$ can be replaced by $\overline{b_2}(R)$ as reproduced in Fig. 8. The essential difference for the Cr^{3+} curve as compared to the one for Fe^{3+} is the positive sign and, most importantly, a maximum at $R_m = 1.957 \text{ Å.}^5$ Thus, around R_m , t_2 is small, typically t_1 = 1.937 A. Thus, around t_m , t_2 is sinal, typically t_2 < 1, whereas t_2 = 8±1 for Fe³⁺. For Cr³⁺, the exact superposition model formulas⁴ may be approximated by those shown in Fig. 9 for the noncubic $BaTiO₃$ phases. From the formulas, one sees that in the tetragonal and orthorhombic phases, b_2^0 is proportional to the product t_2b_2 , whereas b_2^2 in the orthorhombic and b_2^0 in the rhombohedral phase are proportional to \overline{b}_2 . Because t_2 is pro-

FIG. 8. $\bar{b}(R)$ for Cr³⁺ substitutional for Me⁴⁺ sites in oxygen octahedral coordinations taken from Ref. 7.

FIG. 9. Superposition-model equations for centered $Cr³⁺$ in the three ferroelectric phases of BaTiO₃.

portional to the logarithmic derivative of $b_2(R)$ at R, the maximum of \overline{b}_2 , entails a negative t_2 , for $R < R_m$ as found in SrTiO₃, whereas for BaTiO₃ with $R > R_m$, $t_2 > 0$ is expected. This is a sensitive test for the model in itself.

The axes in Fig. 9 are those observed for $Fe³⁺$. The $Fe³⁺$ principal magnetic axis in the orthorhombic phase is along [001], *perpendicular* to the [110] polarization axes, but for Cr^{3+} it is observed *along* [110]. It is easy to go from the former to the latter orientation of axes in an orthorhombic fine-structure term of the form

$$
\mathbf{S}\cdot\overline{\mathbf{D}}\cdot\mathbf{S}=D_{xx}S_x^2+D_{yy}S_y^2+D_{zz}S_z^2.
$$

Setting as usual the trace $D_{xx} + D_{yy} + D_{zz} = 0$ and choosng the principal axes along z ,¹³

$$
\mathbf{S}\!\cdot\!\vec{\mathbf{D}}\!\cdot\!\mathbf{S}\!=\!b_2^0(S_{\mathbf{z}}^2\!-\!\tfrac{1}{3}S^2)\!+\!\tfrac{1}{3}b_2^2(S_{\mathbf{x}}^2\!-\!S_{\mathbf{y}}^2)
$$

with

(14))——

and $D = \frac{1}{2}(b_2^2 - b_2^0)$, $E = -\frac{1}{2}(\frac{1}{3}b_2^2 + b_2^0)$,

 $S \cdot \vec{D} \cdot S = D(S_x^2 - \frac{1}{3}S^2) + E(S_y^2 - S_z^2)$

with $\hat{\mathbf{x}}\vert$ [110], $\hat{\mathbf{y}}\vert$ [10], $\hat{\mathbf{z}}\vert$ [[001]. From the above, for positive b_2^2 and b_2^0 , the principal axis will lie along the poarization axis [110], if $\frac{1}{3}b_2^2 > b_2^0$ in the superposition model calculation. For $\frac{1}{3}b_2^2 < b_2^0$, the axis is as observed and calculated for $Fe³⁺$, i.e., [001].

We now analyze the D^{ρ} terms in the tetragonal and

orthorhombic phases together. In the former, $D_t^P \equiv b_2^0$, and in the latter, $D_0^P = \frac{1}{2}(b_2^2 - b_2^0)$ from Eq. (13). Because in the orthorhombic phase the main axis is along $\hat{\mathbf{x}}$ ||[110], $b_2^2 > |b_2^0|$. In the orthorhombic phase, $b_2^2 = 6\overline{b}_2 \sin(2\delta)$
from Fig. 9 and Ref. 4, and $\sin(2\delta) = \sin(\pi/4)$ from Fig. 9 and Ref. 4, and $\sin(2\delta) = \sin[\pi/4 - \arctan(b/c)] = 0.0656$, a positive quantity. Thus $b_2 = 6b_2 \sin(2\delta) > 0$. From Fig. 6, we see that b_2^0 in the tetragonal and orthorhombic phases must have opposite signs, therefore in the tetragonal phase, $D_T^P = b_2^0(T) < 0$ as in Fig. 6. D_T^P obtained from Fig. 6 amounts to 215 G or 199 \times 10⁻⁴ cm⁻¹. At 300 K with c/a =1.0110 and the formula from Fig. 9, we obtain $t_2\overline{b}_2 = -0.9045$. $\overline{b}_2(c/2)$ varies very little near R_m , and we use $\bar{b}_2 = +2.40 \text{ cm}^1$; thus $t_2 = -0.38 \pm 0.04$.

With t_2 fixed from the D^T in the tetragonal phase, there is no adjustable quantity to determine the D_0^P and E_0^P spin-Hamiltonian parameters in the orthorhombic phase. Because Cr³⁺ is centered, $D^T = \alpha_0^{(2)} P^2(T)$ with little T dependence and it is only necessary to calculate one point using the equations given in Fig. 9. They are compared in Table I, to experiment at $T=280$ K, i.e., just below the tetragonal orthorhombic phase transition. There, $D^P = 133$ G from Fig. 6 or 123×10^{-4} cm⁻¹. The quantity computed is 115×10^{-4} cm⁻¹ in excellent agreement. Note that b_2^2 and b_2^0 contribute additionally.

 b_2^2 and b_2^0 are both positive in the orthorhombic phase. v_2 and v_2 are both positive in the orthorhomology phase
Consequently, $E_0^b = -\frac{1}{2}(\frac{1}{3}b_2^2 + b_2^0)$ is definitely negative
near -101×10^{-4} cm⁻¹, whereas the measured quantity $E_0 = +32 \times 10^{-4}$ cm⁻¹. Referring to Eq. (5) for $D(T)$, $E_0(T)$ and E_0^P also have to be related by

$$
E_0(T) = E_0^P + E_0^T \t\t(15)
$$

i.e., a term due to thermal fluctuations. For it from Eq. (15), $E_0^T = (32 \times 10^{-4} - E_0^P) \approx 133 \times 10^{-4}$ cm⁻¹. To arrive at the latter number, we have used the computed quantity of E_0^P to which we attach a relatively high degree of confidence because the agreement between calculated and observed D_0^P is so good. The E_0^T fluctuation term we deduced is comparable to D_0^T , which varies between 70×10^{-4} cm⁻¹ and 110×10^{-4} cm⁻¹ in the orthorhom bic phase. This is quite a satisfactory result because we expect the local thermal fluctuations of the Cr^{3+} in the

octahedral cage to be comparable in the [001] and [110] directions.

For $Fe³⁺$, a one-parameter model was used to account for the b_2^m values. In this model, the Fe³⁺ was displaced by an amount Δd along the ferroelectric axes from the crystallographic Ti^{4+} site, d being the average Ti-O distance. By using the same parameter values Δ for Cr³⁺ as those in Table II of Ref. 4 for Fe^{3+} , i.e., assuming the average Cr^{3+} coordinate to be the same as Fe^{3+} , values given in column 2 of Table I are obtained. They are close to the ones observed. This also pertains to the rhombohedral phase where the observed D_r^P values of Fe³⁺ and Cr^{3+} calculated from the centered model both deviate by about a factor of 4 to 5. This could mean that both ions lie very slightly off center along [111] in that phase. All in all, the agreement between experimental second-order Hamiltonian values, especially the $D(T)$, calculated from the $\overline{b}_2(R)$ curve of Müller and Berlinger is really satisfactory.

The t_2 exponent of $+0.38$ explaining the Hamiltonian parameters D^T in the tetragonal and orthorhombic phases in BaTiO₃ is of the same size as obtained for $SrTiO₃$ but of opposite sign. For the latter perovskite, $t_2 = -0.36$. Referring to Fig. 8 and our earlier discussion, this proves that $R > R_m$ in BaTiO₃, and the difference between R_m and R is about the same as in SrTiO₃ but in the opposite direction from R_m as marked on the figure, $|R - R_m| \approx 0.15$ Å. On the other hand, where the oxygens surrounding the Cr^{3+} at their intrinsic distance $\overline{R} \approx 2.003$ Å with $R_m = 1.967$ Å, $(R - R_m) = 0.036$ Å. Therefore, our data imply an effective inward relaxation of 0.021 Å. However, the size of Cr^{3+} is very close to the one of Ti^{4+} and Fe^{3+} . Because the charge misfit is already included in the $\overline{b}_2(R)$ curve,⁴ there must be an additional mechanism to cause this effective inward relaxation. The only possibility is the large thermal fluctuations of the Cr^{3+} as exemplified by the low Einstein or Debye energies obtained from low-temperature behavior and its analysis in Sec. IIIB and Fig. 7. These fluctuations result in an effectively reduced Cr^{3+} -O²⁻ distance.

V. CONCLUSIONS

The present EPR experiments and their analysis are satisfactory in two ways: They give insight into the local

TABLE I. Comparison of $Cr³⁺$ EPR data in the three FEP's of BaTiO₃ with two models on the basis of the superposition model.

Phase	Experimental EPR data $(10^{-4} \text{ cm}^{-1})$	One-parameter model ^a $(10^{-4} \text{ cm}^{-1})$	Centered model ^b $(10^{-4} \text{ cm}^{-1})$
Tetragonal	$D_t^P = -199(2)$ $sgn D_t^P = -sgn D_0^P$	$D_t^P = -213(36)$	$D_t^P = -199$
Orthorhombic	D_0^P = + 123(1) $E_0^P = +32 - E^T$	$D_0^P = + 108(18)$ $E_0^P = -98(17)$	$D_0^P = + 115(19)$ $E_0^P = -101(17)$
Rhombohedral	$D_r^P = +60(1)$	$D_r^P = +83(14)$	$D_r^P = +299(39)$

Political Δ the same as for Fe³⁺ in Ref. 7.

 D_t^P used to determine $|t_2|$.

behavior of Cr^{3+} in BaTiO₃ on Ti⁴⁺ sites, and at the same time confirm the superposition model for Cr^{3+} in an oxygen octahedral environment as published recently by Müller and Berlinger.⁷

The work presented proves that the Cr^{3+} remains centered in its oxygen cage in the three ferroelectric BaTiO₃ phases, like the $Fe³⁺$. However, its local potential is conphases, the the 1 c \cdots for $\overline{F}e^{3+}$, with large ionic fluctuations of the order of 0.02 Å larger than $Fe³⁺$ and a local Debye energy of 236.6 K.

The superposition model for Cr^{3+} accounts for the second-order spin-Hamiltonian parameters as well as those for Fe^{3+} , despite other crystal-field main-axis orien-

tations in the orthorhombic phase. Furthermore, the data of Cr^{3+} in BaTiO₃ prove the existence of a maximum in the superposition-model $\overline{b}_2(R)$ parameter, near the $R = 1.96$ Å recently inferred from EPR stress experiments of Cr^{3+} in cubic SrTiO₃.⁷

ACKNOWLEDGMENTS

The authors would like to thank Professor W. Kündig for the Debye and Einstein oscillator fits in Fig. 7, and Dr. K. W. Blazey and Dr. E. Siegel for a critical reading of the manuscript.

- ¹E. Siegel and K. A. Müller, Phys. Rev. B 20, 3587 (1979).
- 2A. W. Hornig, R. C. Rempel, and H. E. Weaver, J. Phys. Chem. Solids 10, 1 (1959).
- 3T. Sakudo, J. Phys. Soc. Jpn. 18, 1626 (1963); T. Sakudo and H. Unoki, J. Phys. Soc.Jpn. 19, 2109 (1964}.
- ~E. Siegel and K. A. Miiller, Phys. Rev. B 19, 109 (1979).
- 5M. J. L. Sangster, J. Phys. C 14, 2889 {1981).
- ⁶H. D. Megaw, Crystal Structures: A Working Approach (Saunders, Philadelphia, 1973), p. 26.
- ⁷K. A. Müller and W. Berlinger, J. Phys. C 16, 6861 (1983).
- V. Belruss, J. Kalnajs, and A. Linz, Mater. Res. Bull. C, ⁸⁹⁹ (1971).
- 9J. Albers, First European Conference on Crystal Growth, Zurich, 1976 (unpublished), p. 150.
- 10W. Berlinger and K. A. Müller, Rev. Sci. Instrum. 48, 1161 (1977).
- 11 W. Low, Phys. Rev. 105, 801 (1957).
- ¹²K. A. Müller, Arch. Sci. (Genève) 11, 150 (1958).
- ¹³G. E. Pake and T. L. Estle, The Physical Principles of Electron Paramagnetic Resonance, Frontiers in Physics (Benjamin, New York, 1973).
- ¹⁴W. I. Merz, Phys. Rev. 95, 690 (1954); F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962). The measured polarizations P of the crystals used in our experiments were 295 K (tetragonal) 0.288 C/m²; 225 K (orthorhombic) 0.337 C/m^2 ; 125 K (rhombohedral) 0.361 C/m^2 [W. Kuhn (private communication)].
- ¹⁵K. N. Shrivastava, Phys. Rep. 20C, 137 (1975).
- ¹⁶K. A. Müller, Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. (Paris) Lett. 43, LS37 (1982).
- ¹⁷P. Toledano (private communication).
- 18K. W. Blazey, T. L. Estle, E. Holzschuh, W. Odermatt, and B. D. Patterson, Phys. Rev. B 27, 15 (1983).
- ¹⁹V. G. Bhide and M. S. Multani, Phys. Rev. A 139, 1983 (1965).