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In orientationally disordered crystals, th~ translation-rotation coupling affects both collective and
local properties near ferroelastic phase transitions. The anomalous temperature behavior of the stat-
ic mean-square displacements is investigated. The single-particle orientational distribution function
in a deformable lattice is calculated and it is shown that molecular symmetry plays an essential role
in addition to site symmetry. The theory is applied to a quantitative study of the alkali cyanides in

the disordered phase and leads to an understanding of experimental results.

I. INTRODUCTION

The coupling of orientational motion to lattice vibra-
tions is most apparent at structural phase transitions
where the occurrence of orientational order is accom-
panied by a change in lattice structure. The alkali
cyanides constitute a model system for the study of
translation-rotation (T-R) coupling. In addition to dras-
tic anomalies in static and dynamic collective proper-
ties, ' one finds unusual behavior in local properties. As
examples, we mention exceptionally large mean-square
translational displacements and the temperature
dependence of the single-particle orientational distribution
function.

It is the purpose of the present paper to study the influ-
ence of the bilinear T-R coupling on local properties and
to show the mutual relation between local and collective
properties. From the theory of bilinear T-R coupling in
orientationally disordered crystals, it is well known that
the local orientational susceptibility influences the soften-
ing of the elastic constants. On the other hand, the
single-particle properties are themselves dependent on a
modification of the single-particle potential due to T-R
coupling.

The single-particle orientational distribution function is
directly accessible to neutron and x-ray scattering. The
corresponding structure factor in orientationally disor-
dered crystals is most conveniently expanded in terms of
symmetry-adapted functions. ' " The coefficients of
such an expansion, which are found to be temperature
dependent, are treated as experimental parameters. ""
The calculation of these coefficients from a microscopic
theory has been an open question and it has been suggest-
ed that such a calculation should include the effect of T-R
coupling. '

Molecular dynamics simulations have contributed sub-
stantially to our present understanding of T-R coupling. '

The interaction of the charge distribution of the CN ion
with the alkali atoms in the alkali cyanides was first stud-
ied by molecular dynamics. Subsequently, it was shown
in an extension of the analytic theory that short-range

repulsions and Coulomb forces act in an opposite sense. '

The computer simulations take into account the asym-
metry of the CN ion, but so far the deviations from cen-
trosymmetry have been ignored in the theoretical
analysis. ' In a preceding paper, ' we have studied the
T-R coupling from a general point of view of molecular
symmetry. In the following we shall show that the devia-
tions of the CN ion from centrosymmetry play an im-
portant role.

The content of the present paper is as follows. We first
(Sec. II) consider the formal relations between collective
and single-particle susceptibilities in the presence of bilin-
ear T-R coupling. The self-interaction of the molecule
with the lattice is calculated by including even and odd I
rotational modes in the bilinear T-R coupling. In Sec. III
the modified single-particle potential is used to calculate
the single-particle orientational probability distribution
function. Next, (Sec. IV) local displacement-displacement
correlation functions are calculated and their anomalous
temperature behavior is obtained. In Sec. V we present a
detailed numerical application. to KCN on the basis of mi-
croscopic interaction potentials.

II. DISPLACIVE AND ORIENTATIONAL
CORRELATIONS

y yTT+ yTR+ ERR+ yR

The harmonic lattice part reads

V = —,
'
pup( —k)Mp~(k)u~(k),

k

(2.1)

(2.2a)

where uz(k) are the Fourier-transformed lattice displace-
ments and M(k) denotes the bare dynamical matrix. The
index p labels the particles in the primitive cell and indi-
cates the Cartesian components. The bilinear translation-

We start from a model of a crystal with bilinear T-R
coupling which was originally derived in Ref. 8. Here we
use a generalization of the model as it was given in our
previous paper' hereafter referred to as I. We consider a
potential of the form

32 5827 1985 The American Physical Society



5828 K. H. MICHEL AND J. M. ROWE 32

rotation coupling reads

V =gv~z(k) Y~( —k)uz(k) . (2.2b)

Xoix=PZo ' fdn Y„'(n)exp[—PW"(n)],

Zo ——fdn exp[ PWR(n)] .

(2.9a)

(2.9b)

k
(2.2c)

where J~~ represents, for instance, an electrostatic mul-
tipole interaction. ' Finally, the single-particle orienta-
tional potential reads

V =+gag Yg (n(n)),
n A,o

(2.2d)

where n refers to the nth molecule (or molecular ion) in
the lattice. We recall that A,o denotes those values of I and
I which refer to the unit representation of the site point
group.

As has been shown in I, the potential (2.1) can be re-
placed by an effective orientational potential where the
translations have been eliminated:

WRR+ VRR+ g WR(n) (2 3)

Here, Y~(k) are the Fourier-transformed orientational
coordinates in the form of symmetry-adapted functions,
A, = t l, l, a] labels the representation I" of the static site, 1

is the angular momentum number, and n denotes the
column (row) within the representation. The bilinear in-
teraction coefficients have also been specified in terms of
basic atomic potentials. The direct orientational interac-
tion is of the form

A second-order phase transition occurs at the highest tern-
perature where X~~(k) becomes divergent. This corre-
sponds to the largest eigenvalue of

rC(k) =(C(k)—C' —J(k))XoP-' . (2.10)

As has been shown previously, in case of a bilinear T-R
coupling, there exists an exact relation between the collec-
tive orientational susceptibility and the collective
displacement-displacement susceptibility

[D '(k)]p —P(up(k)u ( —k)),
D '(k)=M '(k)[l+U ( —k)X(k)u(k)M '(k)] .

(2.11a)

s
o

—Cf —Jf yf(T)
ac 44

(2.12)

(2.11b)

Both Eqs. (2.8) and (2.11b) are obtained from a same free
energy (see Appendix). A divergence in X(k) leads to a
divergence of the displacement-displacement susceptibili-
ty, or equivalently, to a softening of the corresponding
displacive restoring forces.

In the alkali cyanides we mention the anomalous
behavior of the shear elastic constants or of the transverse
acoustic phonons. The instability is of T2g symmetry,
and for k~O and perpendicular to one of the crystal
axes, ' * we obtain T, from Eq. (2.10) as a solution of

where

and

k

W (n)=+~~, Y~,(n) —-QCu, [Y~(»]'.
Xo Ar

(2.4a)

(2.4b)

Here the potential parameter 8 represents the interaction
of an 1 =2, T2g=f orientational mode with the deforma-
tion of the surrounding lattice [see Eq. (4.20) of I]. The
elastic constants c44 are obtained from the bare dynamical
matrix M„a denotes half the cubic lattic constant
(a =3.26 A for KCN).

The single-particle expectation value yf reads

Here, W represents the effective-lattice-mediated in-
teraction with

yf ——Zo fdn[ Yz ~ (n)] exp[ —W (n)], (2.13)

C(k) =U (k)M '(k) U'( —k), (2.5)

and C' is the self-interaction which is due to the On-
sager' ' reaction field

C'= —QC(k) . (2.6)

X„(k)=Xo„[1—(C(k) —C' —J(k))Xo]-'» . (2.8)

We recall that C' is a diagonal matrix, as is also the case
for the single-particle susceptibility

From the interaction (2.3), we can directly obtain the
orientational susceptibility

X (k)=P(Yg(k)Yg( —k)) . (2.7)

Here, /3=(k&T) ' and the brackets ( ) denote a statisti-
cal average with respect to the potential (2.3). Using
methods of molecular-field theory, we obtain

T —T, (T)
T + ( Cf +Jf )yf ( T)

(2.14)

Expressions (2.12) and (2.14) constitute a generalization of
previous results in several respects. In comparison with
Ref. 8, the self-interaction C and the direct orientational
coupIing is taken into account. In comparison with Refs.
2b and 21, the orientational motion is treated as a con-
tinuous process and no restriction is made to a few orien-
tations of the CN ion as is done in discrete tunneling
models. Expression (2.14) also differs from Eq. (5.23) of
Ref. 15, the reason being that there the collective orienta-
tional susceptibility is calculated without the lattice-

where the function yf2~ is defined by Eq. (A4a) of I. The
self-interaction C' and the single-particle potential W
will be studied in detail in the next section. The elastic
constants are obtained from Eq. (2.11b) in the long wave-
length limit. In particular, we obtain with the present
potential
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III. SELF-INTERACTION AND
ORIENTATIONAL DISTRIBUTION

Here we want to study the self-interaction contribution
to the single-particle potential. Since for fixed l and I, all
members a of Cii with A, =(l, l,a) are equal, we can
write

,' QCi—.), l &).«)]'= ,
' QC(—)r)+[I,'(a«)]'.
lr a

Using the generalized Unsold theorem

+[I'), «) j'= +PI.O'"&i,,(Q»
a A,p

(3.1)

(3.2)

where Ao=(10, 10, 1) refers to the unit representation of
the molecular site group, we rewrite Eq. (3.1) as

kp

(3.3a)

mediated interaction C(k) and without C'. Such an ap-
proximation does not lead to a simultaneous divergence of
X(k) and D '(k) as one should expect from a bilinear in-
teraction.

From Eqs. (2.8), (2.9a), and (2.9b) it is obvious that the
self-interaction C' influences both the collective and the
local properties at orientational phase transitions. It is
known, mainly from the study of Jahn-Teller systems,
that C'leads essentially to a change of T, in the collective
quantities such as the orientational and displacive suscep-
tibilities X(k) and D '(k). We notice that in Eq. (2.8)
only those elements of C', of which the index A, =—(I,l, a)
refers to the same representation I as the order parame-
ter, are relevant. In particular, this property is also seen
in Eq. (2.12). On the other hand, the single-particle po-
tential W, Eq. (2.4b) contains a summation over the
whole set I I,l,aj. It is therefore to be expected that the
self-interaction plays an important role in determining the
single-particle orientational behavior.

1
C(r, !)= gu ' (k)(M '(k)) u '

( —k) .
k

(3.5)

a=1 a=1

(3.6)

On the right-hand side of Eq. (3.6) we have dropped ir-
relevant constants. The function %41 denotes the cubic
harmonic with l =4 and 2 1g symmetry. In Cartesian
coordinates one has

' 1/2

K4((Q) =—5 21 4 4 4(x +y +z ——, ) .
4 4m.

(3.7)

The contribution to (3.3b) due to l =2 modes of E and
&4' =o.185C~, 2) and a4' ' ' ———0.185C(f 2)

respectively.
The quantities C~, 2) and C(f 2) are calculated by means

of Eq. (3.5). For the evaluation of C(, 2), e=Eg, 1=2,—we
use the bilinear coupling matrix

u" '(k)= 0,
u(e, 2)(k)

(m. )'" (3.8a)

where 0 is a 2&& 3 null matrix and u" '(k) is given by Eq.
(4.17) of I:

This expression corresponds to Eq. (2.6) for given (l, l).
Although the present considerations, since they are

based on group theory, are general and not restricted to
any given system, we shall now apply them to the case of
the alkali cyanides in the orientationally disordered cubic
phase. We consider first the representations of Eg and
Tzg symmetry of which the functions I"2, a=1,2 and
Y2 ~, a = 1,2, 3 form a basis. Here we use the notation in-f
troduced in Sec. II of I. Application of Eq. (3.2) yields

' 1/2
3

E4((Q) .

with the definition

s & ~ s (I, l)
ai10 2 ~C(l, r)AO

r, r
(3.3b)

u" '(k)=i2A
sin(k„a ) sin(k~a )

—v 3 sin(k„a) ~3 sin(k~a)

—2sin(k, a )

The total single-particle potential W, Eq. (2.4b), then
reads

(3.4)

where (n) stands for Q(n). The coefficients a'i measure
0

the contribution of the self-interaction to the single-
particle potential; they constitute the Onsager reaction
field' on the molecule in the lattice. Our procedure of
evaluating the self-interaction coefficients a)„consists in

0
calculating first the coefficients )33'"' ' from Eq. (3.2) of a
given representation I and a given l. Then we calculate
the matrix elements C() r) for the same (l, l). Explicitly,
for fixed l and I", where the representation I has dimen-
sion a„alla elements, aE [ 1 —a, ), of the diagonal ma-
trix Caa ' are equal. We therefore write for such ele-
ments (for fixed a)

(3.8b)

u(f, 2)(k)

(m. )'" (3.9a)

where 0 is the 3 X 3 null matrix, while u' ' '(k) is given by
Eq. (4.19) of I:

u'f" (k) =i 2B
sin(k~a) sin(k„a) 0

0 sin(k, a) sin(k~a)

0 sink„a )sin(k, a)

(3.9b)

Here, m, is the mass of the alkali atom; the coupling
coefficient 3 is given by Eq. (4.18) of I. Similarly, for the
calculation of C(f 2) f=T2g l =2, we use the coupling
matrix
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g[ Y3"~(Q)] =0.35K4i(Q)+0.25K6i(Q), (3.10)

The coupling coefficient B is given by Eq. (4.20) of I.
So far we have considered only the contribution of 1 =2

of the T-R coupling to the self-interaction. Since the
CN ion is not a symmetric dumbbell, we also have to in-
vestigate the contributions to the self-interaction which
are due to odd values of 1. We start with the three func-
tions 1 =1 of T,„symmetry, which have been defined in
Eqs. (A2a) —(A2c) of I. We obtain immediately

g~(Yi ~) =3/4' and the corresponding contribution to
O'R is an irrelevant constant. More interesting are the
contributions from 1 =3 functions. First we have a triplet
of Ti„symmetry, given by expressions (A5a) —(A5c) of I.
The corresponding sum (3.2) is obtained as

metry. It reads in Cartesian coordinates

K6i(Q=, (26/4m )'i [x y z + —,', [K4, ]—„,I . (3.11)

—(lu, 3)(I )

(I )1/2
(3.12a)

Here the square brackets indicate that the function %41 is
taken without its normalization factor. The contributions
to (3.3b) due to 1=3 modes of Ti„symmetry then are
a4""' ' ——0. 175C( ig 3) for the coefficient of K4i and
a6""' ' ——0. 125C(i 3) for the coefficient of K6i. The ma-
trix element Cii„3)is obtained from Eq. (3.5) with the
coupling matrix

Here, mD stands for the mass of the molecular ion; U""' '

is a 3 X 3 diagonal matrix, similar to Eq. (4.13) of I:where K6i is the cubic harmonic with 1=6 of His sym-
I

U"" 3'(k) =2(Fcos(k„a)+G[cos(k~a)+cos(k, a)],F cos(k~a)

+G[cos(k,a)+cos(k„a)],Fcos(k, a)+G[cos(k„a)+cos(k»a)]) . (3.12b)

Here we have quoted within the heavy parentheses only the diagonal elements. The coefficients F and G are defined by
Eqs. (4.15a) and (4.15b) of I.

A second contribution from 1=3 modes to the self-interaction is obtained from the triplet of T2„symmetry. The
functions Y3"~ are given by Eqs. (A6)—(A6c) of I. The sum (3.2) now reads

g[Y3" (Q)]=—0.12K4i(Q) —0.45K6i(Q) . (3.13)

The contributions to (3.3b) are aq' "' ' ———0.06C(2 3) for the coefficient of K4i and a6' "' ' ———0.225C(p 3) for the coef-
ficient of K6i. The matrix element Ci2g 3) is obtained form a 3&&6 coupling matrix of the same structure as Eqs. (3.12a)
and (3.12b) with

U' "'3'(k) =2(H cos(k„a)+L[coskYa)+cos(k, a)],H cos(k~a)

+L[cos(k,a)+cos(k„a)],H cos( k, a)+ L[c os( k„a) +cos( k~ a)]) . (3.14)

8' (Q) =a4iK4i(Q)+a6iK6i(Q),

where

(3.15)

The coefficients H and L are given by Eqs. (4.16a) and
(4.16b) of I. The total single-particle potential (3.4) for
the high-temperature Fm 3m phase of the alkali cyanides
is then obtained in the form

1P(Q)= +a4iK4i(Q)+iT6iK6i(Q)+
4m.

where the coefficients

(3.19a)

where Zo is defined by Eq. (2.9b). The orientational prob-
ability distribution is expanded in terins of cubic harmon-
1cs

s&n1:0'n —n ~ (3.16) a„i——fdQP(Q)K„i(Q), n =4,6 (3.19b)

with n =4 oi 6. Here, a& and a6 are the expansion coeffi-
cients of the rigid-lattice potential (2.2d). The coefficients
a& and a6 are obtained by addition of the respective con-
tributions from the self-interactions

depend on temperature. These coefficients are usually
determined from neutron-diffraction data; ' " a4i has'
also been obtained from the integrated intensities of the
Eg and T2~ Raman spectra.

s s(e2), s(f 2), s(1u3), s(2u3) (3.17a) IV. LOCAL DISPLACEMENTS

and

s s (1u, 3), s (2u, 3) (3.17b)

P(Q)=ZO 'e p[ —PW (Q)], (3.18)

Knowledge of the single-particle potential (3.15) enables
us to calculate the single-particle orientational probability
distribution

The softening of the elastic constants or of the corre-
sponding acoustic phonons is the most obvious rnanifesta-
tion of the ferroelastic phase transition. ' On the other
hand, various experiments such as neutron scattering,
-Mossbauer techniques, and synchroton radiation reveal
anomalies in the local displacive correlation function.

We recall that the displacement vector (uz(k)) has the
components [see Eq. (2.24) of I]
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(u~(k) )'= (u & (k),u z (k),u 3 (k), u
& (k), u z(k), u 3(k)),

(4.1)

where the index D refers to the CN ion and the index a to
the alkali atom. Combining Eqs. (2.11a} and (2.lib), we
find that the various matrix elements of the collective
displacement-displacement correlation function are given
by

( uz(k)u~( —k) }
=P 'Mz„'(k)[1+u ( —k)X(k)u(k)M '(k)] ~. (4.2)

( u (n, ic)uj'(n, ic) }= g(u (k)uj'( —k) },Xm.
„

(4.3a)

From the definition of the Fourier transforms, Eqs.
(2.22a) and (2.22b) from I, it follows that the
displacement-displacement correlation functions in real
space are given by

300
I I I T(K}

T 200

FIG. 1. Temperature dependence of mean-square displace-
ments (u„)for K+ and CN, and of 5 (Ic) with Ic correspond-
ing to position (a, 0,0) of K+. All in units 10 A . + 's are
experimental results for K+, 's for CN, experimental errors
+0.2g 10-' A'.

(u; (n)u~ (n)) = Q(u; (k)uj ( —k)),1

XmD

(u (n, ic)u (n))=, g(u (k)u ( —k))
N(m, mD}'~2 g

(4.3b)
features have been found previously by neutron-
diffraction experiments. '

Finally, we have also calculated the displacement-
displacement correlation function

&& cos[k ~(ic)] . (4.3c)

Here we have used the inversion symmetry of the disor-
dered crystal. Knowing the matrix elements (4.2), we car-
ry out the sums on the right-hand side in Eqs.
(4.3a)—(4.3c) and obtain the displacement correlation
function in real space. Although the k sums have to be
carried out numerically, the qualitative behavior of these
correlation functions can be discussed as follows. At
large T&&T„X(k)ccrc cc T ' and (uu) ccp ~M 'cc T,
as follows from Eq. (4.2). Consequently, the correlation
functions (4.3a)—(4.3c) decrease with decreasing tempera-
ture. This normal behavior disappears at lower T, where
the full structure of X(k), Eq. (2.8), has to be taken into
account. An increase of the orientational susceptibility
g(k) leads also to an increase of the displacement correla-
tion function. By approaching T„the increase of X(k)
dominates the influence of the factor p ' in Eq. (4.2).
The drastic change of X(k) by approaching T, is
smoothed out in Eqs. (4.3a)—(4.3c) by the k integral over
the Brillouin zone. The temperature behavior depends on
the anisotropy of X(k) in k space. In the disordered
phase of the alkah cyanides, the divergence of X(k) occurs
for k approaching zero in a plane perpendicular to one of
the cubic axes. This is explicitly the case for the present
microscopic model. On the other hand, it can be in-
ferred' ' from the softening of the elastic constants c44.
One then expects a logarithmic increase of ((u(n)) ) for
T approaching T, . On the basis of Eq. (4.2), we have
calculated the integrals in expressions (4.3a)—(4.3c), by
computer. The results have been considered as a function
of temperature down to values of T corresponding to the
experimental (first-order) phase transition. The results are
shown in Fig. 1. Beside the anomalous temperature
behavior, one should also notice the anomalously large nu-
merical value of the mean-square displacements. Both

b.,J (a.)=([u; (n) —ug'(n, a.)][uJ (n) —u'. (n, lc)]),
which can be rewritten as

(u; (k)u ( —k)} (u (k)u'( —k))
6;J. (a. )=—

mD mg

(4.4a)

V. NUMERICAL STUDY OF A MODEL

Here we want to illustrate the main theoretical results
of the previous sections by carrying out a numerical study
of KCN as a model system with T-R coupling. The pro-
cedure of such a study, irrespective of the particular sys-
tem, contains several steps. First, one has to make an ap-
propriate choice of the interaction potential [Eq. (2.3) of
I] which determines the T-R coupling. Depending on the
nature of the interactions, this potential can be the sum of
several contributions: repulsive sterical hindrance, elec-
trostatic multipole, van der Waals, etc. Secondly, one
makes a choice of symmetry-adapted functions, taking

(u; (k)ug( —k) }—2, cosk. r(ic) . (4.4b)
(m. m~)'~'

The temperature variation of b, is also shown in Fig. 1.
We should notice that the function b, , which has been
plotted in Ref. 26, corresponds to

b, ;~ (Ic)=([u; (n)+u (n, x.)][u~ (n)+uJ'(n, a.)]) (4.5)

and not to 6+~, as has been erroneously stated. Both
quantities differ by the sign of the mixed term (u; uJ'}.

Concluding this section we may state that the mean-
square displacements in the I'm3m phase of the alkali
cyanides are much larger than the corresponding quanti-
ties in the alkali halides and show anomalous tempera-
ture behavior. Both features are due to the important T-R
coupling.
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V(n, ~)=V (n, a)+ V (n, v)+ V (n, x. ) . (5.1)

Here, V denotes the repulsive sterical hindrance poten-
tial of the form

into account the symmetry of the molecule (or ion) and of
the site. Thirdly, the elements of the bilinear interaction
matrix u'"(~) and the expansion coefficients of the rigid-
lattice potential U~

' have to be calculated for the various

contributions to the potential. The terms which refer to a
same representation I and angular momentum number l
have to be added. As a result, one obtains the value of the
coefficients a4, a6, A, B, D, etc. As a fourth step, one
calculates the bilinear coupling matrices U' " in k space.
Finally, one evaluates the various physical quantities us-
ing the general expressions of X(k), T„W,etc.

The potential of a CN ion in KCN interacting with
one of the six nearest-neighbor X atoms in position ~(a) is
taken as a sum of three terms

ion, with the positive charge of the K atom,

V (n, ~)=gqrq„/R(n, y, x.) .
r

(5.7)

Here, R(n, y, v) is of the form (5.3), where d"(Q) has to be
replaced by rr(Q), the position vector of the yth charge in
the molecule. The charge distribution of the CN ion in
the crystal is different from the charge distribution of the
isolated ion in the gas phase. The real charge distribu-
tion in the crystal is not very well known. Here we shall
use a three-charge model, ' with the following coordinates
for the CN ion: q'"= —1.0 (in electronic charge units

~

e ~), located at r"'= —0.800 A (with respect to the
center of mass of the CN ion); q' '=+0.8,
y = —Q. 363 A q

3 = —Q. 8, p =+0.540 A.
Taking half the cubic lattice constant a=3.26 A, we

have first calculated by numerical integration the rigid-
lattice coefficients a4 and a6 in Eq. (2.2d). According to
Eqs. (2.6a) and (2.8b) of I, we obtain

—C(~)R(n v z)VBM( ) yC( ) cP R(n v tc)
(5.2) a~ =aug' (a), ~=1—6, (5.8a)

This is a sum of Born-Mayer potentials, where R(n, v, ~) is
the distance between the position of the vth nucleus in the
molecule n and the position of the surrounding single
atom ~:

where

uI„(~)= fdQ V' ' (Q,a) Y'g (Q) . (5.8b)

R(n v, K) =
f
R(n, ~)—R(n, d')

/

Here the nucleus of the single atom is located at

R(n, a) =X(n)+~(~)+u(n, a),

(5.3)

(5.4)

Here, I'~ stands for E4~ or E6& of A&g symmetry, corre-

sponding to a4 and a6, respectively. The index P indi-
cates the nature of the potential: BM, W, or C. V' '

stands for the corresponding rigid-lattice potential. The
total values of a~ are then obtained as

0

where X(n) is the equilibrium position of the center of
mass of the nth molecule, r(a. ) the equilibrium position of
the ath surrounding atom with respect to X(n), and
u(n, ~) denotes the atomic displacement. For further de-
tails on the lattice structure of KCN, we refer to Sec. II of
I. The position of the vth nucleus of the nth molecule is
given by

R (n, d")=X(n)+ d'(Q(n))+u(n) . (5.5)

V (n, ~)= —gB( '/R (n, v, z) . (5.6)

0
The constants have the value B'"=2.33&10 K/A,
B' '=1.91&10 K/A .

The last term in Eq. (5.1) stands for the Coulomb in-
teraction' ' of the electric charge distribution of the CN

Here, d"(Q) denotes the position of the vth nucleus in the
molecule (ion) with respect to the molecular center of
mass. The polar angles (e,y)—:Q are defined in the crys-
tal fixed system of axes. The length of the vector d is
denoted by d' '. For the CN ion interacting with the six
surrounding E atoms in KCN, we have taken the follow-
ing values of the parameters: position of C (v= 1) nu-
cleus with respect to the center of mass d"'= —0.63 A;
position of the N (v=2) nucleus, d' '=+0.54 A; con-
stants of the Born-Mayer interaction of the C atom with
K, C')' ——1.952)&10 K, Cg ——3.18 A ', interaction of
%with E C& =2 05&&10 K~ Cp =3 28 A

The second term on the right-hand side of Eq. (5.1)
stands for a van der Waals potential of the form

a~ =gaq, I'= IBM, W, CI .
P

(5.8c)

TABLE I. Values of coefficients calculated for three contri-
butions to the potential. (gp stands for the sntn of the poten-

tials. )

P

a4
CX6

8
D

6
H
L

1452.0
45.6

4457. 1

1470.4
—3738.2

385.3
1065.9

156.43
0

—201.7

—1138.1
—25.1

—2699.8
—3117.5
—1531.1

765.5
845.4
317.1

0
—409.2

—129.7
—3.9

—421.4
—176.9

401.0
—53.6
—97.8
—15.7

0
20.3

184.2
16.5

1335.9
—1824.0
—4868.3

1097.2
1813.4
457.8

0
—590.6

The total values a4 and a6 are given in Table I, last
column.

The other coefficients which determine the translation-
rotation coupling are obtained from Eq. (4.18) of I,

w'= fdQ v(, '"(Q,~= I) r', , (Q), (5.9)

for the coupling of Es symmetry, and from Eq. (4.20) of
I, for the coupling of Tz~ symmetry

B = fdQ Vq" (Q, x.=l)Ff~, (Q) . (5.10)
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TABLE II. Values calculated by numerical integration for self-energies C~r I& [units (K)].

es2

1536.2

f,2

928.1

1u, l 1 u~3

2228.6

2u~3

429.0

Here, V " denotes the first derivative with respect to X;
of the potential V . The total values of A and B enter the
coupling matrix (3.8b) and (3.9b), respectively:

A =+A, B=gB
P P

(5.11)

The values are given in Table I, last column.
In a similar way we calculate the values of D and Z,

making use, respectively, of Eqs. (4.14a) and (4.14b) of I.
These coefficients couple the l =1 orientational fiuctua-
tions of T» symmetry to translations. We find with the
present set of parameters the values quoted in Table I.
We recall from I that the odd values of l account for the
fact that the molecule is noncentrosymmetric. For the
case of I =3, we have a first triplet of basis functions with
Ti„symmetry. The corresponding coefficients F and 6
are obtained, respectively, from Eqs. (4.15a) and (4.15b) of
I. Finally, we have a second triplet for the case l =3, of
T2„symmetry. The coefficients H and I. are obtained
from Eqs. (4.16a) and (4.16b), respectively, of I.

All coefficients for the potentials BM, C, and W are
quoted in Table I, gz stands for the sum of the contribu-
tions from the three potentials. These values from the last
column of Table I are used to calculate the coupling ma-
trices ui(k), given by Eqs. (3.8b), (3.9b), (3.12b), and
(3.14). The effective-lattice-mediated interaction follows
then from Eq. (2.5). The dynamical matrix M(k) is the
one derived in Ref. 32 by using the shell model, without
the translation-rotation terms which are not included in
the bare dynamical matrix. The self-energies C(r t) are
calculated by numerical integrations. The k-space sum-
mations were performed by a sampling technique in the
irreducible «portion of the Brillouin zone, in which the
sampling mesh is increased near k=0 in order to mini-
mize the errors arising from the strong elastic anisotropy
in the KCN crystal dynamics. Since the summand in this
and other summations does not have the full cubic sym-
metry, transformation matrices are used to reduce the
sum back to the irreducible zone. The method of setting
up a mesh in k space is that of Gilat and Raubenheimer.
The mesh is shifted, as in Ref. 33, so that the term k =0
is excluded. The exclusion of this term is justified in this
case since it involves the shape of the sample and cannot
affect the results of the present calculation. Several tests
of this program (e.g., summing over the entire Brillouin

zone rather than ~', , calculating separately for quantities
that are related by symmetry, and changing mesh sizes)
have been performed in order to ensure that the results are
reliable. The values of C(r t) are quoted in Table II [units
(K)].

Next we calculate the self-energy contributions to the
single-particle potential. The coefficients a'i' ' ' are ob-

tained from Sec. III. They are quoted in Table III. In the
last column we have quoted again the sum, i.e., a4 and a6.
These values have to be combined, according to Eq. (3.16),
with the corresponding quantities aq and a6 from the
rigid-lattice potential, which are quoted in the last column
of Table I. We then obtain a4i ———295 K; a6i ———165 K
as coefficients of the. single-particle potential W, Eq.
(3.15). The single-particle potential has been used for the
evaluation of P(Q) according to Eqs. (3.19a) and (3.19b).
The projection of P(Q) in the [110]plane of the crystal is
shown in Fig. 2. Comparing this result with the corre-
sponding Fig. 1 in Ref. 7, obtained from neutron-
diffraction data, we see that our theoretical result is in
more close agreement with the shape of P(Q) for NaCN
than for KCN. The present theory reproduces several im-
portant features which are common to the diffraction
data for both substances: the direction [110] corre-
sponds to an absolute minimum in P(Q) and its intensity
decreases with decreasing temperature; on the other hand,
the importance of the orientation in the [001] direction in-
creases with decreasing T. The coefficient a4i, defined by
Eq. (3.19), is found to increase slightly with decreasing T.
This theoretical result is also in agreement with con-
clusions drawn from Raman scattering measurements in
NaCN and in KCN.

The transition temperature is obtained from Eqs. (2.12)
and (2.13). We use the values of parameters: B=—1824
K/A, Cf ——928. 12 K, a4i and a6i given by Eq. (5.11),
a=3.26 A, and c44 ——0.5)&10" dyn/cm. Our present
charge distribution gives a quadrupole moment
Q=0.8Qo, where Qo= —4.64(10 ' esuA ) is the free-
ion value. From the expressions of the direct interaction
given in Ref. 15, we then deduce that Jf has the value
828.37 K. The single-particle expectation value yf enter-
ing Eq. (2.12) is calculated by means of Eq. (2.13) as a
function of temperature. We obtain a solution T, =255
K, yf ——0.066. This value of T, is too large in compar-
ison with the experimental value = 168 K in KCN.

TABLE III. Self-energy contributions to the single-particle potential [units (K)].

Q=o 8Qo

Q =0 7Qo

s(r, l )
CX4

s(r, l)
CK6

s(I, I)
CX4

s(r, t)
CX6

283.7

433.3

f,2

—171.7

—110.0

1u, 3

392.8
278.0
238.3
168.0

2u~3

—25.7
—96.5
—12.9
—50.31

479.1

181.5
548.7
117.69
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001 001

110

110

FIG. 3. Single-particle orientational distribution function in
the [110] plane. Full single-particle potential values uq~ ——23. 8

K, a6~ ———88.5 K, with T=200 K. Potential I:arameters of
KCN, Q =0.7QO.

FIG. 2. Single-particle orientational probability distribution
function of CN in the [110] plane of the crystal. Full single-

particle potential values a4.&
———295.7 K and a6& ———164.8 K,

temperature T=350 K {solid line) and T =250 K {dashed line).
Dashed-dotted line corresponds to rigid-lattice part of single-

particle potential, a4 ——184.2, a6 ——16.5, with T =250 K. Poten-
tial parameters of KCN, Q =0.SQo.

It is not a trivial matter to change the values of the po-
tential parameters in order to obtain a better agreement
for both the shape of P(Q) and the value of T, . Our
knowledge about the parameters of the Born-Mayer po-
tential has uncertainties of the order of 10%. More seri-
ous is the imprecise information about the electric charge
distribution of the CN ion. It is generally accepted that
the quadrupole moment of the CN ion in the solid is
smaller than the free-ion value. ' This question has been
investigated for a fixed orientation of the CN ion in the
crystal. It is, however, certain that the charge distribu-
tion and therefore also the multipole moments of the
molecular ion depend on the instantaneous orientation in
an anisotropic crystalline environment. Since we are not
able for the moment to describe this effect in a satisfacto-
ry way, we just show, as a matter of illustration, the effect
of an orientation-independent change of the charge distri-
bution. We take the previous three-charge-center model
with the location of q"'= —1.0 at r"'=0.700 A and of
q' '=+0.8 at r' '= —0.237 A but leave q' ' and r' ' un-
changed. All parameters of the Born-Mayer and van der
Waals potential are the same as in the previous case. The
new charge distribution has been chosen such that the di-
pole moment is unchanged but the quadrupole moment is
reduced: Q=0.70Qc. The change of the hexadecapole
moment which determines the strength of the Coulomb
contribution to the single-particle potential leads to new
values a4 ———749.7 and o.6 ———12.508; the values of the
other coupling parameters due to Coulomb interaction are

Jf——644. 5, A'= —2385. 1, 8 = —2754.0 E =501.7
G =188.15, H =0, and L = —242. 9; (compare with
column C of Table I). The values of a4'&'" are given in
Table III. Using the other values BM and 8 from Table
I, we obtain as a final result a4.~

——23.8 and +6~ ———88.5,
and T, =191 K, with yf ——0.08. The corresponding orien-
tational probability distribution is shown in Fig. 3. It

seems in better qualitative agreement with the neutron-
diffraction results of Ref. 7 for KCN.

VI. CONCLUDING REMARKS

We have studied the collective and local static suscepti-
bilities of an orientationally disordered crystal b'y paying
special attention to molecular symmetry. In the alkali
cyanides, this amounts to an extension of the previous
analytical theory by taking into account the noncen-
trosymmetric shape of the CN ion. The noncentrosym-
metric shape affects in an important quantitative and
qualitative way the single-particle properties. The self-
interaction of the l =3 orientational modes due to the re-
action field of the lattice leads to a modification of both
the E4. and the E6 contributions to the single-particle po-
tential. We have calculated the single-particle, orienta-
tional distribution function P(Q) in a deformable lattice.
We obtain qualitative agreement with the overall shape of
P(Q) determined from neutron diffraction. In addition,
the theoretical result shows the correct temperature
dependence, namely, an increase in the orientational order
in (100) directions with decreasing temperature.

The theory still has shortcomings. Recently we have
shown that lattice anharmonicities have a quantitative in-
fluence on the transition temperature and on the single-
particle potential. In fact, an extension of the theory of
T-R coupling in orientationally disordered crystals, using
concepts from the theory of quantum crystals, has been
proposed. However, a complete quantitative calculation
along those lines is not meaningful as long as we have
such large uncertainties about the electronic charge distri-
bution of the molecule. '

It is expected that the present theory for the calculation
of the orientational probability density function in a de-
formable lattice is of general use and has a wide range of
applications in the orientationally disordered phases of
molecular crystals.
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APPENDIX

The relation between the results (2.8) and (2.11b) for the
orientational and displacive susceptibility becomes most
transparent by considering the free energy of the
translation-rotation-coupled system. Starting from the
potential (2.1) we obtain the following expression for the
free energy: Yg(k) = —((X ) '+C'+ J(k)) 'g„u„p(k)up(k) . (A4)

where C(k) is given by Eq. (2.5). We see that the sum of
terms within square brackets is equal to the inverse of the
right-hand-side (rhs) terms in Eq. (2.8). On the other
hand, using a mell-known procedure in thermodynamics,
we start from expression (A3) to calculate the orien-
tation-orientation susceptibility and obtain Eq. (2.8).

The displacement-displacement susceptibility (2.1 la) is
obtained in a similar way. For a given configuration of
displacements t uz(k)j, we minimize F, Eq. (Al), with
respect to the orientations Yt (k) and obtain

F=QI —,
' u~*(k)~z (k)u'(k)+uq~(k)Yq'(k)up(k)

+ [(Xgg) '5„g+Cgg5„g

The corresponding expression for F now reads

F[u'(&)]= —,[~p (k) —upg( —k)((X ) '+C'+ J(k))

Xu„(k)]up*(k)u'(k) . (A5)

+J&„(k)]Y&'(k) Y„'(k)I .

uz(k)= —(M '(k))p v'~( —k)Y~(k) .

The corresponding expression for F then reads

F[Y'«)l= 2 [(&u.) '4t +C'4t +J~t (k)

—Cg„(k)]Yg'(k) Y„'(k),

(A2)

Here we have only retained terms up to second order in
the nonequilibrium expectation values u&(k) and Y~(k).
For a given configuration of orientations {Y~(k)I, we
minimize F with respect to the displacements u'(k) and
obtain

M(k) ((P) '+C'+&(&)),
u(k)~v'( —k) .

(A6a)

We have this same formal symmetry between Eqs. (A3)
and (A5).

Calculating the displacement-displacement susceptibility,
we obtain expression (2.11b). In fact, the sum of terms
within square brackets on the rhs of Eq. (A5) corresponds
to the inverse of the rhs of of Eq. (2.11b). The present
derivation leads to the conclusion that the orientational
susceptibility 7 and the displacement susceptibility D
can be obtained from each other by making the substitu-
tions
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