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The theory of coupling between rotational and translational degrees of freedom in orientationally
disordered crystals is studied in detail, with careful attention to the requirements of symmetry. An
essential feature of this coupling is the presence or absence of a center of symmetry in the molecule
or molecular ion, which determines the nature of the coupling to optic- and acoustic-phonon modes.
The present analysis is relevant for the understanding of ferroelastic phase transitions, of incom-
mensurate transitions in insulators, and of structural transitions and related properties in synthetic
organic conductors.

I. INTRODUCTION

Orientationally disordered crystals are characterized by
large-amplitude orientational motions of molecules or
molecular ions. In many cases the rotational motion of
the molecules, taken as rigid bodies, is coupled to center-
of-mass displacements of isolated atoms or neighboring
molecules. This coupling is most apparent at phase tran-
sitions in which the formation of an orientationally or-
dered state is accompanied by a change of lattice struc-
ture Ofte.n this change of lattice structure is preceded by
anomalous properties in the high-temperature symmetric
phase. As an example, we mention the softening of the
shear elastic constants with decreasing temperature in the
high-temperature cubic phase of the alkali cyanides' and
the corresponding softening of transverse acoustic pho-
nons as found by inelastic neutron scattering. In cases in
which the molecules have a dipole moment, orientational
order may result in a ferroelectric or an antiferroelectric
phase. As examples, we mention the antiferroelectric
phase of KCN (Ref. 3) and the ferroelectric phases of
NaNO2 (Ref. 4) and SC(NH)2 (Ref. 5). The last two sub-
stances are of special interest, since they also exhibit in-
commensurate phases, ' and the question then arises as to
whether translation-rotation (T-R) coupling is relevant at
incommensurate phase transitions in insulators. This
problem is of large experimental ' and theoretical'
interest. The phenomenon of T-R coupling is also likely
to be of relevance in electronic and structural phase tran-
sitions in quasi-one-dimensional synthetic organic conduc-
tors' of type (TMTSF)2X; where X is either a C1O4 (non-
centrosymmetric) or a PF6 (centrosymmetric) molecular
1on.

In recent years, molecular dynamics calculations have
been carried out for both three-' and two-' dimensional
models of the alkali cyanides and for NaNO2. ' ' These
calculations provide important information about the mi-
croscopic potentials and mechanisms which are respon-
sible for the T-R coupling.

In the present paper, we perform a systematic study of
translation-rotation coupling, paying special attention to
whether or not the molecule is centrosymmetric. For that
purpose, it is sufficient to consider linear molecules, the
main technical simplification being that the orientation is
described by two polar angles (e, tp) instead of three Euler
angles. This simplification is not fundamental as far as
the symmetry properties of the T-R coupling is con-
cerned. It is, however, essential to assume that all mole-
cules are located at centers of symmetry of the lattice in
the disordered phase. Again, for technical transparency,
we assume that the lattice structure is cubic, a nonessen-
tial restriction.

In Sec. II, we give a formulation of translation-rotation
coupling, paying special attention to the molecular sym-
metry. A bilinear T-R coupling leads to an effective-
lattice-mediated interaction between rotating molecules
and to a modification of the single-particle potential (Sec.
III). In Sec. IV, we study the nature of the coupling by
separating the translations into acoustic and optic pho-
nons. Finally, we give an extension of the theory to non-
linear molecules.

II. TRANSLATION-ROTATION COUPLING

As a model we consider a crystal which is composed of
linear molecules located at centers of symmetry in the lat-
tice. The linear molecules have orientational degrees of
freedom determined by two polar angles (e,p)—:Q. The
molecules are surrounded by nearest-neighbors individual
atoms. (In crystals where the nearest neighbors them-
selves are molecules, we would take them in spherical ap-
proximation and that would bring us back to the situation
where each molecule is a center of symmetry and sur-
rounded by spherical objects. ) To be specific, we consider
the high-temperature crystalline structure of KCN (syin-
metry Fm 3m). The center-of-mass positions of the mole-
cule (mass mD) form a regular lattice with equilibrium
position X(n). Here the triplet of integers n=(n~, n2, n3)
labels the molecules, or equivalently, the unit cells. Each
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molecule n is surrounded by six alkali-metal atoms (mass
m, ) in octahedral positions:

X(n, ~) =X(n)+r(a), x=1,2, . . . , 6 . (2.1)

Here, r(1)=(a,0,0), r(2) =(O,a, O), v(3) =(0,0,a), v(4)
=(—a, 0,0), r(5)=(0, —a,O), and v(6)=(0,0, —a), where
a is half the cubic lattice constant. The translational de-
grees of freedom are center-of-mass displacements u(n) of
the molecules and u(n, ir) of the individual atoms. The
actual positions of the nth molecule and of the n, a.th
atom are then, respectively, given by

R(n) =X(n)+u(n),

R(n, ~) =X(n, v)+u(n, ir) .

(2.2a)

(2.2b)

The interaction potential of the nth molecule with the
nearest-neighbor atom v is of the general form

V(n, ~)= V(R(n) —R(n, a), Q) . (2.3)

+ —,
' g V'J '(n, x.)[u;(n) —u;(n, x.)]

E7J

We now follow and extend the method of Ref. 18. Ex-
panding the right-hand side in terms of lattice displace-
ments, we write

V(n, a)= V' '(n, x)+ g VI "(n,x)[u;(n) —u;(n, ir)]

momentum quantum number, I labels the irreducible rep-
resentations of the molecular lattice site, and a labels the
columns or rows of the irreducible representations. ' The
lowest allowed value of l has to contain the unit represen-
tation of the molecular group M. 0'i'

Summing over all molecules and atoms in the crystal,
we write for the total potential

V VR+ VTR+ VTTR+. . . (2.7)

Here,

V"= ggai Yi (Q(n))
Il Ap

with

(2.8a)

(2.8b) .

= g g Q vi' (~)Yi(n)[u (n) —i;(n,a)],
Il K A. , l

= —,
' g g g vP'(x)Yi(n)[u;(n) —u;(n, ~)]

(2.9)

a sum of single-particle potentials. Only those values A, of
A,o occur which belong to the unit representation I o of the
molecular site group, i.e., here the cubic group. There-
fore, Yi„corresponds to the cubic harmonics X4i(Q),
&6i(Q), etc. , of Biz symmetry.

The T-R coupling terms in Eq. (2.7) are

X [uJ(n) —uj(n, x.)]+ . (2.4)
n K Aij

X [uj(n) —uJ(n, x)] . (2.10)

For the present, we shall restrict ourselves to first- and
second-order terms in the lattice displacements. Higher-
order terms can be classified into odd and even members
and will have symmetry properties similar to V" and

VJ ', respectively. The expansion coefficients V" and
V'. ' are the first and second derivatives of the potentiallj (0)with respect to lattice displacements taken at u=0. V' '

is the rigid-lattice potential. These coefficients still de-
pend on the molecular orientation. We therefore expand
them in terms of symmetry-adapted functions, ' which
are the most appropriate coordinates for the description of
molecular orientations in disordered phases, ' ' since they
take into account the symmetry of both the molecule and
the lattice site. We therefore write

e 0 e 2,c
Y2, 1=Y2~ Y2,2= Y2'

and a triplet of T2g=f symmetry

f 2,s f 1,c f 1,s
Y2 1

——Y2', Y2 2
——Y2',

(2.11)

(2.12)

Here, Yi(n) stands for Yi(Q(n)). The functions Yi(n)
need not belong to the unit representation of the site
group.

If one approximates the molecule by a symmetric
dumbbell, ' then only functions with l even are relevant,
and the lowest order are those with I =2: a doublet of
I =Eg =e symmetry (notation Yi" )

V' '(n, a)= g vP'(~)Yi (Q(n)),
Arp

V "(n,~)= g vi' (x) Yi (Q(n)),

(2.5a)

(2.5b)

Here we use the notation of Ref. 19,

YI ' —( Yl +Yg™)/V2

Yi '= i(Yi —Yi )/v —2.
(2.13a)

(2.13b)

V~J~ '(n, ~) = g vs�(a) Yi (Q(n) ) . (2.5c)

Since the rotator functions Y~ form a complete orthonor-
mal set, we have

vP'(~)= f dQ(n)V' '(n, ~)Yi (Q(n)), (2.6a)

vi' (~)= f dQ(n) V "(n,x) Yi (Q(n)), (2.6b)

vPJ(x)= f dQ(n)V~J '(n, a)Yi(Q(n)) . (2.6c)

The index A, stands for Il, l,a), where 1 is the angular

u 1,c u 1,s u 0
Y1,1 Y1 ~ Y1,2 Y1 ~ Y1 3 =Y1 (2.14)

The expressions in Cartesian coordinates are again given
in the Appendix. We will also need, for I =3, a triplet of
T1„=1u symmetry'

In the Appendix, the functions Y2, a=1,2, and Yq
a = 1—3, are given in terms of Cartesian direction cosines.

If the molecule is not centrosymmetric, functions with I
odd are also relevant, and the lowest-order terms are those
with I = 1: a triplet of T1u

—=u symmetry'
I



5820 K. H. MICHEL AND J. M. ROME 32

+lu (
3 )1/2~1, c

(
5 )1/2@3.c

3 8

flu (
3 )1/2@i,s+( 5 )1/2y3, s flu yO

column vector (w denotes transposed), we write

(lip(k))'=(ii ) y&2 y&3 y~ lyii2y~3) (2.24)

and a second triplet of T2„=2u symmetry'

y2u (
5 )1/2@i,c (

3 )1/2@3,c
3, 1

—
8 3 8

(2.16)

Similarly, for a given l and representation I, we define a
row vector FI with o., elements where a, is the dimen-
sion of the representation I . Then we rewrite expression
(2.9) in Fourier space as

2u
(

5 )1/2y 1 s
(

3 )1/2y3s y2u y2c
3,2 8 3 8 3 & 3,3 3

VTR= g u'""'(k)I'~ ( —k)u (k),
k

(2.25)

V(K) = —r(K') . (2.19)

Since V~'"(n, K) is a first-rank tensor, it changes sign
under inversion. Correspondingly, for l even, the coeffi-
cients u~' in Eq. (2.5b) have to satisfy'

ui; (K)= —ui; (K ), l even .(&) (&) (2.20)

On the other hand, the second-rank tensor Vz '(n, K) .is in-
variant under inversion and therefore

uPij)(K)=uPJ~(K'), l even . (2.21)

If the molecule is noncentrosymmetric, functions Fi"~
with I odd are relevant, and one then has the properties

Finally, there is a singlet of symmetry 22„

Y3 )
——F3' . (2.17)

Since the functions I'i~ are linear combinations of
spherical harmonics, they transform under inversion of
the molecule as

r,".(e,~)=( 1)—'r,'.(~ e—,q +~) . (2.18)

In case of a centrosymmetric molecule, the quantities V"'
and V' ', Eqs. (2.5b) and (2.5c), are invariant with respect
to inversion of the molecule, and therefore only the coeffi-
cients u"' and u' ' with l even will have nonzero matrix
elements. If the molecule is located at a center of symme-
try in the lattice, there corresponds to each neighbor atom
at v(«) of the molecule, a neighbor atom at v(K'), such
that

where the summation is understood over p, l and over I
and a. For a fixed I, l and e, u'" * has the six elements

uA. I (0) ui2 (0) u23 (0)
( '" '(k))=

( )1/2 '
( )1/2 '

( )1/2

(m. )'"' (m. )'" '
(m. )'"

(2.26)

Here (0) stands for k=O and

u(1)(k) ~ u(1)( )eik Ku)
Ug; —~Ups v e (2.27)

where the elements ui' (K) satisfy the symmetry property
(2.20) and (2.20').

Therefore, we have

ui'; (k) =i g u2; (K)sin[K"T(K)], l even (2.28)

and ui' (k=O)=0. On the other hand, we obtain from
property (2.20') that

u~' (k)= guI„' (K)cos[k r(K)], l odd . (2.29)

The expressions (2.28) and (2.29) are the essential elements
in the bilinear translation-rotation coupling.

The cubic interaction term V is treated in a very
similar way. In Fourier space we obtain

u,",'(K)=u,",'(K'), l odd,

uP/(K)= —uP~(K'), l odd,

(2.20')

(2.21')

= —, ggu p
' (k, p)I'i ( —k —p)lip(k)u (p),

k p

(2.30)

where the positions K and «' are related by Eq. (2.19). The
properties just obtained determine to a large extent the na-
ture of the translation-rotation coupling. The explicit
form of the matrices ui' (K) is given in the Appendix for
various sets of symmetry-adapted functions.

It is useful to define Fourier transforms

where for fixed (I,l,a) we have a 6 &&6 matrix

(2.3 la)(2)r, r
(uapa (k~p))= ~ ( n) ( lv)

where (u'), (u '), (u' ), and (u' ) are 3)&3 submatrices:

u;(n, K) = g u (k)e'"1

(Nm )'" (2.22a)
(u')= (uP,'(0,0)), (u")=, (u';,'(k, O)),

mD (mi)m~ )

u;(n)=, Q.u; (k)e'1

(NmD )
'/ (2.22b) ( unl) 1 (2)

)/2 ( Ju(pi(, O))
(mz, mD)

(2.3 lb)

and

I.„(n(n) ) =
N

(2.23)

(u ) = (uPiz(k p)),
m,

with

Here, N is the number of primitive cells in the lattice.
Defining a total displacement vector as a six-component

u(2) (k ) ~ u(2) (K)eis(u) (P+k)
UZI ~P (2.32)
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and A, =(I,l,a) fixed. The symmetry properties (2.21)
and (2.21') imply

I

g UPJ(a)cos[(k+p) v(a)], l even, (2.33a)
(2)

Ug(J(k, p) =
(2)i g v~(J(v)sin[(k+p) v(~)], l odd. (2.33b)

The coupling V is essential for the study of dissipative
processes such as orientational relaxation and phonon
viscosity.

III. LATTICE-MEDIATED INTERACTIONS

The bilinear interaction is essential for the study of
static properties near the orientational phase transition.
Assuming that the cubic terms V can be treated as a
perturbation, we consider here only the bilinear terms.
Adding to the potential (2.7) a translation-translation in-
teraction V and a direct rotation-rotation interactionV, we obtain the potential

V VTT+ VTR+ VRR+ VR

Here the harmonic lattice part reads

V = —,
'

Q up( —k)Mp (k)u~(k),

(3.1)

(3.2)

where M(k) is the bare dynamical matrix. The direct
orientational interaction is of the form

(3.3)

The coefficients J~)( represent an electrostatic multipole
interaction. In the alkali cyanides, the quadrupole-
quadrupole coupling is relevant. ' '

In Eq. (3.1), V and V are given by Eqs. (2.25) and
(2.8a), respectively. The total potential (3.1) is a function-
al of both orientations and displacements. Minimizing
V[u, FJ for a given configuration I F(k) I with respect to
u(k), we obtain

(k)&ik [x(n) —x(n'))

k
(3.8)

Separating out from Eq. (3.7) the self-interaction n=n',
we obtain

k

where the effective-lattice-mediated coupling reads

k

with

(3.9)

(3.10a)

V IVRR+ VRR+ g IVR(n) (3.11)

C)(x =C~~(n =n') =—Q C) ~(k) . (3.10b)

The separation of the self-interaction C~)„ from the inter-
molecular potential is necessary since the collective order-
ing is determined from the interaction at different sites
n&n . This procedure is characteristic for lattice-
mediated interactions and was first proposed by
Kanamori in the theory of collective Jahn-Teller effects.
(See also Ref. 27.) The separation of the self-energy part
leads to a decrease of the transition temperature. The
physical motivation of this procedure is analogous to the
subtraction of self-energy effects due to the Onsager reac-
tion field. We should notice, however, that in the theory
of Brout and Thomas, the reaction field is obtained as a
correction to primitive molecular-field theory if one takes
into account the self-interaction due to fluctuations. The
latter theory therefore applies already in the case where
the original potential contains only interactions between
different sites. The same remarks hold for the correlated
effective-field theory of Lines and Glass.

Beside a modification of the effective interaction, the
separation of the self-energy leads to a modification of the
single-particle potential. Following Ref. 31, we add the
last term on the right-hand side of Eq. (3.9) to the single-
particle potential V and rewrite Eq. (3.5) in the form

u~(k)= —(M '(k))~ u)( ( —k)Yq(k) .

Substitution into Eq. (3.1) yields

V Veff+ VRR+ VR

with the effective rotational interaction

V' f= ——,
' y C (k)r (k)r ( —k) .

k

(3.4)

(3.5)

(3.6a)

where W is now the redefined single-particle potential
[compare Eq. (2.8a)]:

WR(n) = g a,,r,,(n) ——,
' g C; [& (n)]' .

Aro

(3.12)

The last term on the right-hand side of this expression can
be rewritten as

Here,

C)jq (k) =U~(k)(M '(k))z U~ ( —k) (3.6b)

denotes the lattice-mediated orientational interaction. In
Ref. 18 this result was obtained for the I =2, Eg, and T2g
rotational modes interacting with acoustic phonons. We
rewrite V' in real space as

(3.7)

V'(0)= ——,
' y C(i r) y [I'$"~(n)]

/, I a
(3.13)

Here we use the fact that all members a of C() r ) (which
for fixed l,a refers to the columns of a given representa-
tion) are equal. The sum over a in Eq. (3.13) is then car-
ried our by using the generalized Unsold theorem

(3.14)
a 0

where

n, n'
where A,o=(I 0,10, 1) and I o is the unit representation of
the molecular site group.
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IV. ACOUSTIC AND OPTIC PHONONS

The symmetry properties determine the interaction of
lattice displacements with molecular rotations. It is use-
ful to perform a separation of lattice displacements into
acoustic and optic phonons. We define three dis-
tinguished vectors ( i = 1,2, 3) of acoustic displacements in
the six-dimensional space of lattice displacements [com-
pare expression (2.24)]:

We next examine the coupling to optical phonons. The
corresponding three (i =1,2, 3) basic displacement vectors
in six-dimensional space read

w"=[5J(p/mD)', 5—&(p/m, )' ], j =1,2, 3 .

(4.7)

Here, p= m, mD/m denotes the reduced mass. Optical
displacements are defined by

e"=[5,J(m~/m)'~, 5,J.(m, /m)], j=1,2, 3 . (4.1)

Here, m =ID+ m, is the total mass per unit cell.
Acoustic displacements are defined by

g';(k) = g w"'(p)u~(k),
P

and the corresponding coupling matrix reads

(4.8)

s;(k)= ge "(p)up(k) .
P

In the new basis the bilinear coupling matrix becomes

v g'i'(k) = g e "(p)u~'(k),
P

where u~z'(k) is given by Eq. (2.26).
For the case l even, we find

v ~' (k) = —ui„' (k)/v m, l even .

(4.2)

(4.3)

(4 4)

u i„' (k) = [vq' (k=O) —vq' (k)],
m

(4.6)

where ui„(k) is now given by (2.29). Therefore,
u ~ (k~O) vanishes quadratically m k for l =odd.

Therefore, the coupling of even l rotations to acoustic
phonons reads

V„=gg u g' Yg( —k)s;(k), (4.5)
k A, ,i

with u ij' (k) cx:
~

k
I

in the long wavelength limit. This re-
sult was previously obtained in Ref. 18 for l =2 rotational
modes. Transforming to real space, one finds that the in-
teraction (4.5) corresponds to a coupling of orientational
quadrupoles (l =2) with lattice strain in agreement with
phenomenological theory.

For the case of l odd, we obtain from Eq. (4.3)

v' i.
' (k) = g w"'(p)u~z (k),

where v~& (k) is again given by Eq. (2.26).
Using Eqs. (2.26), we find in the case of l even

u g' (k) = ~ up' (k), l even,
Nlg

(4.9)

(4.10)

v'ij' (k)=v p ui„' (k=O)+ u~' (k), l odd .
mD

'
Nlg

(4.12)

This coupling is maximum at the zone center. We recall
that the molecule has to be noncentrosymmetric.

We now give the explicit expressions for the matrices
ui„' (k). For l = l, l = Ti„, we obtain from Eqs. (2.29) and
(A7a) —(A7c) a diagonal matrix

with vi„' (k) given by Eq. (2.28). Hence, we have no cou-
pling to optical phonons at the Brillouin-zone center for 1

even. It follows that centrosymmetric molecules do not
couple to optical phonons at the zone center. For finite k,
there is a coupling, linear in k, to even l rotational modes:

Vo ——g g v'q' (k) Y'( —k)g';(k) . (4.11)
k A,i

On the other hand, in the case of / odd, we find by
means of Eqs. (4.9), (4.7), and (2.29),

(u~;""'(k) )=2( D cos(k„a)+E[cos(k~a ) +cos(k, a )], D cos(k~a )

+E[cos(k,a)+cos(k„a)], D cos(k, a)+E[cos(k„a)+(k~a)]) . (4.13)

Here we have quoted within the second set of bold
parentheses only the three diagonal elements in the order
(a, i) =(1,1), (2,2), and (3,3). The coefficients D and E are
given by

F= f dQ Vi" (Q, a= 1)Y3"i(Q),

and Eis replaced by 6,

(4.15a)

D = f dQ Vi" (Q, a= 1)Yi i(Q), (4.14a)

E = f dQ V2"(Q, ~=1)Yi 2(Q) . (4.14b)

For /=3, I =Ti„, we obtain matrices uij' (x.) of the
same structure as (A7a)—(A7c). The values of the coeffi-
cients are different, D is replaced by F,

G = f dQ V2 '(Q, i~=1)Y3"q(Q) . (4.15b)

In analogy with Eq. (4.13), we then have again a diagonal
matrix.

Similarly, for I =3 and I = T2„, we obtain expressions
of the same structure as (4.13), with D and E replaced,
respectively, by
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H = f dQ V'i '(Q, x.= 1)Y3"i(Q) (4.16a)

and by

L = f dQ V2" (Q, a.=i)Y3"2(Q) . (4.16b)

We recall that the coefficients E,D; E,G; and H, L are
I

only different from zero for noncentrosymmetric mole-
cules. Therefore, physical properties for which these coef-
ficients play a dominant role are a measure of the noncen-
trosymmetry of the molecule.

We next turn to the coupling to I even rotational
modes. For I =2 and Eg symmetry, we obtain from Eqs.
(2.28) and (A8a) —(A8c) a coupling matrix

sin(k„a ) sin(k~a )

V3'(k ) v3'(k )

—2 sin(k, a )
(4.17)

where the coefficient A is defined by
'

2 = f dQ Vi"(Q, a =1)Y2 i(Q) . (4.18)
V(n, a)= g V(R(n) —R(n, a), Q (n)) .

V=1
(5.1)

For 1=2 and Tz~ symmetry we obtain from Eqs. (2.27)
and (A9a) —(A9c)

(U",'~ (k') ) i=2B

sin(k~a ) sin(k„a ) 0

0 sin(k, a ) sin(k„a )

0 sin(k„a )sin(.k,a)

where

B= dQ V2" 0 v= 1 F2 &
0

(4.19)

(4.20}

The coefficients A and B are the basic quantities which
determine the coupling of 1 =2 rotational modes to acous-
tic phonons in the orientationally disordered phase of the
alkali cyanides. ' Therefore, A and B govern the
anomalous behavior of the elastic constants. Their precise
numerical value depends on a competition between repul-
sive and electrostatic multipole forces. ' It is legiti-
mate, in a first approximation, to consider the CN mole-
cules as centrosymmetric dumbbells. Such an approxima-
tion is, however, not adequate if we want to study other
properties, as for instance the coupling to optical pho-
nons.

V' '(n, a) = g vP'(x) g Yi,(Q„(n)),
0 v

V '(n, a)= QU'iI (~)g Yi(Q„(n)) .
v

The quantities uP'(a) and Ui' (a) are again given by Eqs.
(2.6a}—(2.6b), for instance,

(5.2a)

(5.2b)

vi' (1~)= f dQ, (n) Yi(Q„(n))V(X(n) —X(n, a), Q„(n)) .

(5.3)

Notice that these expressions are independent of the arm
index v and the molecular index n. Therefore, the sum-
mation over v in Eqs. (5.2a) and (5.2b) can be carried out
and we write

We notice that Eq. (2.3), valid for a linear molecule, is a
particular case of (5.1). We now proceed exactly as in Sec.
II. First we expand Eq. (5.1) in terms of lattice displace-
ments. Subsequently, we expand in terins of syrnmetry-
adapted functions Yi (Q). Again the lowest allowed
value of I has to contain the unit representation of the
molecular group, while I refers to a representation of the
site group in the crystal. We then obtain a series of type
(2.4). Here we quote only the first two coefficients

V. NONLINEAR MOLECULES
b,(~(n)) = g Y,(Q„(n)), (5.4)

The basic results of the previous sections remain valid
for nonlinear molecules. Here we briefly sketch the
demonstration. The molecules are taken as rigid bodies
with r arms which originate from the center of mass. The
vth arm has an orientation Q =(e p„) with respect to a
system of axes fixed in the crystal. We assume that the
extremities of the arms determine the positions of atoms
or charge centers on a spherical shell. The center-of-mass
positions of the molecules (or molecular ions) are symme-
try centers of the lattice, the molecules are surrounded by
individual atoms. Such structures correspond to the clas-
sical exainples of ionic disordered crystals, namely, those
containing tetrahedral ions.

Denoting the center-of-mass position of the nth mole-
cule by R(n) and the position of the ath individual atom
by R(n, sc), we write for the interaction between all molec-
ular atoms and one single individual atom

where ~ stands for A,o or A, . The quantity b, (co) is a rota-
tor function. ' ' Here, co=(a,P,y) stands for the three
Euler angles which specify the position of the molecule
with respect to the crystal fixed system of axes. In Eqs.
(5.2a) or (5.4), the index A,o refers to the unit representa-
tion of the site point group, while in Eqs. (5.2b), the index
A, includes representations of higher dimensionality.

Since each molecular arm can be treated separately, we
obtain again the symmetry relations (2.20} and (2.20'). If
the molecule is centrosymmetric, only functions Yi ~ with
l even are allowed. If the molecule is noncentrosym-
metric, odd values of / are also relevant. All properties of
the bilinear coupling which follow from Eqs. (2.28) and
(2.29) remain valid for nonlinear molecules.

In particular, we have the important property (4.4),
which indicates that the coupling U~' (k) to acoustic pho-
nons is linear in k for centrosymmetric molecules. If the

1
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shape of the molecule is only slightly asymmetric, then
even though the lowest allowed value of 1 even is larger
than the lowest value of 1 odd, the coupling of 1 even to
acoustic phonons can still be dominant. On the other
hand, if the shape of the molecule is largely noncen-
trosymmetric, odd values of 1 are dominant in the cou-
pling to optic and acoustic phonons. These couplings are
governed by relations (4.6) and (4.12), respectively. As an
example we quote the high-temperature orientationally
disordered phase I of the ammonium halides. Here
tetrahedral symmetry of the NH& group implies 1=3.
The coupling of orientational modes to optic phonons
should be more pronounced than the coupling to acoustic
phonons. This statement is in agreement with neutron
scattering results in ND41(I), where it has been found that
typical optic-neutron groups are much broader than the
corresponding acoustic-neutron groups.

Particular experimental and theoretical attention has
been given to phase II(P) of the ammonium halides. Here
the structure in the disordered phase is cubic CsC1 type
and the NH4 tetrahedra occupy one or the other of two
sterically different positions. Since the tetrahedra are well
localized in these positions, the orientational degree of
freedom is described by a pseudospin variable o.=+1.
Such a description is also used for a treatment of T-R cou-
pling. The essential point is that the spin variable is odd
under inversion. Therefore, all our statements made about
the coupling of odd 1 orientational modes to lattice dis-
placements apply. The theoretical results obtained in Ref.
39 for the T-R coupling of a pseudospin variable to lattice
displacements can be regarded as a special case of the
present theory and are in complete agreement with it. In
particular, the coupling of acoustic phonons to the orien-
tational order parameter is quadratic in k for the small
wave vector.

We finally mention the case of NaNO2. The NO2 ion
has Cz„symmetry; the lattice structure of the paraelectric
phase is Immm. The low symmetry of the molecular ion
and the close packing of the structure are responsible for
the fact that the T-R coupling matrix U"'(~) has some
large nonzero elements. Noncentrosymmetry implies that
the coupling to optical phonons is large ' ' while the cou-
pling to acoustical phonons increases quadratically with k
away from the zone center. This coupling corresponds in
real space to an interaction of an elastic shear wave with
the gradient of the orientational order parameter and is
considered as a driving mechanism for the incommensu-
rate phase transition. ' ' We notice that also in other
molecular crystals with incommensurate phase transitions
and T-R coupling, such as SC(NH2)z (thiourea), the
molecular units are noncentrosymmetric and, in addition,
their symmetry is low.

As a general rule we can state that molecules of low
symmetry (low value of 1) favor a large value of the T-R
matrix elements (5.3), while molecules with high symme-
try have much weaker translation-rotation coupling. This
general observation is confirmed by neutron scattering re-
sults on SF6 and CBr4 in the orientationally disordered
crystalline phases. In addition to molecular symmetry,
the strength of the interatomic potential (5.1) determines
the value of the coupling coefficients.

VI. CONCLUDING REMARKS

This work has been partially supported by the Neutron
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APPENDIX

We give first the expressions for the symmetry-adapted
functions in terms of Cartesian coordinates

x =sine cosy, y =sine sing, z =cose . (Al)

The three functions (2.14) for 1 =1 with T~„symmetry
are

Yi i
——(3/4m)'i x, (A2a)

Y~ 2
——(3/4~)' y,

Y( 3
——(3/4m)'~ z .

For 1 =2, the two functions (2.11) of Eg symmetry are

(A2b)

(A2c)

Y2 )
——(5/16m )'~ (3z —1),

Yq 2 ——(5/16~)' (x —y ),
and the three functions (2.12) of T2z symmetry are

Yf2
&

——(15/4m. )'i xy,
Yf =(15/4m)' xz,
Yf23 ——(15/4n. )' yz .

(A3b)

(A4a)

(A4b)

(A4c)

The three functions (2.15) for 1=3 and T~„symmetry
read

We have made a study of translation-rotation coupling
in orientationally disordered crystals by paying special at-
tention to molecular symmetry. Most important is the
distinction between centrosymmetric and noncentrosym-
metric molecules. This distinctive property determines
the nature of the translation-rotation coupling. We have
first given an extensive treatment for linear molecules and
then shown that our main results apply also for nonlinear
molecules.

Our results concerning the nature of translation-
rotation coupling as a consequence of molecular symme-
try are general. We have been able to show that the
overall theoretical picture is in agreement with experimen-
tal results in various crystals such as the alkali cyanides,
the ammonium halides, NaNO2, and others. We expect
that the present results should be useful beyond the usual
domain of molecular crystals and have pointed out the
relevance for incommensurate phase transitions in insula-
tors and for the coupling of electronic and structural
properties in synthetic organic conductors.

Finally, we should mention that the present theory can
be applied to detailed calculations for specific substances.
The starting point of such a calculation is the knowledge
of the interaction potential of the molecule with its sur-
roundings in the lattice. In a following paper we shall
give an application of the present theory by studying the
connection between local and collective properties at
phase transitions in orientationally disordered crystals.
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Y3"i ———(7/16m. )
'i (5x —3x ),

Y3"2———(7/16m )'i (5y —3y),
Y3"3 ———(7/16m )' (5z —3z),

(ASa)

(A5b)

(A5c)

The values of the coefficients are different. The same is
true for / =3,I = Tz„.

For the case I =2,1 =Es, we have matrices ui,'(a) of
the form

and those of T2„symmetry are

Ys"i ———(105/16m. )'i x(z —y ),
Y3"z ——(105/16m )'i y(x —z ),
Y3"s ———(105/16m. )'i z(y —x ) .

(A6a)

(A6b)

(A6c)

These functions are used to calculate the matrix elements
ui' (tt). Here, tt corresponds to 1,2,3 [see definition of
~(a. ) following Eq. (2.1)].

For I = 1, I =Ti„, we find from Eq. (2.6b)

D 0 0
(u",""'(a=1))= 0 E 0, (A7a)

0 0 E
E 0 0

(u' '; "'(a=2))= 0 D 0 (A7b)

0 0 E
E 0 0

(u~, ;
"' (tc=3))= 0 E 0 (A7c)

0 0 D

The matrices for a.=4,5, 6 follow directly from the sym-
metry relation (2.19b). The coefficients D and E are
given by Eqs. (4.14a) and (4.14b). For I =3, I'= Ti„, we
obtain inatrices of the same structure as (A7a) —(A7c).

(u'" (tt= 1))=A
1 0 0

—v 3 0 0
T

0 I 0
(u~ t' (ted=2))=A

0 0 —2
(u~ t

' (K=3))=A 0 0 0

(A8b)

0
(ua'If' (a.= 1})=B0

0
j.

(uo If' (a =2))=8 0
0

0
(ua If' (ted=3)}=8 0

t

1

I 0
0 0
0 1

0 0
0 1

0 0

0 0
0

0 0

(A9a)

(A9b)

(A9c)

The coefficient 8 is given by Eq. (4.20}.

The matrices for ted=4, 5,6 follow from relation (2.19a).
The coefficient A is given by Eq. (4.20). Finally, for I =2
and I =T&~, we obtain
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