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Renormalization-group (RG) methods developed previously for the study of the growth of order
in unstable systems are extended to treat the spinodal decomposition of the two-dimensional spin-
exchange kinetic Ising model. The conservation of the order parameter and fixed-length sum rule
are properly preserved in the theory. Various correlation functions in both coordinate and momen-
tum space are calculated as functions of time. The scaling function for the structure factor is ex-
tracted. We compare our results with direct Monte Carlo (MC) simulations and find them in good
agreement. The time rescaling parameter entering the RG analysis is temperature dependent, as was
determined in previous work through a RG analysis of MC simulations. The results exhibit a long-
time logarithmic growth law for the typical domain size, both analytically and numerically. In the
time region where MC simulations have previously been performed, the logarithmic growth law can
be fitted to a power law with an effective exponent. This exponent is found to be in excellent agree-
ment with the result of MC simulations. The logarithmic growth law agrees with a physical model
of interfacial motion which involves an interplay between the local curvature and an activated jump
across the interface.

I. INTRODUCTION

The purpose of this paper is to study the spinodal
decomposition of a binary alloy at 50% composition.
This problem. has been the object of considerable research
effort (as reviewed, for example, in Refs. 1—13). The ki-
netic Ising model with spin-conserving dynamics has been
extensively studied as a simple representation of the
binary alloy problem. Results can be compared with
Monte Carlo (MC) simulations which can be performed
for this model in a straightforward manner. Our objective
in this paper is to calculate observable quantities such as
the quasistatic structure factor and several short-range
spatial correlation functions for an Ising system on a
square lattice subjected to a sudden quench from infinite
temperature to some final temperature T~ (T, (T, is the
critical temperature), with a conserved order parameter.

In a recent paper we have carried out a
renormalization-group (RG) analysis of MC simulations
for a two-dimensional kinetic Ising model with both con-
served (COP) and nonconserved (NCOP) order parameter.
We demonstrated how the long-time growth laws in the
scaling regime can be extracted from such an analysis.
For the case of spinodal decomposition (COP) we found
that the characteristic length L (t), or typical domain size,
grows logarithmically with time. We will show here, how
to calculate the correlation functions for the same con-
serving model as in Ref. 4 as a function of time. We will
see that the position q~(t)-L '(t) of the peak in the

quasistatic structure factor C (q, t ) decreases with time ac-
cording to a logarithmic law. However, this behavior be-
comes evident only over several decades in time. Over the
time range in which MC simulations for the system under
consideration have been performed, we find that an ex-
cellent fit to a power law is possible with an apparent ex-
ponent a =0.19. Thus, we conclude that MC simulations
have not been performed over times long enough for the
logarithmic behavior to be evident.

We will use the RG recursion relation approach
developed ' previously for the study of growth kinetics.
The perturbative scheme developed in Refs. 6 and 7 for
spin-flip (SF) dynamics (a NCOP) cannot be used in the
case of spinodal decomposition, where one has a COP, be-
cause the breaking up of the system into cells would intro-
duce artificial in-cell conservation laws. It is desirable,
however, to maintain the basic structure of the theory
developed in Refs. 6 and 7. It was found there that the
structure factor satisfies a recursion relation whose solu-
tion exhibits the main qualitative features for the case of a
NCOP: (i) Development of a peak centered about the or-
dering wave number which grows in height and narrows
with increasing time. (ii) Scaling behavior associated with
the peak. (iii) Equilibration of the wave-number com-
ponents away from the peak. (iv) Identification of the
peak with the building of a Bragg peak characteristic of
the new order in the system. The theory was reformulat-
ed in a form independent of the perturbation-theory ap-
proach in a qualitative fashion in Ref. 8 within the con-
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text of a COP. A more detailed and rigorous approach to
this question was developed (for a NCOP) in Refs. 9 and
10. In Ref. 10 we considered an order-disorder transition
model, still with a NCOP but with a conservation law in-
cluded. The methods presented in Ref. 10 will be applied
here, after straightforward modifications, to spinodal

decomposition.
An important problem in the derivation of the recur-

sion relation for the structure factor is the determination
of the time rescaling factor b, (b), which establishes how
time must be rescaled when space is rescaled by a factor b
and self-similar behavior is to be obtained. 6 depends on
the nature of the dynamics considered, of course. Because
the perturbation-theory analysis of Refs. 6 and 7 is very
local in nature, it cannot distinguish (as discussed in Refs.
8 and 9 between the factor b, associated with growth ki-
netics far from equilibrium and the usual rescaling factor
associated with fluctuations in equilibrium, which are typ-
ically not the same. For the case of a COP the question
of the value of 6 was left open in Ref. 8. For a NCOP a
theoretical argument backed by MC simulations was
given in Ref. 9, showing that b, =b, in two dimensions,
which leads to the curvature-driven I.ifshitz-Cahn-Allen"
(LCA) growth law L(t)-t'~. The same determination
was used in Ref. 10, where we studied the
antiferromagnetic-spin-exchange (AFSE) kinetic Ising
model, which still has a NCOP and exhibits the LCA
growth law. The results of Refs. 9 and 10 were in good
agreement with those of MC simulations.

For the case of ferromagnetic-spin-exchange (FSE)
dynamics, ' which is needed to model spinodal decompo-
sition, the simple arguments used in Refs. 9 and 10 to ob-
tain b, are insufficient. For this reason we developed in
Ref. 4 a new procedure for determining 6, based on a RG
analysis of MC simulations. For the NCOP case we were
led, as expected, to the same results as obtained in Refs. 9
and 10, while for the COP case a very different result was
obtained, leading to logarithmic growth laws. We will use
5 as determined in Ref. 4 in this paper. At the same time
we will relate the nonperturbative approach to the recur-
sion relations (Refs. 8—10) to the RG ideas of Ref. 4,
thereby eliminating any logical gap which may have been
present. Thus, we will show that the factor b, found in
Ref. 4 is indeed the same quantity introduced in the recur-
sion relations used in previous work, and in this paper.

We show in Sec. IV of this paper that the logarithmic
law can also be heuristically understood from a model for
interfacial motion where diffusion across the interface is
activated, and driven by the local curvature. As we point-
ed out in Ref. 4, this rather unexpected result is not neces-
sarily in contradiction with the many published experi-
mental and MC results reporting power-law growth in
time L(t)-t'. A review of the literature fails to show
evidence for any definite value of a, and we concluded in
Ref. 4 that the exponents reported represented the approx-
imate result which one obtained when attempting to fit a
logarithmic law to a power law over a restricted time
range. One of the key results of the present paper is the
verification of this conclusion through a direct calculation
of the structure factor, as explained above.

This paper is organized as follows: In Sec. II we first

discuss the model and dynamics we use and the connec-
tion between our RG methods and textbook formulations
of the RG. We then develop the recursion relations satis-
fied by C(q, t) and several short-range correlation func-
tions. Particular attention is given to connecting the work
in Ref. 4 with that in Refs. 8—10. In Sec. III we discuss
some of the analytic consequences of the recursion rela-
tions and then proceed to present the numerical results for
the correlation functions. We show that our results com-
pare quite well with those of available MC simulations in
the appropriate time range. The question of apparent
power-law behavior versus ultimate logarithmic growth is
discussed in detail, and effective exponents in agreement
with Ref. 5 are obtained. A brief conclusions section
summarizes our results and gives a physical model of the
interface which leads to the logarithmic growth resulting
from the RG analysis.

II. RECURSION RELATIONS
AND RENORMALIZATION-GROUP THEORY

We consider the standard' lattice-gas representation of
a binary alloy where a variable o(n) at site n will be + 1,
or —1, if the site is occupied by an 3 or B atom. We as-
surne a square lattice with unit lattice constant and
nearest-neighbor interactions only, with coupling constant
K= —PJ, where P= 1 jk+T and J is the value of the in-
teraction for two atoms separated by a lattice spacing.
We assume 50% concentration (which corresponds to zero
external magnetic field in the associated spin problem).
Phase separation (spinodal decomposition) takes place for
a positive or ferromagnetic (K &0) coupling. The system
is driven by Kawasaki or FSE dynamics. ' For the case
of very fast quenches to a final temperature TF (i.e., cou-
pling K+) the nearest-neighbor exchange probability
represents the interaction of the system with a thermal
bath at temperature T~. We take the exchange probabili-
ty per unit time between two nearest neighbors at sites n
and m to be of the form'

W (o)= —,[1—tanh(b E/2)], (2.1)

C(q, t) = g e'q' 'e(m —n, t),1

N
(2.2)

where

e(m —n, t) = (o.(m)o(n) ), . (2.3)

N is the number of sites and ( ), the average over the
time-dependent probability distribution. This quantity is

where AE is the change in energy associated with the ex-
change of the two spins, m and n, and is proportional to
K~. Note that (2.1) defines our unit of time. ' This
dynamics conserves the order parameter (the total mag-
netization, or the number of particles of a given type). It
therefore represents spinodal decomposition.

We will examine quenches from a perfectly disorder-
ed state (K=0) to a final value KF & K„where
tanhKQ ——(V2 —1) is the value of the critical coupling.
The quantity we wi11 focus on is the quasistatic structure
factor
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RM(t)=M "f d"r2 f d"ri[e(ri —r2, t)

—e(ri —r2, 0)j . (2.4)

In Eq. (2.4) M characterizes a length associated with some
block of spins and t is the time after a quench. We then
carry out a simple reparametrization and define

M'=M/b,
t'=t/b"",

(2.5a)

(2.5b)

accessible experimentally by means of x-ray diffraction
and has also been studied by MC simulations for precise-
ly the model we consider here. We also consider short-
range correlations in coordinate space. This model with
antiferromagnetic (rather than ferromagnetic) coupling
corresponds' to an order-disorder transition in a binary
alloy.

Our objective here is to write a recursion relation for
C(q, t), that is an equation relating' C(q, t) to C(q', t'),
where q' and t' are rescaled wave vectors and times. It is
important to establish this recursion relation from a non-

perturbative point of view, particularly as it applies to spi-
nodal decomposition, since only then can the conservation
law be enforced in a global manner. Perturbation-theory-
independent renormalization-group methods were present-
ed in detail in Sec. II of Ref. 9. In particular, the deter-
mination of the renormalized couplings K'(K) and of
equilibrium quantities is discussed there and we will not
repeat it. We will now, however, discuss the relationship
between our nonperturbative RG analysis and standard
field-theory RG methods' of the field-theoretic type.
This will enable us to make the connection between our
procedure and standard RG theory.

To clarify this question, let us take, for simplicity, the
case of a quench to zero temperature and a nonconserved
order parameter. As in Ref. 4, let us introduce a quantity
RM(t)

RM (t', b) =f(M'/L (t')),
where L (t') satisfies

8 lnL(t')
8 lnt'

This, in turn, has a solution

L (t') =Lo(t')" .

(2.9)

(2.10)

(2.11)

Alternatively, if there is scaling in the system and x is
properly adjusted, (2.9) and (2.11) hold and one is driven
to the fixed point

b RM (t', b) =08
(2.12)

in the limit of large t and M. The dropping of the last
term on the left-hand side (lhs) of (2.7) is similar to the ar-
gument in treating the Callan-Symanzik equations (Ref.
16, p. 212), where, due to Weinberg's theorem, one can
neglect the lhs of (8.105) in the scaling region k;/m ~ 00.
The scaling region in our case corresponds to large M and

RM(t) =RM (t'), (2.13)

The above analysis for the nonequilibrium case is well

posed but difficult to impleinent since one needs to find
an x such that (2.12) holds for large M and t. The non-
trivial point here is to see that there is a dominant length
L (t). In the field-theoretical version of the RG it is given
that there is an infinite length g associated with a vanish-
ing renormalized mass.

Since the above development is difficult to implement
in practice, we have developed a more sophisticated and
practical RG approach. By construction, RM ( t) and
RM (t) are monotonic functions ranging from 0 to 1 as t
evolves. Since M'&M, we will have RM (t) &RM(t). We
can define a quantity t' such that

where b & 0 and the exponent x is not yet specified. Since
M=bM' and t =b' "t', we have quite trivially

RM(t}=RM(t', b) .

where, in general,

t'=t'(M, b, t) .

Just as above, we can write an RG equation:

(2.14)

Equation (2.6} is formally similar to (8.1) in Ref. 16,
which relates the renormalized I z ' and bare I' ' ampu-
tated N-point vertices (see Ref. 16 for notation and de-
tails} by an analogous reparametrization of scales.

Since the left-hand side of (2.6) is independent of b, the
derivative of (2.6} with respect to b is zero, and, using the
chain rule and (2.5), we obtain

RM(t) =0=—,RM (t')+, RM (t') .8 M' 8, 'dt' 8

(2.15)

This is a homogeneous RG equation of the same form as
Eq. (8.11) in Ref. 16. Let us suppose that we can show
that

I
—M', RM (t', b) —,RM (t—', b)

aM ' x at'

1 8 lnt'

x 8 lnb
(2.16)

+b RM (t', b)=0 .a
b

(2.7)

If one can find a value of x such that, for large M and

t, the last term on the left-hand side of (2.7) vanishes, then
one has

is independent of M and t for large M and t. Then

, RM.(t')+—,RM (t') =0a ~ 1 a
(2.17)

.8 lnM' x, 8 lnt'

again has a solution of the form (2.9). Since we expect
t'= b, (b)t for large t, we have from (2.16) that

—M', RM (t', b) —,RM (t', b) =0-,
t' 8

AM' ' x Bt'

which has a solution of the form

(2.8)
8 in', (b)

8 lnb

If x is independent of b, then

(2.18)
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b
—1/x

r'=r lb",
L(r')=L i"(b ")",

(2.19a)

(2.19b)

(2.19c)

Eq. (2.6) in Ref. 4]
d 2 I

R (t) = + f dr(M r)—
M

and as b~1
L(r) =L,r" . (2.20)

X [e(r& —r2, t) —e(r& r2, 0)), (2.25)

Therefore, showing that x as given by (2.16) is indepen-
dent of M, for large M, is equivalent to showing that

b R (M', r', b) =0
b

(2.21)

for large M and t, and gives both the scaling law and the
exponent x, and identifies a growth kinetics fixed point.

We have actually implemented our RG analysis directly
through the use of Eqs. (2.13) and (2.14), which can be
conveniently studied using Monte Carlo simulations.
Thus one can test whether b, = t'(M, b, t)lt is independent
of M for large M and t. It is straightforward to extend
this analysis to include the effects of a quench to finite
temperature as discussed in Ref. 4. There we verified that
for sufficiently large-M and t a time rescaling factor
b (b, t) exists such that, with t'=br, one had

Rior(i) =v RM/b(t'), (2.22)

where v=mE(Tz)lmE(T'~) (Ref. 18) [mE(TF) is the
spontaneous magnetization corresponding to the final
equilibrium state]. Note that, if the temperature depen-
dence is included, then RM(t) is a function of K~, and
R~(t') a function of X'z (assuming Kl —0).

For the quasistatic structure factor, the recursion rela-
tion was found to be of the form

C(q, t) =Co(q, t)+P(q, t)C(bq, t') . (2.23)

C(q, t)=PFC(bq, t') . (2.24)

In order to establish the form of (2.23) it is sufficient,
from the theoretical point of view, to show that (2.24) is
valid at long times and distances, since the form of (2.23)
follows from (2.24) and the assumption of short-ranged eo
(r, t) and m(r, t). We will now d. emonstrate that the validi-
ty of (2.24) follows from (2.22). In this demonstration we
will, as a consequence, determine P~ and t'=t'(b, t).

How does one go from (2.22) to (2.24)'? This can be ac-
complished by observing that (2.4) can be rewritten as [see

We will now discuss the origins of this equation, as it ap-
plies to spinodal decomposition, from a nonperturbative
point of view. As in the case where the order parameter is
not conserved (Refs. 9 and 10), we require that Co(q, t)
and P(q, t) be short ranged in time and space so that their
spatial Fourier transforms eo(r, t) and m(n, t) fall off rap-
idly with distance and approach their equilibrium values
at coupling IC~, eo(n, X~), on a short-time scale. The use-
fulness of (2.23) arises in those problems where growing
structures are associated with some ordering wave number
qo, and C(qo, t) becomes arbitrarily large for a sufficiently
long time. We then have C(q, t) &&Co(q, t) and
P(q, t)=P(qo, m)=P~ for q near qo, and (2.23) reduces
to the scaling result

which can be generalized to a "rectangular" geometry:
r

d 2 M.
R(M, t)= g z f dr;(M; —r;)

3fg

&& [e(r, t) —e(r, O)] . (2.26)

It follows from (2.26) that

e(r, t) —e(r, O) = g2
zr; R(r, t) .

2 i Bf.
(2.27)

Since for sufficiently large distances correlation func-
tions are approximately isotropic, it is natural to assume
that Eq. (2.22) can be generalized to

RM(t) =v RM/g, (t') . (2.28)

From Eqs. (2.27) and (2.28) we obtain for large
~

r ~, using
the fact that e(r, O) vanishes rapidly for increasing

~

r ~,

e(r, t) =v e(r jb, t') . (2.29)

L (r, g) =bL (r', g') (2.31)

is a characteristic length and we have explicitly included
the KF dependence through the equilibrium correlation
length g. Coven the time rescaling factor b„one ean also
make statements about the long-time growth law for L.
If, as for the order-disorder case, 5=b ", then the
growth law is given by

The scaling relations do not, however, determine the scal-
ing functions F or f, or the range in which they are valid.
We obtain a complete theory by extending (2.29) to a re-
cursion relation valid for all times and distances and
which reduces to (2.29) in the appropriate limit. It fol-
lows from the above discussion, and that in Ref. 4, that
the recursion relation (2.24) or (2.29) cannot be directly
extended to arbitrary q or r and time. It is obvious, for
example, that Eq. (2.29) will break down at short enough
times, since the time derivative of e(r, t) evaluated at i =0
does not satisfy scaling. Thus, a recursion relation valid

Assuming that the large
~

r
~

part of e(r, t) dominates the
small q contributions to the structure factor in (2.2), we
finally arrive at (2.24) with t ' = t'( b, t) known and
PF bv . ——

The scaling results (2.24), (2.28), and (2.29) can be used
immediately to establish scaling forms, as, for example, in
Refs. 9 and 10. Thus, the solution to (2.24) is of the form

C(q, r, g)=mFL~(t, g)F(qL(r, g), g/L(r, f)), (2 '30).
where I'" is a scaling function, and
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at all length and time scales must have a form such as
(2.23) where the functions Co(q, t) and P(q, t) must be
determined from short-time and distance considerations in
addition to the asymptotic forms (2.24) or (2.29). We will
now discuss the determination of Co and P for the case of
FSE dynamics.

The recursion relation (2.23) must reproduce the initial
and final equilibrium structure factors for t =0 and as
t~ co. As discussed in Ref. 9, one can then tie down the
equilibrium forms of Co and P using their short-ranged
nature, knowledge of the short-ranged correlations
e(r, Tb-), and the q=O value of C(q). Qne then obtains
excellent approximations for the equilibrium structure
factor. Next, one must determine the time dependence of
Co and P which takes them from their initial to their fi-
nal values. In the conserved case, C(q=O, t) is time in-

dependent and care must be taken to preserve this and the
fixed-length spin sum rule:

C q, t =1. (2.32)
(2n )

The parameter A, in Eq. (2.34) and the functions G(q)
and B(t) can be determined from two conditions: (i) that
the recursion relation (2.23) preserves, at all times, the
sum rule, and (ii) that the initial derivative of the recur-
sion relation (2.23) gives the correct exact result for the in-
itial derivative of C(q, t), which, for ICz ——0, is given by

I (q) = C(q, t)d
dt

= [1—g 1 (q) ] [1+ 4q 1 (q }]

&& [—,
' tanh(2X)+ tanh(4Ã) + —,

' tanh(6K) ] .

(2.39)

After a brief calculation similar to that given in Sec. II of
Ref. 10, and with the notation used there, one then ob-
tains

To do this, we will follow essentially the same procedure
for satisfying the sum rule in the presence of a conserva-
tion law that we developed in Ref. 10, where there is a
conservation law, but it is not satisfied by the order pa-
rameter.

We first assume that P(q, t ) can be written in the relax-
ational form:

I (q}—b.I"(bq)
q 0 [1—gi(q)](2r~+s~)

G(q) = [A,[1—gi(q)][2r~gi(q)+si;gz(q)]
A, 7F

—I (q)+&f(q)1"(&q)/4j .

(2.40)

(2.41)

P(q, t) =Pz(q)+e '~"[Pt(q) —Pz(q)],
where A,(q) is assumed to be of the form

A,(q) =A, (1—gi(q))

(2.33)

(2.34)

One can easily verify that X, is always a positive quantity.
These formulas are valid even when b. depends on t, pro-
vided only that the initial derivative of b, (t)t equals b,(0).
In (2.40) and (2.41),

with

g, (q) = —,
' (cosq„+cosq~), (2.35)

gz(q) =cosq„cosq„,

f(q) =1+2gi(q)+g2(q)

(2.42)

(2.43)

so that the conservation law [A,(q) =O(q )] and the lattice
periodicity are preserved. The quantity A, is a function of
ECF, which we determine below. For Co we write

Co(q t ) =Co,r(q}+e-"&"

Equation (2.38) can be used to find B(t}. However,
since it is rather awkward to determine B(t) from an in-
tegral constraint C(q, t), we consider, instead, the Fourier
transform of the recursion relation, Eq. (2.23). We have

e(n, t) =eo(n, t) B(t)G(n)—
)& [Co,F(q) —Co z(q)] B(t)G (q) . —

(2.36)

+ g~, b (t)e'(m, bt), (2.44)

lim q G(q) =0,
q~0

(2.37)

and we can take, without loss of generality, the normaliza-
tion of G(q) to beJ,G(q)=1. (2.38)

(2m )

In Eqs. (2.33) and (2.36) the indices I and F denote the
corresponding quantities at thermal equilibrium with cou-
plings Kz and EF, respectively. These quantities are
given in Ref. 9. The last term in Eq. (2.9) is needed to en-
sure that the sum rule (2.32) is satisfied. Since this term is
not present in thermal equilibrium, we must have
B(0)=B(00)=0. The conservation law requires G(q=O)
to vanish. It turns out to be convenient' to impose

where eo(n, t) is the Fourier transform of the relaxational
part of Co(q, t ) [the first two terms on the right-hand side
of Eq. (2.36)], G(n) the Fourier transform of G(q), and

b~(t) the Fourier component of P(q, t) corresponding
to the site n=bm. These quantities can all be evaluated
analytically. The resulting expressions are precisely
equivalent to those given in Appendix A of Ref. 10, ex-
cept that the argument of the modified Bessel function in-
volved is now +A, t/2 rather than A.t/2. The time-—
dependent parts of eo(n, t) and m ~(t) vanish only as t
as tab oo.

The sum rule (2.32) can be easily enforced in coordinate
space by setting e(O, t) =e'(O, b,t) =1 at all times in (2.44).
This is computationally more practical than the integral
constraint (2.32).

Iteration of (2.44), truncated at a sufficiently large
~

n
~
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b, ( t,y) =0.41y + 0.057
1+t/5 ' (2.45)

—4KF
where y is the low-temperature variable, y =e . Note
that the time scale used here differs, as explained in Ref.
10, from the MC scale by a factor of 4.

The slight time dependence of b, in (2.45) implies that,
upon iteration of the recursion relations, the right-hand
side of (2.33) and the corresponding term of (2.36) are not
strictly relaxational in time. This is not an important ef-
fect because the difference is very slight: the time depen-
dence of b, is only appreciable at early times where the in-
itial derivatives of C(q, t) determine Co and P Note th. at
the time dependence of 5 does not influence the initial
value of the time derivative, since only the combination
t'=b. (y, t)t enters in the equations. This completes our
discussion of the recursion relation and we will proceed
with their solution in the next section.

/

so as to obtain convergence, yields results for B(t), and
for the short-range correlation functions e(n, t). Thus, for
example, e(1,0;t) is the nearest-neighbor correlation func-
tions, proportional to the energy of the system in the
present case. Once B(t) is known numerically, the struc-
ture factor can be obtained by iterating (2.23), taking into
account (2.33) and (2.36). The initial and final equilibri-
um quantities are taken to be as given in Ref. 9.

As emphasized in Ref. 4 and above, a key difference be-
tween the ferromagnetic and the antiferromagnetic cases
(phase separation versus an order-disorder transition) is
the behavior of the time rescaling factor A. In Refs. 4, 9,
and 10 we indicated that 6 can be taken as a constant in
both time and temperature in the NCOP case. A key in-
gredient in this assessment is that as one renormalizes the
final temperature Tz iterates to zero (for Tz & T, ), and
for sufficiently long times it is only the zero-temperature
values of b, which will influence the long-time growth. In
the case of spinodal decomposition matters are more in-
volved because limq ob.(TF, taco)=0. Therefore, we

must include the time dependence of b, so that at Tz 0——
one has t''&t, and one iterates under renormalization to
earlier nonzero times as at finite temperature. The long-
time growth in this problem is governed by the approach
of b,(Tz, t = oo) to zero as T~~O. We must therefore in-
clude both the temperature and time dependence of b.
The result we obtained in Ref. 4, for a rescaling factor
b =2, which should be valid for quenches well below the
critical point, is

that (2.4) reduces, as it should, to the form (2.24). There-
fore,

C(q, t, g) =b "v'C'(bq, 4„(g)t, g/b), (3.1)

L (t,g) =bL (t', g'), (3.3)

while C is the value of the maximum chosen such that
F ( 1, g/L ) = 1 and which satisfies

CM(t, g)=b"v CM(t', g') . (3.4)

As discussed in Ref. 4 [see below (2.27) there], (3.3) has a
solution

L(t,g)=gC, ln(tg/b, ' ' ")
when

y
a Doe 2a/g

(3.5)

(3.6)

for small g. In (3.6) a and b, o must be functions of b and,
in (3.5), P=ho/lnb. Note that in the low-temperature
limit, where $~0, L (t, g) goes to a finite, nonzero value.
Consequently, for t & co and /=0, q~ will be a constant,
while for 0 & g & ao and t sufficiently large,

q~ (t)= (lnt ) (3.7)

Equation (3.4) for the peak height has a solution of the
form

C (t, g)=m L"(t,g)f (tg~/b, ' ' (3.8)

In writing this solution in d dimensions we should em-
phasize that we have direct evidence for the behavior of b,
given by (3.6), only for two dimensions. We note, as in
the discussion of L (t,g), that as $~0 we expect C~(t, g)
to be finite. Since as $~0 the argument of f goes to co,
we require that f ( ao ) be finite. Alternatively, for fixed g
as taboo we find

where we have written explicitly the dependence on the fi-
nal quenching temperature through the correlation length

g for the final equilibrium temperature. In (3.1) b, is the
long-time value of b, (y, t) given approximately by 0.41y at
b =2. As in the nonconserved case, (3.1) has a solution of
the scaling form (2.30) which we will write as

C(q, t, g) =C (t,g)F(qL, g/L ), (3.2)

where L(t, g)=qM'(t, g) [q~ is the value of q for which
C(q, t) has a maximum at time t] satisfies

III. RESULTS

From the recursion relations (2.27) and (2.4) we can ob-
tain, by following standard iterative procedures, our re-
sults for the time evolution of the correlation functions.

C (t,g) =mEL "(t,g)f ( ~ ),
and the scaling relation

lim C~(t, g)q~ (t,g)=mEf (ao)
S~OO

follows.

(3.9)

(3.10)

A. Scaling results

First we consider the analytic consequences of the re-
cursion relation given by (2.23). At long times and small
(but nonzero) wave vectors, it follows from the asymptotic
behavior of Co and P (which can be elucidated from
well-known asymptotic properties of Bessel functions)

B. Numerical results

We now discuss the results we obtain by numerically
iterating the recursion relations derived in Sec. II. We
will present results for the nearest-neighbor correlation
function, for some other short-range real-space correla-
tions, and for the quasistatic structure factor. The results
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1.5— —1.4
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2.5 3
log t

0.9

0.02 0,04 q„g» 0.06

FIG. 6. The peak position (lower dots) and the height (upper
dots) of the quasielastic structure factor as functions of time (for
uF ——0.5) in the time region of the simulations in Ref. 5. The
corresponding solid lines are a power-law fit [see Eq. { .3.12

FIG. 4. Theoretical results for the quasistatic structure fac-
tor, for uF ——0.5 at several times.

We now turn to the quasistatic structure factor, which
is the quantity we want to focus on. After having ob-
tained numerical values for 8(t) as explained above, the
recursion relation (2.23) is readily solved by iteration. In
Fig. 4 we show C(q, t) as a function of q„=q„and severa 1

times for a quench to uF 0.5. Of ——course, at q==0
C( t) is independent of time because of the conservationq,

~ ~

11 . This constant is unity at ul ——0 (which is the on y
case we consider here). The peak indicating the growt o
order, therefore, cannot grow at q=0 (as in the order-
disorder problem), but it grows at a finite value of q
which decreases with time as the peak becomes sharper
but never vanishes.

In Ref. 4 and in Sec. IIIA we have discussed the ex-
pected behavior of the peak position q~(t) at long times.
We have extensively studied this time and temperature
dependence of q~(t) and verified our analytic predictions.

Thus, in Fig. 5 we plot q~(t) as a function of (lnt) ' for a
final temperature TF ——0.59T, . The dots are the results
for C(q, t) as obtained from the recursion relation (2.4).
A very extensive time region (100& t & 10 ) is included in
the plot. The straight line corresponds to proportionality
b tween q and (int) '. Except for the wiggles around

ofthis line, which are an artifact resulting from the use o
an integer value (b=2) (Ref. 21) for the spatial rescaling
factor, we see that the proportionality between the two
quantities involved is well verified.

We must emphasize that such behavior is only clearly
noticeable when one looks over many decades of time.
Over shorter intervals, growth appears to be characterized
b power law. Thus our results are not, as we shall see,y a powe
in contradiction with those of MC simulations, w ic
have been performed only over a much narrower time
range, t &10 (in our units). This is shown in Fig. 6,
which is a log-log plot of q~(t) versus t for this time
range, at uF ——0.5. The straight line is a power-law fit,

0.1 q (t)~t (3.12)

0.08

qm

0.06

04

0
I I

0.05 0.1 0.15 0.2 0.25
1/lnt

FIG. 5. The peak position of the quasistatic structure factor
2versus (lnt) ' in the time regime t —10 to 10, as extracted27

from the numerical results for C(q, t).

corresponding to an exponent a =0.19. The fit appears to
be excellent. We also plotted in Fig. 6 the value of
C~ (t) =C(q~ (t), t ) and again observed an excellent
power-law fit of the form C ~ t ' with a'=2a, which is
required by scaling [see Eq. (3.10) and discussion below].
The same values are obtained in the same time range for
quenching to the final temperature, TF ——0.59T„chosen
in the MC simulations. The result a =0.19 is in excel-
lent agreement with the value a =0.2 found in the MC
simulation. The value of a' quoted in Ref. 5, however, is
a'&da. We believe that this apparent discrepancy is due
to the difficulty in estimating C~ and q~ in the fairly
widely spaced wave-number mesh used in Ref. 5. It is
also instructive to compare C(q, t), obtained here, with

5the corresponding MC results. This is done in Fig.'. 7:
The solid line represents our results as a function of q~/m
(and q =q„) at T~ ——0.59T, and time t=24763, in ourX

units. The dashed lines join the points corresponding to
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FICi. 7. The theoretical result for the quasistatic structure
factor for TF——0.59T, and at t=24763 (solid line) compared
with the Monte Carlo result (dashed line) from Ref. 5 for the
same temperature and at the same time.

FIG. 8. The scaling function F(x) [Eq. (3.2)] as a function of
~

x ~. The solid and dashed lines corresponds to u~ ——0.5 and
uz ——0.64, respectively. The dots are a fit of the form given by
Eq. (3.13).

the results obtained in Ref. 5 for the same time and
quenching temperature. The two results are, in our
opinion, in good agreement. The MC results (which again
represent an average over only eight runs) appear to indi-
cate a narrower peak of about the same height, but the ac-
tual difference should be less since our result properly sat-
isfies the sum rule (2.32). However, the main features of
the curves (peak position and height) are in good agree-
ment.

When we quench to zero temperature (u~ ——1) we get, as
expected, a completely different behavior which further
verifies our analytic results. After relatively rapid growth
at early (t &60) times both q~(t) and C~(t) approach a
constant value. We have tested this freezing up to
t=10 . Thus, the system will never reach equilibrium
under Kawasaki dynamics when quenched to zero tem-
perature.

All of these results are obtained using the recursion re-
lation (2.4) and the result for the time rescaling parameter
4(y, t) obtained from short-time MC simulations in Ref.
7. There are no adjustable parameters. The growth of or-
der is governed only by the structure of the recursion rela-
tions. The agreement between theory and simulations,
with respect to power-law exponents, C(q, t), and e(1,0;t)
reflects the degree to which our method can quantitatively
reproduce the simulation results. It is certainly desirable
to have additional MC data available since there were
only eight runs in Ref. 5 on a fairly coarse q mesh. Given
the resulting statistical uncertainty (reflected in the ap-
parent lack of scaling), we conclude that the agreement is
as good as can be expected.

We turn now to the scaling properties of C(q, t) for the
case of spinodal decomposition. The asymptotic solution
of the recursion relation is given by (3.10). This equation
and the sum rule imply that C~(t)q~(t) should be in-

F(x)= 1
(x &1),

CX) +CXpX
(3.13)

as suggested in Ref. 22, with y =d + 1 =3. This fit is
represented by the dots in Fig. 8. Trying the value
y =2d =4 for the exponent y does not result in a good fit.
Therefore, our results clearly support the y=d +1 alter-
native. We refer the reader to Furukawa's for a detailed
discussion. In three dimensions detailed simulations re-
viewed in Ref. 1 also show that y =d + 1.

We see then that the analytic predictions are clearly
verified by the numerical solution of the recursion rela-
tions. We have also seen that the logarithmic growth law
is not at all in contradiction with the good power-law fits
found in MC simulations. Indeed, we believe that it is
likely that many of the experimental or three-dimensional
simulation results in which power-law behavior is report-
ed to be found would actually show logarithmic behavior
over a sufficiently extended time range.

dependent of time (except at early times). We find that
C (t)q (t) is a constant for t &100 over 25 decades in
time. In particular, within any restricted time region
where one observes apparent power-law behavior, we find
a'=2a.

We have also extracted the scaling function F(x)
[x =q/q~(t)] defined by (3.2). In Fig. 8 we have plotted
this function for two values of up (up ——0.5 and 0.636).
We can see that F(x) is only weakly temperature depen-
dent. This was also found to hold in the order-disorder
case, although, of course, the general shape of F(x) was
very different.

For x & 1, i.e., q &q, the tail of the shape function can
be fitted very well to the form
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IV. CONCLUSIONS

We have, in this paper, presented a RG theory of spino-
dal decomposition in a square-lattice Ising model with
Kawasaki dynamics in zero external field. The theory de-
scribes self-similar behavior quantitatively. The conserva-
tion of the order parameter, the fixed-length sum rule,
and the initial time derivative of all the two-point correla-
tion functions are dealt with properly. The time rescaling
factor used was obtained in Ref. 4 and is strongly tem-
perature dependent. The main results of the theory are
the logarithmic growth law for the typical domain size at
long time, which is associated with the-freezing of the sys-
tem for quenches to zero temperature. This is, however,
not in conflict with the power-law result of MC simula-
tions. Instead, we have found that in the time region of
the MC simulation the logarithmic growth law may be
approximated by a power-law fit with an effective ex-
ponent. The exponent calculated from our theory is
found to be in excellent agreement with that from MC
simulations. Our calculations of various other quantities
seem to agree well with existing MC simulations.

Here, we can give a physical argument in support of the
logarithmic growth law. Let us first recall the nature of
the LCA argument, " at the most heuristic level, for. a
NCOP. In that case it is argued that at long times the
dynamics is dominated by interfacial motion. It is as-
sumed that a typical velocity v of an interface will be
driven by the curvature ~. Thus, v ~ ~, and since
u =dL/dt and t~ cc L ' one immediately obtains L ~ t '~ .
In the present case the physics is quite different. With ex-
change dynamics the process of moving particles across
an interface becomes increasingly difficult as one lowers
the temperature, and we expect the interface velocity to be
activated, u =upexp( —tcQ). The kinetics at the interface
do depend on the local curvature. In particular, the ex-
change probability and v are clearly larger for larger local
curvature. Thus we expect Q cc I /tt —I /Kp where the
I /tcp term indicates that Q vanishes for sufficiently large
curvature. This takes into account that monomers, which
have the largest possible curvature, do propagate at zero
temperature, although they are quickly absorbed into
larger structures. If we consider again v =dL /dt,
Q =L Lp, and replac—e KF by I/g, we have

oL =g ln exp(Lp/g) (4.2)
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which agrees with our result (3.5) if we take the index
P= —1. The RG result, using b,p

——0.41 at b =2, would
be p= —1.3. Given the statistical uncertainty in b,p and
the heuristic nature of the above argument, the agreement
must be considered good. Thus, we have strong evidence
that the growth kinetics in this problem involves both the
curvature and an activation process at the interface.

Our work here, and in Ref. 4, raises several questions.
The first concerns whether this logarithmic growth law
we find for a square lattice will extend to three dimen-
sions and other lattices. The argument above would indi-
cate that these results would still apply, but this should be
investigated further. We come then to a broader question:
In determining the various types of growth in the kinetics
of first-order phase transitions, what is the role of the
zero-temperature kinetics' There is mounting evidence
that zero-temperature freezing, associated with activated
kinetics, will influence growth laws at finite temperatures.
How do we quantify this notion and use it to classify vari-
ous systems? Our work suggests that the low-temperature
behavior of the rescaling factor 6 is the appropriate quan-
tity to investigate in this respect, but it would be very use-
ful to understand at a more physical level which systems
will and which will not freeze. These questions are associ-
ated with both the existence of conservation laws and the
nature of the ground state, but not in an obvious fashion.

From our renormalization-group point of view the
,
"universal" features of kinetics of first-order phase transi-
tions are governed by the low temperature fixed point. In
the case of the LCA growth law this fixed point is associ-
ated with the equilibrium ground state. In those cir-
cumstances where freezing is possible the system will not
equilibrate and the fixed point is not simply associated
with the equilibrium ground state. In a RG approach
we would like to associate this change in the structure of
the fixed point with the change of some variable from
stable to marginal in a RG sense. Variables which may
play a role of this type are the concentration (away from
50%) and the density of vacancies (away from zero).

dr' —(L —Lo))/g'
=voe

dt
(4.1)

The solution to this equation, up to a multiplicative con-
stant, is
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