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Monte Carlo studies of spin glasses universally exhibit a "zero-field hole" in the distribution of lo-

cal fields, P(h). There is some dispute in the literature as to whether the dilute antiferromagnetic
Ising model on the triangular lattice has a spin-glass phase; in this paper we present Monte Carlo re-

sults for P(h) which further support the hypothesis that indeed this system does exhibit a spin-glass

phase.

I. INTRODUCTION

It is widely accepted that frustration and disorder are
the two essential ingredients for a system to be a spin
glass (SG). In the canonical Ruderman-Kittel-Kasuya-
Yosida (RKKY) -type spin glass, ' frustration and disorder
are introduced through the rapid spatial variation of the
long-range exchange forces. Over a period of years, atten-
tion has been focused on the question of whether insula-
tors, in which the exchange interactions are short ranged,
can also be spin glasses. Experimentally, spinels ' are
known to exhibit spin-glass behavior, and several other in-
sulating alloys with dominant anti ferromagnetic (AF)
nearest-neighbor interactions have been studied. "

If the interactions are strictly nearest neighbor, then
frustration can be introduced through the geometry of the
lattice as in the (close-packed) triangular (d =2) and fcc
(d =3) lattices. Disorder is introduced through random
quenched impurities, which, in the model considered here,
are taken to be fixed vacancies.

Monte Carlo calculations' of the standard Edwards-
Anderson' order parameter qo for the triangular lattice
indicated a spin-glass phase for concentrations of spins, x,
in the range

0.5&K & 1

and for temperatures T/J &0.9 (with units in which
kz ——1). One of the difficulties in evaluating qo by Monte
Carlo methods is that one must extend the calculation to
very long times,

(2)

~- exp[A /( T —TsG )'], (3)

where A and c are of order unity and TsG is the spin-
glass freezing temperature. Anderico et al. ' find a value
for TsG consistent with zero; i.e., no spin-glass transition
at a finite temperature. In addition, Blackman et al. ' ar-
gue that for a small amount of dilution the ground state
exhibits sufficient entropy so that long-range order is not

The characteristic time r for the decay of q (t) is expected
to be given by'

possible. Direct calculation of the entropy by the
transfer-matrix method' as a function of concentration,
however, does show a very slight minimum in the neigh-
borhood of x =0.9 at T/J =0.3.

II. MONTE CARLO RESULTS

'0= lim —g P;S;(t)
1

(4)

The technical difficulties involved in calculating the SCx

order parameter qo can be circumvented if one is willing
to accept the existence of a zero-field hole in P(h), the
distribution of local magnetic fields h, as a signal for the
existence of a spin glass. Of course, systems which exhib-
it ordinary ferromagnetic or antiferromagnetic order will
also exhibit such a zero-field hole, ' but in the model
under consideration here such long-range order is not pos-
sible. Previous numerical studies have universally ob-
served such a local minimum in P(h) at h =0. In
addition, an exact calculation of P(h) for the perfect anti-
ferromagnetic Ising model on the triangular lattice by
Choy and Sherrington indicates the P(h) exhibits only a
weak maximum at h =0.

Using standard Monte Carlo methods we have calculat-
ed P(h) for a triangular lattice over a range of tempera-
tures and concentrations. The results presented were cal-
culated for lattices of size 50&& 50 with periodic boundary
conditions. Equilibrium was established by running 1500
MCS/spin (Monte Carlo steps per spin), and thermal
averages were then taken over the following 1000
MCS/spin. In addition, to check for finite-size effects,
P(h) was calculated for perfect lattices (x =1.0) of size
up to 100X100 (Fig 1) at lo.w temperature. The absence
of any strong variation in P(h) with lattice size, and the
excellent agreement of the Monte Carlo results with the
exact results for P(h) at T =0 (Ref. 24) lend confidence
to our Monte Carlo results. Monte Carlo results for P(h)
for the perfect lattice (x =1) at T/J =1.0 and
T/J =0.25 are shown in Fig. 2. In addition, in order to
verify spin-glass behavior we have calculated the order pa-
rameter 4 described by Binder. This order parameter,
which is given by
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FIG. 1. P(h) for x =1.0 and T/J=0. 25 for lattices of in-
creasing size. The points at L = oo are the exact results of Choy
and Sherrington for T=0 (Ref. 24).
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where P,. is a particular ground-state configuration of the
system, is identical to the usual Edwards-Anderson' order
parameter in the limit of low temperatures.

The Monte Carlo results for P(h) for diluted lattices
(x =0.9 and 0.75) are shown in Figs. 3 and 4, respective-
ly, for the same two temperatures as in Fig. 2. The most
prominent feature of Figs. 3 and 4 is the local minimum

FIG. 3. P(h} for x =0.9 at T/J =1.0 (O) and T/J =0.25
(e).

of P(h) at h =0. This "zero-field hole, " which becomes
more prominent as the concentration x decreases, indi-
cates the presence of a spin-glass state. Further evidence
is provided by the behavior of the Binder order parameter
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FIG. 2. P(h) for x =1.0 at T/J=1.0 (O) and T/J=0. 25
(e).

FIG. 4. P(h) for x =0.75 at T/J =1.0 (O) and T/J =0.25
(o).
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Flax. 5. P(t) for x = 1.0 ( Q ) and x =0.9 (~ ) for T/J =0.25.

P which is shown in Fig. 5 for T/J=0. 25 and x =1.0
and 0.9. We see from the figure that for x =0.9, ttt

remains quite large for very long times, namely 10
MCS/spin, as would be expected for a spin glass.

In contrast, for x =1.0 the system is known to be
paramagnetic for all temperatures. As shown in Fig. 5,
g(t) exhibits large fluctuations that nevertheless decrease
rapidly to zero at low temperatures.

III. DISCUSSION

It is clear from the results for P(h) at x =0.9 that for
small dilution P(It) will vary continuously with the con-
centration and therefore cannot be a sensitive indicator of
the spin-glass phase. However, at lower concentrations
the change in P(h) with temperature is more pronounced
as shown in Fig. 4 for x =0.75. It is also interesting to
note that at this concentration the disparity between even
and odd local fields is gone.

We cannot, however, rule out the possibility that this
behavior is due to the system being trapped for long
periods of time in metastable states. Recent work by
Bhatt and Young suggests the lower critical dimension
for spin-glass behavior is d, =3, although the results of

Ogielski and Morgenstern on larger lattices are con-
sistent with d, & 3.

IV. CONCLUSION

Our Monte Carlo results have shown that the dilute an-
tiferromagnetic Ising model on the triangular lattice does
indeed exhibit the characteristic zero-field hole in the
spin-glass regime of Grest and Gabl. ' However, because
only nearest-neighbor interactions are considered in this
model, the local field assumes integer values in the range
—6&A &6, and a large number of sites do experience
zero local field. Since spins at these sites are free to flip,
the maximum value of the spin-glass order parameter is
necessarily less than unity.

Although our results strongly favor the conclusion that
indeed a spin-glass phase exists, the exact nature of the
critical behavior (if any) remains to be established. This
issue and the effect of isolated clusters of spins are
currently under study.
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