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Critical behavior of pure and diluted XFmodels with uniform frustrations
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A renormalization-group approach is used to investigate phase transitions in fully frustrated XY
models on a square and a triangular lattice. The existence of long-range order associated with the
discrete symmetry of the system is demonstrated. It is argued that there exists one transition which
is a combination of a Kosterlitz-Thouless —like one for spins and an Ising-like one for chirality. In
particular a nonuniversal jurnp in the helicity modulus is predicted. Dilute randomness is also con-
sidered and shown to be irrelevant to the critical behavior.

Since a continuous symmetry cannot be broken in two
dimensions, ' the conventional two-dimensional XY model
cannot exhibit long-range order at finite temperatures.
Instead, it exhibits algebraic order at low temperatures,
which is characterized by a power-law decay of spin-spin
correlations. At a certain critical temperature it shows
the Kosterhtz-Thouless (KT) transition from this low-
temperature algebraic phase to a high-temperature
paramagnetic phase. '

The frustrated XF model, on the other hand, is expect-
ed to display different critical behavior since it possesses a
discrete symmetry in addition to the underlying continu-
ous U(1) symmetry. Then there can exist two types of
topological excitations, vortices (point defects) and
domain walls (line defects), leading to the possibility of
long-range order in two dimensions.

The observation has created much interest in the two-
dimensional XY model, which can be realized by the two-
dimensional periodic array of coupled Josephson junctions
in a magnetic field. The nature of the transition is,
however, far from conclusive despite a number of works
including Monte Carlo simulations and mean-field calcu-
lations. Since fluctuations, in general, play a crucial role
in two dimensions, the mean-field approximations are not
expected to predict a detailed picture, and a more precise
approach is necessary to get a better understanding.

In this work we use a KT-like renormalization-group
approach to investigate the critical behavior of fully frus-
trated XYmodels on a square and a triangular lattice, and
obtain results consistent with available Monte Carlo data.
In particular, at low temperatures the system exhibits
both algebraic order and long-range order associated with
the continuous and discrete symmetry it possesses. As the
temperature is increased, both types of excitations con-
dense at a certain critical temperature, leading to a
paramagnetic phase at higher temperatures.

'

Therefore
there exists one transition of peculiar type, which can be
regarded as a combination of a KT-like transition and an
Ising-hke transition. It turns out that the former is an un-
conventional one characterized by a nonuniversal jump in
the helicity modulus. We also use the replica method to
study the effect of bond dilution, and find it to be ir-
relevant to the critical property of this system.

The uniformly frustrated XY model is described by the
Hamiltonian

PH =—J g cos(P; P~
—A—;l.),

&~j&

where A;j is a bond angle such that the plaquette sum is
constant over the whole lattice, gA;l =2m.f. This Hamil-
tonian with the value f= —,, which corresponds to the
fully frustrated system, can be decomposed into two cou-
pled XFHamiltonians

PH =X g—[cos(8,'"—8'")+cos(8'; ' —8' ')]
&Ij&

+h g cosp(8,'"—8,' '),

where p =2 (3) for a square (triangular) lattice, and both
the effective interaction K and the mode-coupling field h

depend on the interaction J in the original Hamiltonian
(1). ' The form of Hamiltonian (2) naturally manifests
the two types of topalogical excitations expected for the
frustrated system: point defects describing vortices in the
spins 8"" ' and line defects describing domain walls be-
tween regions of different chirality n =p (8'" 8' ')/2sr. —

The Hamiltonian (2) has been analyzed for p =2 in the
context of the helical XY' models to predict two phase
transitions, of KT and Ising character, respectively. '

This, however, is not conclusive because the two types of
excitations have been assumed to be independent of each
other, which is not true in general.

To proceed further, we consider the renormalization of
the Hamiltonian (2) by both vortices and the coupling
field. In the standard scheme, the coupling field can be
taken into account by introducing integer coupling
charges in addition to ordinary vortex charges. Corre-
spondingly, we need two types of fugacity controlling the
number of vortices and coupling charges, respectively.
Also, it should be noted that although the interaction K in
the Hamiltonian (2) initially does not couple the two
mades, an off-diagonal coupling will be generated by the
renormalization process.

With these in mind we can derive the renormalization-
group equations. The detailed procedure is essentially the
same as that used by several authors, "and will not be re-
peated here. The resulting scaling equations to the lowest
order in the vortex fugacity y and the coupling charge
fugacity y are
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—[K +(K K—)]y'3'

dK
d(

=3' — 3'

dl
= (2 rrK)y— ,

(3)

dl
=(2—p /2mK)y,

q(r):—(e 'e ') =r
with

g = (2@K,rr) ' =[2'(2 K /K)J—
g =(p/2') (2vrK)

where r is the distance between sites i and j, and the in-
teractions E and E now must be interpreted as those ap-
proached at large length scales. Since both K and E ap-
proach zero at high temperatures, both q and g become
arbitrarily large. This implies an exponential decay of
both correlations, which corresponds to a disordered
(paramagnetic) phase. On the other hand, both K and K
becomes arbitrarily large at low temperatures, leading to
the result than g is finite but 7) =0. Therefore the spins
has the usual algebraic order but the chirality acquires
long-range order.

To understand the nature of transition in detail, we
need a detailed analysis of the scaling equations (3). Al-
though we are unable to do this, it can be shown that, in
case p =2, K approaches a value greater than 1/m at the
critical temperature. This indicates the relevance of the
coupling field around the critical region. The Migdal-
Kadanoff approximation considered in Ref. 7 would then
be qualitatively correct. The chirality n; can have values

where K —K accounts for the off-diagonal coupling be-
tween the two modes. Initially K is equal to K since the
two modes are not coupled, but it is obvious that K be-
comes different from K as renormalization proceeds. The
coupling charge fugacity y is an increasing function of the
coupling field h and is given by y =p~' h /2 for small h.

The scaling equations given by (3) show that the cou-
pling field is irrelevant for E &p /4~, while vortices are
irrelevant for K&2/vr. 'When p =2 (square lattice), there
is no region where both vortices and the coupling field are
irrelevant, and the entire spin-wave fixed line is unstable
to either vortices or the coupling field. Then the system is
expected to exhibit a phase transition from a low-
temperature ordered phase, where the coupling field in-
duces long-range order for chirality in addition to algebra-
ic order for spins, to a high-temperature paramagnetic
phase where domain walls and vortices destroy such
long-range order and algebraic order, respectively.

To see this explicitly, we consider the correlations of
both the XY spin and chirality. It is straightforward to
derive the expression

ie'." —ie'."I'(r): (e ' e ' ) =—r

0, 1 at low temperatures, and its order-disorder transition
is expected to be of an Ising type. Thus the overall phase
transition would be of such a peculiar type that a KT-like
transition for spins and an Ising-like one for chirality are
combined.

Expected from this observation are Ising-like exponents
for chirality and its fluctuation (chirality susceptibility)
and a KT-like behavior of the spin susceptibility. The
spin helicity modulus, however, is expected to display a
jump perhaps greater than the universal one, ' since the
interaction J(=v2K, rr) in the original Hamiltonian (1)
will approach a value greater than the universal value 2/m.
at the critical temperature even though E,ff in general ap-
proaches a value less than 2/m. Also the specific heat is
dominated by the leading singularity, and is expected to
display Ising-like behavior, i.e., a=o. These predictions
are all in agreement with the results of Monte Carlo simu-
lations.

We now consider the case p =3 (triangular lattice). At
first sight it seems that there exist two consecutive transi-
tions: a KT transition at a certain critical temperature
and a second transition having KT-like singularities at a
lower temperature, since there is a region where both vor-
tices and the coupling field are irrelevant. This, however,
is true only when the initial y is sufficiently small. In
fact, the initial value of y corresponding to the original
Hamiltonian (1) satisfies y-K e and is not suffi-
ciently small. ' Closer investigation into this case shows
that there is no stability region for the spin-wave fixed
line, suggesting only one phase transition. ' Therefore in
both cases (square lattice and triangular lattice) the
screening effect of domain walls condensed at the critical
temperature is large enough for vortex pairs to unbind at
the same temperature.

It can be seen again that the coupling field is relevant
around the critical region, and the order-disorder transi-
tion of the chirality n;(=0, 1,2) is expected to be
described by a three-state Potts interaction with one-site
and two-site symmetry-breaking fields, which can be ex-
pressed in terms of classical spins S;—:n; —1 = —1,0, 1:

/38 = $[J,s;s~+J—qs;sj ]—b,$s;2 2 2

(ij )

with the relations J&/Jz ——3 and b, /J& ——4. This is the
Blume-Emery-Griffiths model, which has been studied
quite extensively. ' Revealed by these studies is a variety
of critical behavior, according to the range of the interac-
tions, including Ising transitions and first-order transi-
tions as well as a three-state Potts transition. For the
above range of the interactions, an Ising-like transition is
expected. Thus it is concluded that the phase transition
of a fully frustrated XY model on a triangular lattice is
essentially the same as that on a square lattice. This ex-
pectation is strongly supported by Monte Carlo simula-
tions of both the Hamiltonian (1) with f= —,', and the an-
tiferromagnetic XY model on triangular lattices, ' which
should belong to the same universality class.

Finally, we consider the effect of quenched bond dilu-
tion, where the probability distribution for the interaction
is given by
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&(JJ.) =(1 p—)&(J;; )+p&(&& —J) .

We use the usual replica method to obtain the effective
Hamiltonian in the form

13H—,fr=pJQ icos(P;'' PJ —' A;—),
&=1 (EJ')

(7)

where o, is a replica index, and it has been noted that
higher cumulants are irrelevant. Performing the same re-
normalization procedure for this dilute system as that for
the pure system, we find that replicas do not mix, and ob-
tain the same scaling equations as those for the pure sys-
tem, Eq. (3). Thus bond dilution does not affect the criti-
cal behavior of the fully frustrated XI' model in two di-
mensions. This result is not surprising since it is known
that dilute randomness does not change the critical ex-
ponents of the two-dimensional Ising transition. '

In summary, we have used the renormalization-group

analysis to study phase transitions in the fully frustrated
XYmodels on a square and a triangular lattice, and found
novel behavior. The existence of long-range order associ-
ated with the discrete symmetry of the system has been
demonstrated. It turns out that there exists one transition
which is a combination of a KT-like one and an Ising-like
one. In particular, a nonuniversal jump in the spin helici-
ty modulus has been predicted. Dilute randomness has
been also considered, and shown to be irrelevant to the
critical behavior.

Note added. After completion of this work, we learned
that similar results for the pure models had been obtained
by M. Yosefin and E. Domany [Phys. Rev. B 32, 1778
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