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Symmetry, stability, and elastic properties of icosahedral incommensurate crystals
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The symmetry and stability of icosahedral incommensurate structures and generalized two-
dimensional Penrose pentagonal structures are studied. The crystallographic properties of Penrose
lattices are described by five-dimensional {5D)super space groups, and the icosahedral structures are
described by 6D space groups, with or without improper translations. The density in real space is
given as the density along a three-dimensional. plane in this 6D space. The fivefold symmetry of the
diffraction spectrum of Mn-Al alloys, which is inconsistent with three-dimensional translational in-

variance, reflects a fivefold rotation axis of the 6D space group. The six continuous degrees of free-
dom associated with the 6D space represent the usual three orthogonal rigid displacements of the
crystal, , plus three phase shifts associated with internal rearrangements, leading to three acoustic-
phonon modes and three phason modes. There are two independent elastic constants, which is fewer
than in any regular crystal, representing one-dimensional and five-dimensional irreducible strains,
respectively. If the phase degrees of freedom are included, there are five generalized elastic con-
stants. The stability of icosahedral structures and "lyotropic" Penrose structures can be understood
from a phenomenological Landau theory. The ideal icosahedral crystal has perfect positional order,
which is stable with respect to thermal fluctuations at low temperatures. The melting transition is
first order.

I. INTRODUCTION

In an exciting experiment on a manganese-aluminum
alloy, Shechtman et al. observed a diffraction spectrum
with fivefold symmetry, inconsistent with the usual lattice
translations for periodic crystals. ' The apparent point-
group symmetry is icosahedral. The diffraction spots do
not form a regular periodic pattern, and they cannot be
indexed to any Bravais lattice.

How can this be possible'? The diffraction spectrum
mostly resembles the spectrum of structurally or composi-
tionally incommensurate crystals, where the diffraction
spots can also not be indexed in the usual way by three
Miller indices hkl. In incommensurate crystals the spec-
trum is generally characterized by linear combinations of
two sets of vectors q and g, where q represents a basic
lattice and g represents the modulation vector, so more
than three indices are usually needed to specify all reflec-
tioiis. The most obvious difference is that the spectrum of
the icosahedral crystals does not separate into that of a
basic three-dimensional (3D) lattice plus that of the addi- .

tional modulation, so a characterization of the crystal
symmetry can not possibly start with that of a real lattice.

The purpose of this paper is twofold, namely first to
develop a systematic description of the symmetry of crys-
tals with icosahedral diffraction patterns, and next to
present a phenomenological theory of the stability of such
structures. The crystallographic description is purely
mathematical and does not rely on any specific picture of
the underlying physical mechanisms. It should be viewed
as an extension of the usual characterization of crystals in
terms of space groups.

Usually, a space-group-symmetry operation consists of
a three-dimensional translation v combined with a three-

dimensional rotation or reflection R. The three basis vec-
toi's 'ri, Tz, and r3 define a Bravais lattice, and the rota-
tional operations R define the so-called point group. The
existence of a Bravais lattice reduces the number of possi-
ble point groups. For instance, the point group cannot in-
clude fivefold rotations as found in the Mn-Al spectrum. '

It will be shown that the symmetry of icosahedral struc-
tures can also be described by space-group operations con-
sisting of translations combined with rotations. The
translations, however, are in six-dimensional space, and
the point group describes generalized six-dimensional ro-
tations and reflections. All 6D space-group operations
describe actual symmetry operations in the real 3D crys-
tal. The diffraction spots can be labeled by six Miller in-
dices (n&, . . . , n6), and the pattern is spanned by six
linearly independent reciprocal-lattice vectors q~, . . . , q6.
The actual atomic or electronic densities can be thought
of as superpositions of six density waves with wave vec-
tors q;, and higher harmonics. Only one length scale is
invo»ed»nce

I qi I

=
I q21= ' ' ' =

I q6 I
In this sense

the structure is different from the usual incommensurate
structures which involve at least two independent lengths.
The 6D space group may or may not include "improper"
translations corresponding to half-integer fractions of the
basic lattice vectors, in analogy with the situation for
simple-cubic (sc) and body-centered-cubic (bcc) structures.
Comparison with experiments indicates that the actual 6D
space group of the Mn-Al alloy is the sc (or rather "si")
version with no improper translations.

Once the crysta1 symmetries are known, the resulting
space groups provide a framework in which to discuss
various physical properties which depend on the symme-
try, such as elastic properties, lattice vibrations, and elec-
tronic structure. For instance, all translations in 6D space
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leave the energy invariant, and this defines six continuous
symmetries in the real 3D systems. Three of these sym-
metries can be identified as rigid displacements of the
crystals (as for regular 3D crystals). The three remaining
symmetries describe internal rearrangements of the crys-
tal. Those symmetries are very similar to the phase
translations in incommensurate systems. The two types
of continuous symmetries transform as two different rep-
resentations of the six-dimensional point group. Since
there are six continuous symmetries there exist six hydro-
dynamic acoustic vibrational modes which could be gap-
less as their wave vectors approach zero. Three of these
modes are the usual acoustic phonon modes, and the
remaining three modes can be described as phasons.
There is some mixing between the modes. In principle, all
these modes can be observed in an inelastic neutron-
diffraction experiment, but the phason modes might well
be overdamped or pinned either by impurities or by strong
incommensurate coupling.

The elastic properties of the icosahedral crystals are
particularly simple. There are only two independent elas-
tic constants, in contrast to normal crystals, which have at
least three independent constants. If the elastic strains of
the phase displacements are included, there is a total of
five generalized elastic constants which enter the dynami-
cal matrix for the phonon and phason excitations.

In addition to the three-dimensional icosahedral case, a
slightly simpler two-dimensional crystal will be discussed.
The two-dimensional structure is formed by superposition
of five density waves with wave vectors q~, . . . , q5 form-
ing a regular pentagon. The resulting crystal has a five-
fold rotational symmetry, but no discrete translational in-
variance. We call this crystal a generalized "Penrose"
structure after Penrose, who constructed explicit space-
filling "tilings" with the same symmetry. The Penrose
structures are characterized by a five-dimensional space
group, and the mysterious fivefold local symmetry of the
Penrose lattices reflects the existence of a fivefold rota-
tional axis in 5D space. To my knowledge, the underlying
5D space-group symmetry of the Penrose lattices has not
been revealed before. Although no physical systems with
Penrose symmetry have been discovered so far, such
structures could, in principle, exist in the form of layers
of atoms or molecules absorbed on isotropic substrates or
as three-dimensional rodlike liquid crystals. The
icosahedral crystals cannot in general be formed by tilings
so they are not "quasicrystals" in the sense defined by
Levine and Steinhardt. '

A discussion of the stability of icosahedral structures
must involve some elements of the underlying physics in
contrast to the purely mathematical crystallographic
description. Ideally, one would like to explain the struc-
ture from first-principles calculations taking into account
the actual electronic properties of the constituent atoms.
Such a calculation of crystal stability is hardly possible
for regular metal crystals and is thus well beyond the state
of the art for incommensurate crystals today. Hence, any
understanding of the stability must be phenomenological.
Landau's theory of phase transitions constitutes a useful
framework in which to discuss the stability of ordered
structures which can arise by condensation of a liquid.

II. STABILITY OF ICOSAHEDRAL STRUCTURES
AND PENROSE LATTICES

Consider a two- or three-dimensional liquid with full
translational and rotational symmetry. Which are the
possible ordered structures that the liquid may condense
into at low temperatures? According to the theory of
Landau and Lifshitz, the condensed phase is described by
a symmetry-breaking order parameter which transforms
as an irreducible representation of the symmetry group of
the liquid phase. Because of the translational symmetry,
the irreducible representations are labeled by the wave
vector q, and the density of the ordered, low-temperature
phase can be written

p(r) =pa+ g pzexp(iq r)+c.c. .
q

(2.1)

The complex constants pq, labeled by the wave vector q,
are the order parameters of the phase transition. To
determine which structures may actually become stable,
the free-energy density of the system is expanded in terms
of the possible order parameters pq. Because of the rota-
tional symmetry, the free energy depends only on the
magnitude

~ q ~

and not on the direction. The expansion
of the free energy in terms of order parameters corre-
sponding to wave vectors of a single length takes the form
(with p; =p~ )

phase with full translational and rotational symmetry.
The analysis follows the philosophy of Alexander and
McTague, who used the Landau theory to discuss stabili-
ty of bcc crystal phases and, in fact, predicted the ex-
istence of icosahedral crystals. Landau theory allows for
the existence and complete stability of systems with Pen-
rose symmetry, and icosahedral crystals. The icosahedral
ordering is described as a multi-q structure formed by su-
perposition of compositional density waves. Depending
on the actual phenomenological expansion coefficients
entering the theory the resulting structure could be either
a 15-q structure corresponding to a 6D space group with
improper translations (6D bci structure), or a 6-q struc-
ture corresponding to a 6D space group with integer
translations only. Nelson has pointed out that the experi-
ments on Mn-Al alloys are indicative of the latter situa-
tion rather than the 15-q structure suggested in a short
version of the present paper. In any case, it is predicted
that the melting transition of icosahedral structures is
first order and thus involves a latent heat.

The paper is organized as follows. First, in Sec. II the
stability of icosahedral and Penrose structures is discussed
in terms of Landau theory. While the relevance of Lan-
dau theory with respect to the nature of the melting tran-
sition can be argued, the theory at least allows us to define
the symmetry of the systems that we are dealing with.
Section III contains the general crystallographic descrip-
tion of icosahedral structures. This section also includes
the discussion of the elastic properties and hydrodynamic
modes of icosahedral structures and Penrose lattices. The
reader who is interested in the crystallographic description
may proceed to Sec. III, which contains the most impor-
tant results of this paper.



5766 PER BAK 32

[ "qP P '+—&q(P P —)'+~P P ''P—jP j—+"3P PjPk «'+q, +qk). 2

I e; I
=e

+Ugp p&pkpip ~(q'+ ' ' +q )+c c + ' ' ' (2.2)

pb„(r) = g cos(q;.r+8; )+P

octahedron
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(c)

where we have explicitly included higher-order terms with
wave vectors adding up to zero. Depending on the coeffi-
cients shown in (2.2) (and coefficients not shown) a variety
of structures may become stable. To map out precisely
which structures are stable for what combination of coef-
ficients would be a formidable task' and of little interest,
since the coefficients are phenornenological anyhow and
cannot be calculated from microscopic theory. For in-
stance, a single density wave p=A exp(iq. r) describes a
smectic liquid crystal [see Fig. 1(a)). The translational in-
variance is broken in one direction only. A structure
composed by superposition of three waves with wave vec-
tors forming an equilateral triangle [Fig. 1(b)] can take
advantage of the third-order term U3. The role of this
term is to lock the three waves together. In two dimen-
sions, the resulting "triple-q" structure represents a two-
dimensional triangular (or honeycomb) crystal absorbed
on a smooth substrate. In three dimensions it represents
a lyotropic rodlike structure where the tIanslational sym-
metry is broken in two directions but with liquid transla-
tional symmetry in the third direction.

However, it has been pointed out by Alexander and
McTague that the free energy can often be lowered fur-
ther by combining six vectors forming a tetrahedron, or
six pairs of vectors. +q; forming an octahedron. The
latter structure represents a three-dimensional body-
centered-cubic structure. In order to prepare for the sub-
sequent discussion on the more complicated icosahedral
case, we now review the bcc case in some detail. The den-
sity can be written

where the sum includes one term from each pair of vec-
tors and the ellipsis represents higher harmonics. The oc-
tahedron has four pairs of triangular faces, each of which
gives a contribution to the free energy, so one expects, in
general, the bcc structure to have lower free energy than
the rodlike lyotropic structure. Other terms in the expan-
sion may change this picture. Not all six pairs of vectors
q;-(1,1,0) are linearly independent; they can all be
formed by linear combinations of the three vectors (1,0,0),
so pb„can be reduced to a 3-q structure, with higher har-
monics. Inserting (2.3) into (2.2) the third-order term
takes the form

F3 ——— g p cos(8;+8j+8k) .
4t

(2.4)

The free energy can be minimized by choosing
0;+OJ+0~ ——2', p being an integer. Only three of the
four constraints are linearly independent, so there are only
three degrees of freedom leaving the free-energy density
invariant. They represent rigid translations of the crystal
in three orthogonal directions. If we denote the three
translations Pi, Pq, and P3, the relations between the P's
and the 8's are 8i ——Pi+/@, 8z ———Pq+P3 83— Ijki P3,
etc. It will be seen that I"3 is independent of the P's. The
structure (2.3) is invariant under the translations
8;~8;+2';, p; an integer. These translations define a
Bravais lattice in the 6D 8 space, so the symmetry of the
bcc crystal can be described by a 6D space group, consist-
ing of the 6D translations combined with certain permu-
tation operations of 8; defining the point group. Alterna-
tively, of course, the translational symmetry can be ex-
pressed in the P space. However, the 3D space group now
includes improper translations P;~P;+b,P; with
5P;&2';; for instance, Pi ~P i +m', Pq~Pq+ n, '

~3ljk3 +n leaves the structure invariant as it indeed
should for a bcc crystal.

The fifth-order term favors a two-dimensional structure
composed of five density waves with wave vectors form-
ing a regular pentagon [Fig. 1(d)]. Writing

p; =( I/2V 5)p exp(i8; ), i = 1, . . . , 5, the density becomes
5 pp(r)= g cos(q;.r+8;), (2.5)

5

and the fifth-order term of the free energy takes the form

U5
F5 —— p cos(8i+ 8@+83+84+ 85) .

25 5
(2.6)

(e)

FIG. 1. Wave-vector combinations representing {a) smectic
structure, (b) rodlike triangular structures or triangular atomic
monolayers, (c) bcc structures, (d) 2D Penrose structures or 3D
rodlike lyotropic structures, and {e) icosahedral incommensurate
structures.

The operation 0;—+8;+2mp; leaves p invariant. However,
in contrast to the situation for the triangular 2D case and
the three-dimensional bcc case these operations cannot be
represented by (d=2)-dimensional translations. This is
related to the fact that the five vectors q; can not be
formed as linear combinations of two vectors spanning a
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regular reciprocal lattice. Four of the vectors are linearly
independent. In general, higher-order terms such as

p'cos[(q;+q;+t) r], p"cos[(q;+q;+2).r]
will be generated by higher-order terms in the Landau ex-
pansion. The resulting p(r) (for 8; =0) has fivefold sym-
metry, but does not form a regular space-filling Bravais
lattice. %'e shall denote such structures generalized Pen-
rose structures after Penrose, who first constructed expli-
cit tilings with fivefold symmetry. The structure formed
by associating a 5-function atom with the vertices of the
Penrose tiles corresponds to a particular choice of higher
harmonics. The general structures can not be formed as
tilings. For 0; =0 the structure has actually tenfold sym-
metry since 0;~0;+m leaves it invariant. Figure 2 is an
attempt to visualize the symmetry of the structure (2.5).
The straight lines represent maxima of the individual den-
sity waves, so at the center r=o the density is maximized
since all the waves have maxima at this point. For
8; =m/2,

and symmetry of these structures is the subject of the
present paper. An icosahedron has twenty regular tri-
angular faces, twelve corners, and thirty edges [Fig. 1(e)].
The 15 pairs of edge vectors +q; define a structure

p;,(r)= g cos(q; r;+8;),p
15

(2.7)

and the phase-locking third- and fifth-order terms become

p V3
F3 — g Cos( 8; +8J +8k )

10 triangles

(2.8)
p U5

5

F,= g cos(8, +8, +8k+8&+8 ) .
6 pentagons

The latter terms arise because it is possible to combine
sets of five vectors to form regular planar pentagons, for
instance, the vectors q&, . . . , q3 in Fig. 1(e). Assuming no
conflict between the signs of U3 and U3, both F3 and F,
are minimized by 0;=0, or 0;=m, and the resulting free
energy becomes

2P U3 2P U5(F
75~15 3V 15

(2.9)
the structure has fivefold symmetry, as do the original
Penrose tilings. In principle, such structures may con-
dense from two-dimensional liquids absorbed on sub-
strates, but none has been observed so far. Note that the
lattice has perfect long-range order, since the order pa-
rameter p;=(p /~5)ex p(i;8) is uniform throughout the
sample. There is long-range order in the most rigorous
meaning of the term, so there is no reason to think of the
structure as being glasslike, or in any way intermediate be-
tween liquids and crystals, or as having "bond orientation-
al order" (BOO) only. There is both positional and orien-
tational ordering and the diffraction spectrum consists of
5-function Bragg peaks.

In three dimensions the fifth-order term in combination
with the third-order term favors more complicated struc-
tures composed of waves with wave vectors forming regu-
lar icosahedra or dodecahedra [Fig. 1(e)]. The stability

which, for small enough U3/U&, can become favorable
compared with both the energy of the bcc structure,

bc' p V32

3ve '

and the energy of the Penrose structure, which in three di-
mensions is a rodlike lyotropic structure. Of course, it is
possible to add up five of the icosahedral vectors to zero
without forming a regular pentagon. Three of the five
vectors may form a triangle and the two remaining vec-
tors may be simply +q;, where q; is any icosahedral edge
vector. Such terms (which will have a different coeffi-
cient) may further favor the icosahedral structure.

The minimization of (2.8) leads to nine linearly in-
dependent constraints of the phases 0;, so there are six de-
grees of freedom leaving the free-energy invariant (com-
pared with three for the bcc structure and four for the
Penrose structures). This is related to the fact that each
edge vector q; can be formed as a sum of two vectors r
and vp along the directions of the two corners which are
connected with the particular edge vector, q;=z +zp,
and the density waves p;(r) can be written as density
waves with wave vectors in the six corner directions,

/

3&KM'MACAW/M M'M58, MM~M1MMM'54 K
QPK&&f V%3AM.V%3&M MMVQMP6', .PVM&PQ3% P

AcP'.

p;(r) = exp[i(q; r+8;)]P
15

exp[i[(r +rp) r+rt/ +tt/13]I . (2.10)P
15

Mor/Mr//ot/M/r/M~/s/MMi/s/r/tarMJM. '

Qrnrs/. PIIBFW'fl l7VM~'\Xi/. r\MssPSVRM////9, .

SUM, PQ MMQCMM MM&MM, M.MlM. M M/Mk&
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DMM\~/M///nir5A ////M /'//s/r/M a/tirMl~'e
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FIG. 2. Generalized Penrose structure represented by a su-
perposition of five waves with wave vectors forming a regular
pentagon. The straight lines indicate the maxima of the indivi-
dual waves. The dots indicate positions with high density which
could represent actual atoms.

The 15 phases 8; can be related to the six P's:
8i ——Pt+Pq, etc. , in perfect analogy with the situation dis-
cussed above for the bcc crystals. The structure (2.7) is
invariant under the translations 0;~2';, p; an integer,
and also under the translations P~~P +2' . The free
energy is independent of the phases Pn.

In the Landau expansion, higher-order terms like

pq +q p q p q induce higher harmonics of the density
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waves, with wave vectors q=n~q&+n2q2, etc. These har-
monies do not change the symmetry of the original struc-
tures. The symmetries can always be discussed in terms
of the phases of the basic waves since the phases of the
higher harmonics are coupled to the basic phases through
the higher-order terms. To model the actual atomic or
electronic density which is observed in an electron or x-
ray experiment the higher-order terms are essential. The
relative intensity of higher-order diffraction spots depend
on the actual content of higher harmonics and cannot be
predicted from the symmetry considerations above. A
full-scale electronic calculation must be performed, and
this is beyond not only the scope of this paper, but also
well beyond what is possible today. One would not expect
the intensity pattern of the spectrum to be self-similar, as
suggested by Steinhardt and Levine from their study of an
artificial model with icosahedral symmetry. ' There is
also no reason to expect the structure factor to decompose
into the product of three one-diniensional factors as sug-
gested by the same authors. There is no reason either that
the structure should be composed of identical "building
blocks" since this occurs only for very selective choices of
harmonics. The appropriate "building blocks" are, in
fact, the density waves.

The diffraction spectrum of Mn-Al alloys measured by
Shechtman et a/. ' has precisely the icosahedral symmetry
of the structure (2.7). The spots in the threefold and five-
fold planes can all be indexed in terms of the 15 vectors
q; (Fig. 3). For instance, considering the fivefold plane
spanned by the vectors q&, . . . , qz defined in Fig. 1(e), the
point 3 cari be written as q=q&, the point B as q&+q2,
and the point C as q~+q2+q4. Note that the length of
the vector C is related to the length of the basic vectors by
the golden-mean ratio G =(v'5 —1)/2. The golden mean
thus enters in a purely geometrical way and there is only
one basic length

~ q ~

involved.
However, there is a problem in understanding the spec-

trum in the twofold plane. In fact, as was pointed out by
D. Nelson, there appear to be spots at the positions r~ of
the corner vectors. It seems more natural to choose the
corner vectors as the basic vectors. The two structures

I4
q

FIG. 3. Diffraction pattern of the Penrose structure, or in the
fivefold plane of the icosahedral structures. The spots can be in-
dexed by five "Miller indices" (ri~, . . . , n5). The point 2 is
(10000), point B (11000),and point C (11010).

give the same spots in the threefold and sixfold planes
since these planes do not include corner vectors z . Hence
the structure can be written simply

p,',(r) = g exp[i (v~ r+P~)] . (2.11)
I 2 6

In the next section we shall see that the 15-q icosahedral
edge structure and the 6-q icosahedral corner structure
are related to each other in the same way as the sc and bcc
structures are related in three dimensions.

How can the stability of the corner structure be under-
stood from the Landau expansion? It is not possible to
combine a subset of the six v vectors to form closed po-
lygons since they are linearly independent. However, it is
possible first to combine the vectors pairwise to form the
15 edge vectors q;=v~ +@~, and then combine sets of

l

three or five q vectors to form triangles and pentagons as
before. Hence, defining order parameters p~ describing
complex amplitudes of the six waves, the third-order term
takes the form

+3= U3(S,S—~, )V,S p, )(S,i p, )~(ei +e2 +V3)+c c
(2.12)

+5 ———U5(p, pp, ) (p, pp, )&(q, + . . +q, )+c.c. .

The third-order terms in (2.2) become sixth-order terms
when expressed in terms of the corner vectors, and the
fifth-order terms become tenth-order terms in p~. Apart
from this, the discussion on the relative stability of the
various structures remains the same. It may seem artifi-
cial that terms of high orders such as six and ten play a
role in stabilizing the structure. However, these are the
lowest-order terms in the primary order parameter which
lock the directions and the phases of the waves onto each
other. The importance of including the higher harmonics
was pointed out first by Kalugin et al."

The discussion in this section is purely phenomenologi-
cal, and cannot be used to predict the existence of
icosahedral structures in any given material. However,
the Landau theory allowed us -to show that the icosahedral
structures may, in principle, be stable, and that they ap-
pear as a natural extension of liquid-crystal structures and
regular solids, such as sc or bcc crystals. The "ideal"
icosahedral structure has perfect long-range order (al-
though the icosahedral symmetry is only local) and there
is no intrinsic reason to consider them glasslike. In fact,
we shall see that they are stable with respect to thermally
induced excitations at low temperatures. The melting
transition of icosahedral structures is first order since the
order parameter is the same as for regular crystals, and
the Landau expansion includes third-order terms. Most
important, the Landau theory provides a language in
which to define and describe the symmetries involved. In
the next section a crystallographic description of the
icosahedral structures in terms of the symmetries as de-
fined by the Landau theory will be given. Of course, a
crystallographic description is purely mathematical and
not "theory dependent, " i.e., it remains valid whether or
not the Landau theory actually describes the melting and
solidification transitions of icosahedral crystals.
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III. SYMMETRY OF GENERALIZED
PENROSE STRUCTURES AND ICOSAHEDRAL

INCOMMENSURATE CRYSTALS

How does one describe the symmetry of Penrose struc-
tures and. icosahedral incommensurate structures such as
the one found in Mu-Al alloys by Shechtman et al. '?
Usually, the symmetry of crystals in two or three dimen-
sions are described by the so-called space groups whose
operations Ir

~

R I consist of lattice translations v com-
bined with generalized rotations and reflections R. The
group of rotations and reflections R, which leave at least
one point of the lattice invariant, is called the point group.
The lattice translations can be written

where q; are five vectors forming a regular pentagon and
the ellipsis denotes higher harmonics. In general, the den-
sity p(r) in the ground state, including all possible higher
harmonics, can be written

p(r) =po(q~. r, qz. r, q5. r, q4. r, q5.r), (3.2)

where po(8&, 82, 85, 84, 85) equals

po(8t+2mp), 8z+2mp2, 85+ 2np5, 84+2m@4, 85+ 2mp5),

where p; are integers. Hence the two-dimensional density
p(r) is invariant under discrete translations in the 5D
space spanned by 8&, . . . , Oq. The actual 2D structure is
the density along the 2D plane in 5D space defined by
(3.2}. Any symmetry operation in the 5D space
represents, obviously, a symmetry operation in the real 2D
structure. The symmetry operations (3.2) define a five-
dimensional Bravais lattice, so the Penrose structures in
two dimensions have a hidden five-dimensional supersym-
metry. The density p(r) may have further symmetries
represented by permutations of the arguments of po con-
stituting point-group rotational and superreflection sym-
metry in 5D space. The point-group symmetries depend
upon the values of the 8's in the ground state. Consider
first the state with 0; = a /2:

5 p
po(q; r) = g sin(q;. r) .

5
(3.3)

P —nfTj +n2 jP+n3 P3

where n~, n2, and n3 are integers and ~; are linearly in-
dependent basis vectors.

The formulation of Penrose structures and icosahedral
structures in terms of density waves (which arises natural-
ly from the Landau expansion) is particularly suitable for
discussing the symmetry operations which leave the crys-
tal invariant.

Consider first the generalized Penrose structures
5

p(r)= g cos(q;.r+8;)+ (3.1)
5

5D 8 space. Hence, while a fivefold axis is inconsistent
with three-dimensional translational symmetry, it is cer-
tainly consistent with the five-dimensional translational
symmetry. The peculiar local fivefold symmetry of the
Penrose lattices thus reflects the existence of a fivefold ro-
tation axis in the underlying 5D space. In addition to the
fivefold axis c5, the 5D point group includes superspace
reflections

1~| 1 2~~5 3~~4 . (3.4)

The operation (3.4) is a reflection in the 3D hyperplane
2=6'S 6'3= 4

To summarize, the symmetry of (3.2) can be described
by a 5D space group composed of a 5D Bravais lattice of
translations combined with a point group of generalized
rotations. The character table of the point group P can
easily be written using standard group theory (see Table I}.
The point group has ten elements in four classes.

If, instead of 8;=m/2 the ground state is given by
8; =0 (or 8;=n), the point group would also include 5D
inversion symmetry 8;+-+—8;, and the resulting group
P xI consists of 20 elements, namely the original ten ele-
ments plus the same elements combined with the inver-
sion. The group I' is isomorphous with the group C5„.
Figure 2 shows the structure corresponding to 8;=0,
where the crystal actually has local tenfold symmetry.

In addition to the discrete symmetries which leave the
structure invariant there are continuous operations which
leave the energy invariant. These operations correspond
to rigid translations of regular crystals in two or three di-
mensions. Not all translations in 5Q space leave the ener-

gy invariant since the energy depends on g,. 8;. Let us
consider the representation b, of the group consisting of
displacements 58; of the five phases. Clearly, b, is a 5D
representation since the five translations transform among
themselves when subjected to the symmetry operations.
The representation b can be decomposed into irreducible
representations of P:

A=F)+F2+F2 .

The combination

(3 5)

TABLE I. Character table of point group P obtained using
standard group theory. E is the identity operation, 6 is the gol-
den mean, and the I"s denote four irreducible representations.
The representations 5, I »& l 2, and I 2 && I 2 are explained in the
text.

I I

r',
Ip
lp

P 2C5 2C

1

1
—1 —6

6

1
—1

0
0

58)+582+585+584+ M5

transforms as the identity representation I &. This dis-

In this case there is an additional permutation symmetry,

po(81 82 83 84 85) po(82 83 84 85 81) ~

This symmetry operation is a fivefold rotation axis in the

I,XI,
0

G~
0

(1+6)
—1
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placement does not leave the energy invariant. The two
combinations

u„= g (q;.e„)58;,

(3.6)
u~= g(q; e~)58;,

where e and ey are unit vectors in two orthogonal direc-
tions, transform as I z. Here, u„and u~ describe uniform
translations in the x and y directions, respectively, and, of
course, they leave the energy invariant. The combinations

The dispersion relations co(q) and the normal modes
which are generally linear combinations of the four modes
can be found from the appropriate 4)&4 dynamical ma-
trix. To set up the dynamical matrix one must construct
the elastic potential energy which is bilinear in the strains
u;I =8„ /B~ and a,j ——Ba;/BJ. The strains u;J transform

as the representation I z &( I z and the strains a;i transform
as I z&& I z, since the vector B„,B„ transforms as I z, and
u; and a; transform as I z and I z, respectively. To find
the number of second-order invariants, one decomposes
these representations in irreducible representations of P:

a„=g cos[2y(q;, e„)]58;,
(3.7)

I 2XI 2=I )+I i+I 2,

I XI2 ——I2+I& .
(3.9)

a„=g cos[2y(q;, e~ )]58;,

where y(q;, e~) is the angle between the vectors q; and e,
transform as I z. The displacements a„and a~ describe
certain internal rearrangements of the 5-q structure which
leave the energy invariant. The continuous symmetries
associated with a and ay are very similar to the phase-
translation symmetries in incommensurate systems. ' The
a displacernents are fundamentally different from the op-
tical degrees of freedom in multiatom crystals which have
a potential energy associated with them.

Thus, there are four continuous symmetries, namely
two rigid-translation symmetries and two phase-
displacement symmetries. This is related to the fact that
four of the five vectors are linearly independent, whereas
the fifth vector is the sum of the four others. Hence, one
could, in principle, describe all symmetries in terms of
four of the five phases and reduce the dimension of the
space group by one. However, this would obscure the
fivefold symmetry. A similar situation occurs in conven-
tional crystallographics. A crystal with hexagonal sym-
metry is usually described in terms of three basis vectors
in the basal plane plus a vector in the axial direction. The
use of a redundant vector in the basal plane makes the
threefold symmetry explicit.

Diffraction spots occur at angles corresponding to wave
vectors

71 I 'q I + fl 2 q2 + 71 3 q3 + P1 4q4 +7l 5 q5

and they are thus given by a set of five Miller indices
(nlnzn3n4n5). Again because of the redundancy there is
not a one-to-one correspondence between the Miller index
and the diffraction spot. Figure 3 shows the positions of
the spots (10000), (11000), and (11010). The latter spot
could alternatively be labeled as (00101).

The four continuous symmetries allow for the existence
of four hydrodynamic long-wavelength modes, each
breaking one of the four symmetries:

The I
&

strain is u +uyy and the two-dimensional I q

strain is (u —u~~, —,(u ~ +u~„)). The I I strain is

ugly uy& which has no elastic energy associated with it
since it is not symmetric. There are thus two elastic con-
stants, namely the usual Lame coefficients associated with
the u strains. Similarly, there are two elastic constants as-
sociated with the I z and I z representations, respectively,
for the a strains. Finally, since both representations in
(3.9) contain I z„ there is a term which mixes the two
strains. Hence, there are altogether five independent elas-
tic coefficients, ci, c2, ci, c2, and c" . If the dynamical
matrix is constructed, ' the term c" will mix the phonon
modes with the phason modes, as is usually the case for
incommensurate systems.

Now, let us extend these ideas to the icosahedral crys-
tals. First, consider the situation with 15 density waves
with wave vectors forming the edges of the icosahedron:

15 p
p(r) = g cos(q;.r+8;) .

15
(3.10)

=po(7I 'l, 7z'r 73 r, 74'1, 75'r 76'r)

po(41 42 03 44 45 46) (3.1 1)

The function po is invariant under the six-dimensional
translation operations P;~P;+2mp;. These translations
define a 6D Bravais lattice

Of course, p(r) can be written in terms of the 15 argu-
ments q; r, and since it is periodic in each of the argu-
ments the structure could be described by a 15D space
group. However, not all vectors are linearly independent.
All the edge vectors can be written as sums of two corner
vectors 7; and 7;tt, so p(r) can be written

15

p(r) = g cos[(7; +7;tt).r+8; ]+ .
15

u„(r) =uo„exp[i (q r cot)], —
u„(r) =uo~exp[i (q r —cot)],

a„(r)=ao„exp[i (q r —cot)],

ay(r) =aoyexp[i(q r —cot)] .

(3.8)

(Pi, . . . , Q )=62m(n , .l. . , n ).6
However, since the vectors 7 occur only in pairs in (3.11),
the density is also invariant under the improper transla-
tions

2~(+ z, + —,+—,+ —,+—) .1 1 I 1 1
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The situation is very similar to that of a bcc crystal in
three dimensions, where the density is invariant under the
translation 2m. ( —,, —,, —,

' ). The actual density is the density
found along the 3D plane in 6D space defined by (3.11).
Because of the translational invariance and the incom-
mensurability of the r vectors, all the information of the
6D lattice is relevant for the 3D structure: The 3D plane
includes points of all possible coordinates within the 6D
unit cell. Hence, there is a simple one-to-one connection
between symmetry operations in 6D space and symmetry
operations on the actual 3D crystal.

The space group of the icosahedral crystal consists of
the proper and improper translations plus all permuta-
tions of P&, . . . , P6 which leave p(r) invariant. These
operations can be understood as hyper-rotations and re-
flections in 6D space. In the case 8;=0 in (3.10), which is
favored by certain combinations of the v3 and v5 terms in
the Landau expansion, the function p(r) is symmetric in
its arguments and the point group is, in fact, isomorphous
with the icosahedral group although the actual operations
cannot be identified with three-dimensional symmetry
operations. The character table of the icosahedral permu-
tation group is shown in Table II. The various classes
have been labeled with their 3D analogues. The apparent
fivefold symmetry of the diffraction spectrum along cer-
tain directions is associated with the fivefold rotation axis
in 6D space.

The free energy is invariant under all possible transla-
tions, discrete or continuous, in 6D space. This is due to
the fact that the P's do not appear explicitly in the expres-
sion for the free energy when substituted for the 8's. The
six translations 5$; form a six-dimensional representation
b, of the group I, which can be decomposed into irreduci-
ble representations of I:

A=I 3+I 3 . (3.12)

TABLE II. Character table of the icosahedral point group.

12 C5 12C5 15 C2

Hence there are three translational symmetries which
transform as the irreducible vector representation I 3.
These translations represent rigid translations of the crys-
tal in three orthogonal directions. The three modes
transforming as I 3 represent some internal rearrange-
ments of the density, or atoms, of the crystal which do
not shift the center of gravity. The rigid displacements
correspond to shifts of the 6D crystals along the 3D plane
defined by (3.11). The remaining phase displacements
correspond to displacements of the 6D crystal perpendicu-
lar to this plane.

Corresponding to the six continuous symmetries there
are six hydrodynamic modes, u„,uy uz and ex+ cxy az.
The elastic energy can be constructed by forming the

second-order invariants in the symmetrized strains u,j.,o:,J.
Since 5„,5&,5, transform as the representation I 3, u,J
transform as 13)&I 3 and a;1 transform as I 3XI3' One
finds

I 3X I 3
——I )+I 3+l 5,

(3.13)

It is left as an exercise to the especially dedicated reader
to actually work out the combinations of strains
transforming as the various representations. Since there is
no elastic energy related to the I 3 strain (which is a rota-
tion), there are two elastic constants c~ and c2 in the u

variables, corresponding to the irreducible strains I ~ and
I &. Hence, the number of elastic constants for
icosahedral structures is smaller than for any regular crys-
tal, where there are at least three independent elastic con-
stants. There are also two elastic constants associated
with the a degrees of freedom corresponding to the ir-
reducible strains 1 4 and l & and there is a term mixing the
u stl ains and the phase strain since both I 3 X I 3 and
I 3)& I'3 contain the I 5 representation. Hence, if the
dynamical matrix of dimensions 6X6 is computed, there
will be terms mixing the phonon and phason modes. For
an analogous situation in incommensurate crystals, see the
analysis by Axe and Bak. ' In the mercury chain system
Hg3 sASF6 five well-defined gapless modes have actually
been observed in accordance with theory. ' In principle,
the number of propagating modes might be reduced to
three, because of various pinning mechanisms and effec-
tive viscosities associated with the sliding'" of waves. A
strong coupling between the density waves is one such
mechanism.

The stability of icosahedral structures with respect to
thermal fluctuations can be discussed as for regular crys-
tals. The fact that there are six modes co -v~q with ve-
locities U does not change the usual result, namely that
in three dimensions the mean-square displacements
(u (r) ), (a(r) ), etc. , remain finite at low temperature,
so long-range order persists. The intensities of the Bragg
peaks are reduced by the usual Debye-Wailer factor
exp[ —a(u(r) )]. In two dimensions, thermal fluctua-
tions destroy long-range order, and the mean-square dis-
placements diverge for the Penrose lattice. The correla-
tion functions (u(r)u(0)) decay with a power propor-
tional to the temperature, and the Bragg peaks acquire a
width.

In principle, the phason modes (or internal rearrange-
ment modes) may be overdamped and not propagating, or
they may have a gap because of impurities, etc. Also, the
phase translations could be intrinsically pinned in analogy
with the pinned phasons in incommensurate systems.
Symmetry considerations are certainly insufficient to deal

r,
I3
I3
I4
r,

1

1+6
—Ci
—1

0
1

1
—6
1+G

0
1

1

0
0
1

—1

0

1

—1

—1

0
0

—1

with these questions. The phasons might be observable in
an inelastic neutron scattering experiment. The fact that
the symmetry of icosahedral structures can be represented
by 6D crystal symmetries, and the existence of three
phason branches was discovered independently by Kalu-
gin et al."

The diffraction spectrum can either be described by the
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fifteen Miller indices corresponding to the appropriate
linear combination of the 15 edge vectors, or more effi-
ciently by the six corner vectors. However, since the v

vectors appear only in pairs there will not be spots at all
positions (n&n2n3n4n5n6) .For instance, the (100000)
spots will be absent and the (110000) spots present. In-
spection of the diffraction pattern measured by Shecht-
man et al. indicates that the (100000) spots are, in fact,
present in the twofold plane. This indicates that the ac-
tual structure of the Mn-Al alloys is the simpler 6-q
corner structure

6 pp(r)= g cos(r; r+P;)+
6

For the corner structure the translational group contains
no improper translation, and the space group is the 6D
"sc" icosahedral group and not the 6D "bcc" structure
formed by the edge vectors. It may be useful to denote

these structures "si" and "bci" structures, respectively.
In conclusion, we have seen that the symmetry of

icosahedral structures can be represented by 6D space
groups, with or without improper translations, and their
stability can be understood from a simple phenomenologi-
cal Landau theory. The icosahedral structures form
natural extensions of liquid crystals and regular crystals
with 3D translational symmetry.
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