PHYSICAL REVIEW B

VOLUME 32, NUMBER 9

1 NOVEMBER 1985

Glasslike properties of a chain of particles with anharmonic and competing interactions

P. Reichert and R. Schilling
Institute of Physics, University of Basel, CH-4056 Basel, Switzerland
(Received 18 April 1985)

For a translationally invariant model of a chain of classical particles with anharmonic and com-
peting nearest- and next-nearest-neighbor interactions, the existence of an infinite number of meta-
stable chaotic equilibrium configurations is proved. Their pair distribution function exhibits more

‘ or less pronounced nearest-, next-nearest-, etc., neighbor peaks and the absence of long-range order
(under certain conditions). The structure factor shows beside the usual peaks a sequence of extra
peaks. The existence of two-level systems for such chaotic configurations is proved. Their energies
and the barrier heights are calculated exactly. The corresponding density of states is not constant
and shows a scaling property which leads to a power law ¢(T)~ T?for the specific heat with a frac-
tional exponent d={In[p?+ (1—p)*]}/In| 7|, where O<p <1 characterizes the type of disorder

and 72 0 depends only on the ratio of the nearest- and next-nearest-neighbor coupling constants. A

pair potential is given for which these results remain true.

I. INTRODUCTION

It is a question of basic importance whether or not the
rather irregular arrangement of atoms in an amorphous
solid can be considered as a metastable equilibrium con-
figuration obtained by the minimization of an interaction
potential. To our knowledge there exist only numerical
calculations, e.g., for the dense random packing of atoms!
or for continuous random networks,> demonstrating this
fact for a finite number of particles. But the question of
whether in addition to the regular equilibriuin configura-
tions (crystalline and incommensurate) such irregular ones
may also exist, in general, is still open from a theoretical
point of view. This situation is comparable to the prob-
lem of the existence of turbulence. The intense studies of
the temporal chaotic behavior of dynamical systems in the
last few years® have led to a more microscopic under-
standing of turbulence and related phenomena and show
the existence of irregular solutions of the corresponding
equation of motion, e.g., irregular trajectories of particles.
One of the characteristic features of temporal chaotic
behavior is that there exist short-time but no long-time
correlations. This is quite similar to amorphous solids
which show short-range correlations between nearest-,
next-nearest, and perhaps third-nearest neighbors but no
long-range correlations in space. Therefore the following
question arises: Can one find simple models for the in-
teraction between particles which have metastable, spatial-
ly chaotic equilibrium configurations, and do these parti-
cles exhibit properties of amorphous solids?

What are typical properties of amorphous solids? Be-
sides the characteristic behavior of the pair distribution
function, reflecting the properties mentioned above, there
exists a universal low-temperature behavior of, e.g., the
specific heat ¢(7T) and the thermal conductivity «(T).
This was first discovered experimentally by Zeller and
Pohl* who had found that below 1 K ¢(T)~T" and
k(T)~T™ with n=~1 and m =~2. Since the specific heat
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below 1 K exceeds that predicted by Debye’s theory, there
exist further low-energy excitations in addition to the pho-
nons. A theoretical explanation was given independently
by Anderson, Halperin, and Varma® and Phillips® by the
postulation of tunneling modes or two-level systems.
They argued that the corresponding density of states is
constant on an energy scale below 1 K which implies a
specific heat linear in 7. Most experiments, however,
show instead a power-law behavior with a broken ex-
ponent which may be larger than 1 (< =~1.3) (Ref. 7) or
smaller than 1 (> =0.5) (Ref. 8). These exponents de-
pend on the material, the quenching rate, and the anneal-
ing temperature® as well as on the time scale of the mea-
surements.! For a more comprehensive discussion of the
low-temperature properties of amorphous solids we refer
to Ref. 11.

Additional experimental evidence that the density of
states n(e) for the two-level systems is not constant was
recently given by Molenkamp and Wiersma.!> They de-
duced from photon-echo experiments on pentacene in po-
lymethylmethacrylate that n (e) ~€%3,

Up to now there exists little theoretical work which
gives a microscopic justification of the tunneling model,
and in all of this work models without full translational
invariance are studied. For a one-dimensional Frenkel-
Kontorova-like model Pietronero and Strissler'® have cal-
culated the energies and the density of states of the con-
figurational excitations which represent two-level systems.
Their numerical calculations for a system with 48 parti-
cles gave a density of states with gaps leading to a
Schottky-like specific heat. Recently Geszti'* used a
nonideal Frenkel-Kontorova model with a mixture of
springs of two different equilibrium lengths. He also ob-
tained two-level systems (for the case where one type of
the springs is dilute) but with n(€)~e~!, which leads to a
constant specific heat. The potential barriers, their corre-
lations with the two-level systems, and the quantum
corrections are not discussed in Refs. 13 and 14. Quite a
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different approach to the two-level systems based on topo-
logical arguments is given by Rivier and Duffy.!’ But
there the classical energies of all local minima are the
same, and the two-level systems arise only because of the
tunneling.

There exist of course many other characteristic proper-
ties of amorphous solids, such as localization of electrons
due to the disorder leading to a special behavior of electri-
cal conductivity, or the glass transition, etc. which will
not be discussed here.

In the present paper we investigate the question: To
what extent do systems with spatially chaotic equilibrium
configurations exhibit pair distribution functions and
structure factors resembling those of amorphous solids?
We prove the existence of two-level systems and calculate
their density of states, the potential barriers, and finally
the low-temperature specific heat.

A partial answer with respect to the pair distribution
function was found by the authors for a mathematical
model'® (referred to as I). There the Baker transforma-
tion, which is mixing, was used to construct one-
dimensional chaotic configurations. Their pair distribu-
tion function G(r) shows more or less pronounced
nearest-, next-nearest-, etc., neighbor peaks and converges
to 1 for »— oo, proving the lack of long-range order. Be-
cause the mixing behavior of the Baker transformation (or
equivalently the Bernoulli shift) is the origin of the chaot-
ic behavior of physical models [through its embedding
(see I)], there was the hope to find similar results for G (7)
for physical models.

Recently we have presented a simple one-dimensional
model for the interaction between particles for which this
embedding of the Bernoulli shift and the existence of an
infinite number of metastable and chaotic equilibrium
configurations was shown analytically'” (referred to as II).
In particular we have shown in II that this model leads to
a microscopic justification of the two-level systems (TLS)
but with a density of states which is nonconstant. The
corresponding low-temperature (T < 1 K) specific heat ex-
hibits a power-law behavior with a fractional exponent
smaller than 1.

In this paper we give the details of the calculations of
II, the geometric aspect of the embedding of the Bernoulli
shift, a generalization of the model and the obtained re-
sults in II, as well as a discussion of G (r). The organiza-
tion of this paper is as follows: In Sec. II we present and
motivate the model. The equilibrium configurations are
derived in Sec. III, which also contains the details of the
embedding. The pair distributions function G (r) and the
structure factor S (k) are discussed in Sec. IV, and in Sec.
V we obtain the energies of the TLS, the potential bar-
riers, the density of states, and the specific heat. The gen-
eralization to a model with a pair potential and the discus-
sion of our results are presented in Secs. VI and VII,
respectively.

II. MODEL

In order to find a model with glasslike configurations
we have restricted ourselves to one dimension. This of
course makes the comparison with experiments difficult,

but there may exist layered compounds or quasi-one-
dimensional systems, e.g., polymer chains as those studied
by Bonart,'® for which the model we will discuss applies.
But there is also quite a different reason why it is interest-
ing to study one-dimensional models: The three-
dimensional space cannot completely be tiled with regular
tetrahedra (arising from the dense packing of hard
spheres). This leads to geometrical competition or frus-
tration which produces topological defects. Such topologi-
cal defects play a crucial role for the existence and the
physical properties of three-dimensional amorphous
solids.!® For one-dimensional systems this type of geome-
trical frustration and topological defects does not exist.
Therefore it is also of interest to study amorphicity in one
dimension.

The model we consider is an infinite chain of identical,
classical particles each interacting up to its rth-nearest
neighbors with potential energy:

V=3 3, Vilttn p1—tty) , (1)
n l=1

where u, is the position of the nth atom and V; the in-
teraction potential between the /th-nearest neighbors. The
model (1) has two kinds of symmetry:

V({u,+a})=V({u,}), foralla, (2a)
stating the translational invariance, and
V({ty +m})=V({u,}), for all integers m , (2b)

which is the symmetry being left over from the original
permutation invariance when the positions of the atoms
are labeled by their order in the chain. The first one, (2a),
allows to introduce the atomic distances

Up=Up 41— Uy » (3)

and (2b) together with (2a) implies the existence of an in-
variant, which is the internal stress of the chain:

,un+
r

I=1

I(uy _py15Un_py2s - - - 5 Up 4, ) is independent of n along a

stationary configuration, i.e., a solution of

14
ou,

I(un—r+l’un—r+2" .. r)
1
=

J

Vityj—tigrj_p) . @

(Up —psllpyp 15+ oo s Upgp)=0. (5)

This can be easily proven using (5). The existence of such
an invariant was already discussed by Janssen and Tjon*
for r =3. Equation (4) is the general form for arbitrary r.

One necessary condition for the existence of chaotic
equilibrium configurations is the anharmonicity of at least
one of the potentials V;. This anharmonicity causes a
nonlinearity in Eq. (5), which may lead to a class of
chaotic solutions. A second characteristic property for
systems with chaotic behavior is the existence of frustra-
tion effects which may be of geometrical, energetical, or
of any other origin. _

The simplest model which takes both conditions into
account, where in particular the frustration is caused by
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competing interactions, is a piecewise parabolic potential
for V;:

Vl(l))z%cl{ [U —-a+ -—-(1_0'(1))]2
—[c—a,—a_oWw)]*}, C;>0, ‘(6a)

where a4+ =+(a,*a,), a,, a, are the positions of the
minima, ¢ the location where both parabola are patched
together, and

o(v)=sgnlv —c)e{—1,1}, (6b)

and a harmonic potential for V5,
Vy(0)=+C,(v —b)?, C,20, (6¢)

where b is the corresponding equilibrium distance. Simi-
lar exactly solvable models have been used by Villain and
Gordon?! and Axel and Aubry?? in order to describe spa-
tially modulated phases. Figure 1 shows three typical sit-
uations for V| and V,. The situation in Fig. 1(a), which
contains as a special case the symmetric double-well po-
tential studied in II, differs qualitatively from Figs. 1(b)
and 1(c). If in Fig. 1(a) C,=0 it is obvious that there ex-
ists an infinite number of chaotic equilibrium configura-
tions which remain true if C,%0, but small enough.
However, for Figs. 1(b) and 1(c) there exists only the crys-
talline configuration for C,=0 while for C,540, but not
too large, chaotic equilibrium configurations may exist
due to the competition between ¥, and ¥,. In order for
the anharmonicity to be relevant the nearest-neighbor dis-
tances have to be distributed around c, the location of the
cusp in V,. If the cusp is on the left (right) of the
minimum, such that ¥, is repulsive (attractive) for v=c,
V, has to be attractive (repulsive) at distances of the order
of 2¢. (Figures 1(b) and 1(c) illustrate both situations.)
The case C; <0 is excluded because all the chaotic
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FIG. 1. Nearest- and next-nearest-neighbor potential (a)

double-well-like potential; (b) and (c), single-well potential.

equilibrium configurations are unstable in this case as will
be discussed later.

Finally we mention that a situation like that in Fig. 1(a)
could also model a system with two different types of (ex-
tented) particles of equilibrium size a, and a,, respective-
ly. V; would be associated with an internal (elastic) de-
gree of freedom, and ¥V, could describe the interaction be-
tween the particles.

III. EQUILIBRIUM CONFIGURATIONS

A. Stationary solutions

Substituting (1) and (6) into (5) and assuming the inter-
nal stress I to be zero, we get for the equilibrium distances
v, the nonlinear difference equation:

2YVy 0y 1+, 1=0(v,) , (7a)
with

#(v,)=2[b +(y—1a ]+2(y —Da_o(v,), (7b)

y=1+C,/2C, . (7¢)

Using the Green’s function G of the difference operator
[left-hand side (lhs) of (7a)], (7a) can be written as

vy =2,G(n —m)d(vy) . (8)
The Fourier transform G(g) of the Green’s function is
easily obtained:

G(g)=[2(y +cosq)] !,

from which one gets by contour integration

G(n)=n(1—m?)~pl*l, (9a)
where
n=—y[1-(1—y~%)!"?]. (9b)
Using this and (7b) we get from (8):
v,,=A+%B~1:—"L () + 3 n o, ) +ow, )1 |,
1+7 i=1

and with (9a): (10a)

vn=A+%B—l;1L

1+ 0’,,+277[0’(U,,_,—)+0’(Un+,-)]

i=1

b

(10a’")

where

A=1—m)"*[(14+n)a, —29b],
(10b)
B=2a_(1—m)"%147)?*.

Equation (10a) or (10a’) represents a self-consistency equa-
tion for the stationary configuration {v,}. If we replace
{o(v,)} on the right-hand side (rhs) by a given sequence
o={o,} of Ising variables o, ==*1, we obtain a configu-
ration {v,(o)} for any such sequence o. This configura-
tion {v,(0)} is a solution of (10a) or (10a’) if and only if
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(i) v, are positive and bounded, and (ii) if the self-
consistency condition,

(10c)

is fulfilled. It is obvious from (10a’) that v, is bounded
for |n| <1. A necessary condition that (10c) holds is

0',,=0'[D,,({O'i})] ’

v,({o;=—1}) <v,({0;=1}) (11a)
for all n, which is true if
ay<ay . (11b)

From (10a’) we get

BO—nUt|n]) _, _,

B LB+ n])
2 (I+m)i—|n =

2 (1+m(1—|q|)
(12)

Thus v, >0 for all »n if the (lhs) of (12) is positive, which
is true if

] 2
b<—77—(1;7) a;, forO<n<1 (13a)
2
b> (1+2) a;+2a,, for —1<n<0. (13b)

27
With use of (10a’) again, (v, —c¢) can be written as follows:

vp—c=A++Bi=L o, 1 3 plilo,_;|—c.
1+ i (£0)

A lower (upper) bound of (v,—c) for o,=+1(—1) is
easily obtained from (14) such that the self-consistency is
satisfied if

(15a)
(15b)

(p =€ tower bouna >0, for o, =+1
(U —€)upper bouna <0, for o, =—1
which leads with (11b), i.e., a_ > 0, to the condition:
—(1+ || )X1=3|n|)a_ <(1—n)*c+2nb
—(1+n)a, <1+ || )N1=3|n])a_ . (16)
It is obvious that (16) can only be fulfilled if
Inl <7, an

ie, if || <% there exists a range for (a;,a,,c,b) such
that the conditions (13) and (16) hold for all sequences o,
and therefore {v,(o)} is a stationary solution. It is easy
to show that these solutions are uniquely determined by o.

What we have found above has the following physical
meaning: If || <+ and if (ay,a,,c,b) are in an ap-
propriate range determined by (16), an arbitrary configu-
ration {v,} will relax to an equilibrium configuration
{va(0)} for an interaction potential given by Eq. (6). The
sequence o is given by o, =0c(v, ), i.e., the Ising variables
o, do not change during the relaxation process.

B. Embedding of the Bernoulli shift

In this section we discuss the embedding of the Ber-
noulli shift which -is characteristic for the chaotic
behavior.?> This will provide the connection to the
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mathematical model studied in I. The reader who is not
interested in this aspect may skip this more technical ex-
position. ,

Denoting v, _;=x, and v, =y,, the difference equation
(7) can be written as a two-dimensional map

(xn+1’yn'+1):F(xn7yn) ’ (18a)
where
F(x,y)=(y, —x —2yy +¢(»)), (18b)

which represents a dynamical system with discrete time #.
Consider the rhomb R bounded by the eigendirections of
the fixed points (x;*,y;*), i=1,2 of F (see Fig. 2), which
exist only if a; <a, in agreement with (11b).

Because the Bernoulli shift has two fixed points, it is a
necessary condition for the embedding that (x*,y;) exist.
It is easy to show that all points outside R diverge under
iteration of F or F~!. It is obvious that the set of all
bounded orbits is g

C= A F*R). (19)

n =]

Because F is piecewise linear, the structure of the set
C can be derived exactly. The action of F in a neighbor-
hood of R is analogous to a map containing a Smale
horseshoe?* if the points P; and P, (Fig. 2) lie outside R.
The difference to the continuous case of Smale is that in-
stead of folding R it is cut into two pieces which overlap
with R (see Fig. 2). The image of each of these pieces is
again cut into two pieces which overlap with R NF(R),
etc. Figure 3 illustrates this procedure and shows the sets

L]
Cpy= N

n=-—ng

for ng=1,2 and 7>0. The limit set C=C, is a Cantor
set.> Such a Cantor set was already obtained by Aubry?®

y
¥
C 5?
* L
"
- C
X1 P2

FIG. 2. Rhombus R (hatched vertically) and its image F(R)
(hatched horizontally) for > 0.
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FIG. 3. C,.O for no=1 (left) and ny=2 (right).

for a two-dimensional
Kontorova-type model.

The important requirement for the embedding of the
Bernoulli shift is that P; and P, lie outside R which just
happens if the inequality (16) is fulfilled. Thus the condi-
tions (11b) and (16) for which the self-consistency is ful-
filled also guarantee the embedding of the Bernoulli shift,
which means that there exists a bijective map

map related to a Frenkel-

¢: CH>M={—1,1}Z
such that

Flc=¢ oSop, ’ (20)
where S: M —M with

(So)i=0;41 (21)

is the Bernoulli shift. Using (18) and (21) it is easy to
prove that (20) holds, if we choose

¢,-—1(0.)= A+£ﬂ2n‘i|0’- A+£L’:ﬂ.

2 1494 P 2 149
in|i|0-i+1 ’
i
(22)

which follows from (10a’), but which can also be obtained
by a geometric construction of the embedding.”’ The
Cantor set C is given by

C=¢p M) . (23)

C. Energy of the equilibrium configurations

Substituting (10a) into (6a) and (6b) and using a sum
rule for the Green’s function, we get after simple but la-
borious calculations the energy E(v (o)) of an equilibrium
configuration v(o): '

E(o)=EWw(o)=ey 3 1—h Jo,+ > Jn—m)o,o, ,
n n n”;,ﬁ":n
(24a)

with

5735
~C, 147 , n 4
ep= a_ + b2— 1 pa
T 2 |1 (1—m)? (=g ¥
2
+c2—2ca, + %ﬂ ai ,

h=Ci{(1—m)%a_[(1+m)a, —(1—n)%c —29b],

(24b)
J(n)=Jon'"!,
c
Jo= ——L1Em 2
2 1—7q

A similar Ising-like model with exponentially decaying
coupling constant and external field was also obtained in
Refs. 13, 14, 21, and 22 for the equilibrium configura-
tions. '

D. Metastability

In order to investigate the metastability of the equilibri-
um configurations (10) we have to determine the phonon
frequencies @ which are related to the eigenvalues of the
Jacobian 82V /3u,du ; at the considered stationary config-
uration. Using (1) and (6), we get

*V
au,-auj

=2C14+C3)8;; —C(8;j41+8; ;1)

—C2(8,~,]~+2+8,~,J~_2) , (25)

which is independent of {u,}. Therefore the eigenvalues
can easily be calculated, and we find for the phonon fre-
quencies

(q)={2[C,(1—cosq)+C,(1—cos2q)]/m}'/?, (26)

where m is the mass of the particles. That it is possible to
classify the frequencies by a wave number g, although we
are considering disordered configurations, is due to the
fact that for our model the Jacobian does not depend on
the configuration. For

C,>0, C;>—-C,/4, 27

which is equivalent to | 7| <1, w(q) is real for all station-
ary configurations and therefore all of them are metasta-
ble. The phonon frequency vanishes at g =0, which is
just the Goldstone mode related to the translational sym-
metry (2a). Because the self-consistency condition re-
quires |7| <+, the metastability is automatically
guaranteed. For C; <O all the solutions are unstable.

E. Classification of the typical
equilibrium configurations

The ground state of our model is always periodic (crys-
talline), either with period one or period two. This fact is
generally true for a one-dimensional system with nearest-
and next-nearest-neighbor interactions and does not de-
pend on the special form of ¥, and V,. For our case the
period-one and period-two ground states are represented
byo,=+1,0,=—1and 09,=1(—1), 03, .1 =—1(+1),
respectively. Which of these three types of crystalline



5736

configurations is the ground state depends on
(a;, a;, ¢, b) and sgnC,. We will not discuss the
ground-state properties in more detail, because we are in-
terested in the chaotic configurations. In the following we
consider a special class of chaotic equilibrium configura-
tions; that is, those configurations which correspond to
random sequences o of +1’s (probability p) and —1’s
(probability 1—p). By random we mean that each possi-
ble finite subsequence of the doubly infinite sequence o
appears with probability p"'(1—p)"? if n; and n, denote
the number of + 1 and — 1, respectively, appearing in the
subsequence. We call this class of sequences p-normal
which is a straightforward generalization of the definition
of normal numbers (see Niven?®). In particular the p-
normality implies that o, and o,,, n#m, are uncorrelat-
ed.

If we use the symmetric or antisymmetric double-well-
like potential [Fig. 1(a)] in order to model a system with
two different types of extended components 4; and 4,, a
p-normal sequence represents a disordered, binary alloy
(A, )l_p(.;42)p. Note that in II we have discussed only the
case p =7.

Besides this special class there also exist other chaotic
configurations represented by sequences which are not p-
normal. For instance one type is given by o,=1 for
nskm and o, random (*1) for n =mk for a fixed in-
teger k and all integers m. But such a chaotic sequence
represents a microcrystalline structure with grain size pro-
portional to k. In the present paper we will not discuss ei-
ther this special type of configurations or any other con-
figurations belonging to a o which is not p-normal. From
these expositions it becomes clear that a sequence o
characterizes the type of quenched bond disorder.

Using (24) the energy e(p) per atom for a p-normal o
can be calculated. We get

e(p)=eo+(2p —1)h +(2p — 1)2—33—1 (28)

Thus two configurations with different p, and p, differ
by a macroscopic energy.
|

V)(o')—A(V)—}— 2 B(v)z 2

LR PT PPN §

G(n —m)ﬁG ’A)a"“‘x*'z R
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F. Influence of further anharmonicity

Let us add a potential V,(x), which also contains terms
of higher order than x2, to the nearest-neighbor potential
Vi(x) [Eq. (6a)]. Then the rhs of the difference equation
(7a) is replaced by

é(©,)=9¢(D,)—C,~ 'V (1,), (29)
and Eq. (8) becomes
Uy =G (n —m)p(D,,) , (30)

which can be solved by iteration. This we will demon-
strate for

I_/l(x)=%x4. | (31)
Then,
$(0,)=¢(,)+av,” , (32a)
where
=—-C1/C; . (32b)
If we put the ansatz
Tlo,a)= 3 a%, () (33)
v=0 .

into (30), and using (32), we get under the assumption that
o(v,)=0(7,) (34)
[v, is given by (10a)]:

U,(,O)(O'):vn(o) ’

(35)
( (
1 N0)=3G(n —m) > v,,,1 (0)vp, "o )u,,,v3 (o),
m V1 Vy, V3
vi+vy+vy=v—1
v>1.

The solution of the recursion relation (35) can be written
as follows:

"
o) a
+ 3 Buu,2 X Gln—m) H Glir) [T GUMOw iy —tym e =i, Onjy gy oo =g+ 775 (36)
Bily m iy, ... "1 A=1 A=1
]1»12v-~-:]u2

where the coefficients 4, B\, B #‘;L
of (ay,a,,c,b) and 7.

We have estimated |v\""(o)| and we have found that
there exists ag such that the power series (33) converges
for a<ayg. Because of the continuity of 7,(o,a) for
a<ag and because min, |v, —c | is finite for |9 | <+,
the self-consistency condition (34) is fulfilled for a small
enough. Therefore the power series (33) represents a solu-

, etc. are functions

[

tion of the generalized model, and the embedding of the
Bernoulli shift remains true.

If V,(x) would become anharmonic then the corre-
sponding two-dimensional map F(x,y) gets non-area-
preserving which could lead to quite a different chaotic
behavior, that is, a behavior on a strange attractor (see
Ref. 3). But this will not be discussed in the present pa-
per.
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IV. PAIR DISTRIBUTION FUNCTION
AND STRUCTURE FACTOR

In this section we discuss the distribution function
G;(r) of the jth-nearest-neighbor distances, the pair distri-
bution function G (r), and its Fourier transform S (k) at
T =0 K for the chaotic equilibrium configurations of Sec.
111, thus generalizing the results of I. All the figures in
this section are obtained for the following values of the
parameters: 1—30A a,=3.5A, c-39A b= 56A
and n=0.2 for which (11b), (13), and (16) are fulfilled.

A. Distribution of jth-nearest-neighbor distances

For j small G;(r) can be determined explicitly using
(10a") and assuming o to be p-normal. In particular we
obtain G(r) as follows: The probabilities for a nearest-
neighbor distance v,(o) with 0,=+1 and 0,=—1 are p_
and 1—p, respectively. From (10a’) we easily obtain the
bounds of the corresponding intervals 7 +1 and 7_ 1 which
have the property that

=~ 1—7n n Bl—m 14|79 . .
v, €I, = A+ A4 —" , with probabilit
neo 21+n l—ln! 2 1479 1—|7] WL prOBabEIy P
(37
UnEf~1= BI_-IL_MJ_ __Bi_l_:ZL_I:_Q_I__ﬂ_L , with probability 1—p .
2 14m 1—|7q|° 2 14+7m 1—|7|

From (37) the significance of |7 | <+ becomes again obvious, namely for || <+ 3 both domains for v, do not overlap

(Fig. 4)
|| <+) subintervals, etc.

In general for a resolution of order B7n¥ the vth order distribution function G’

Increasing the resolution one step more, each of the intervals 7 4+ and T_ decomposes into three disjoint (for

Y(r), which is normalized to

A +(p — +)B, the mean lattice constant, is analytically given by

6= [+ = o | (1=~ 14— 2p (1—p) p

> In =3,
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FIG. 4. Nearest-neighbor distribution function G {(r) for resolution v=1,2,3,4; p= %; and 7=0.2.
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and otherwise G| (r)=0 and

B Al
Yo1—|n|
po==1, u;=0,%+1 (i >1), and u and u’ are the numbers
of the y;(i > 1) which are zero and one, respectively. This
result for G{"'(r) follows from (102’) taking into account
that o0,=—1 and 1 with probability (1—p) and p, and
(op _,+0,,+,)— —2,0, and + 2 with probablhty (1—p)?,
2p(1—p), and p?, respectively. For |7 | <+ all the inter-
vals (38b) are disjoint.

G\ is presented in Fig. 4 for v=1,2,3,4 and p =
from which also the self-similarity becomes obvious. For
an infinite resolution G{*’(r)=G(r) exists only in a dis-
tributive sense and consists of an infinite number of &
peaks with a Cantor set as support. For j small G}w( r) is
obtained in an analogous manner. However, for later pur-
poses [calculation of G (r) in the next section] we prefer
another coarse graining than that of Fig. 4 where the reso-
lution was related to 7. Now we choose a resolution &
and denote by G( Y(r) the corresponding histogram of
G;(r) with resolutlon 8 (see Fig. 5 for p=0.5 and Fig. 6

’ (38C)
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for p =0.3 and two different 8). It is obvious that if & is
not correlated with 7, the self-similarity does not manifest
itself (compare Figs. 4 and 5 for j =1). Two properties
follow from Figs. 5 and 6: (i) p£~ causes an asymmetry
of G Y(r) which is clear and (ii) there is a qualitative
dlfference between G 8)(r) for j even and j odd, that is, at
r =jA there is a peak or a gap for j even and j odd,
respectively. This behavior is due to the special form of
Vi(x) consisting of fwo pieces of parabola which lead to
two characteristic nearest-neighbor distances. We will
come back to this point when we discuss the structure fac-
tor.

The asymptotic behavior of G;(r) for j— « can also be
derived exactly. Using (10a’) the jth-nearest-neighbor dis-
tance

J
D}o)= v, 44(0)
I=1
between atom n and atom n +j can be rewritten as

Dio)=jA+ = 20,,+1+R (o), (39)
I—l
where

ng)(r) :rT T I T 77177 ’ LB l LI
8.0 [ =
6.0 [ =
: E
4.0 e =
2.0 F =
0.0 Eroa el iy e L0 3
0.0 0.5 1.0 1.5 r/A
(6)(r) L L L B N B g
6.0 [ =
4.0 £ =
2.0 [ A -
0.0 :41111-4"' RN “‘r-llnin:
1.0 1.5 2.0 2.5 r/A
(6)(r) LA L L L L L
2o | :
L ]
1.0 . ]
: , ]

0.0 NI

8 9 10 1 /A

FIG. 5. Histogram G‘m(r) of the Jjth-nearest-neighbor-distribution function for j=1, 2, and 10, §=0.14 (left column) and

8=0.024 (right column) and for p =

2 , 7=0.2. The corresponding Gaussian distribution is represented by the dashed line.
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FIG. 6. Same as Fig. 5 but for j =10, §=0.14 (left), and §=0.024 (right) and for p =0.3, n=0.2.

B

‘Rjn(a) ‘= mi=l

0
i
DN (Onitj—Ongi+On_iv1—On_iyj1) | <

2B

40
(+m—]|7q]) (40

is finite for all n, j, and o, whereas 2,_10,, +1 takes values from —j to +j. That R](o) is bounded will get crucial

when we introduce a scaled variable which corresponds to D/(c)/ V/j, because then R"

)/V/j vanishes asymptotlcally

for j— . The p-normality of o leads immediately to a b1nom1a1 distribution for Em 1O n+m> 1€,

lim

Now

(card is the cardinality of the set {-}).
Using the fact that the rhs of (41) with an appropriate
scaling converges to a Gaussian function, we get finally

jlirr; mf’rf’j)er (r) =—\/1?—7;fz]2dze_’2/2 ,
(42a)

where |

r()=BVp(1—p)jz;+j[A+(p—7)B], i=12. (42b)

This equation states that the distribution function of the
jth-nearest-neighbor distances scaled by (BVp(1—p)j )~}
gets Gaussian as in I. However, there is a qualitative
difference between the results for G;(r) in this paper, and
those in I: In I also the unscaled functions G;(r) con-
verged to a Gaussian distribution with a width
o=(B/2)Vj, whereas here the G; (which exist only in a
distributive sense) and also the G{® do not converge. In
order to illustrate this we have also plotted in Figs. 5 and
6 the corresponding Gaussian function.

B. Pair distribution function

The pair distribution function for a one-dimensional
configuration is given by

G(r)=3 G;r), (43)
=t
which exists only in a distributive sense because this is
true for all G;(r). Therefore we consider again a coarse-
grained functlon G'®(r) which is presented in Fig. 7 for
different 8. For high resolution more detailed structure

Jj
E%V—card[IEZ| —N<l<N and 3, U,,+,,,+1=2k——j]
=1

=p*(1—pY~* H 41)

appears due to the self-similarity of the G;. For a fixed §,
the pair distribution function exhibits short-range order,
i.e., there are more or less pronounced nearest-, next-
nearest-, etc. neighbor peaks. At least for the lowest reso-
lution, G®(r) (Fig. 7) seems to converge to unity from
which one might conjecture that this property of the
preceding model (I) may also hold for G®(r) of the
present configurations. But this is not true in general. If
B /A is rational, i.e.,

B/A=r/s, (44)
r,s positive integers, all possible values of D/'—R] [see
Eq. (41)] are contained in the set:

{kAd/2s |kEZ} . (45)

The possible values of R} form a Cantor set which is
bounded by (40) and which contains gaps of finite length.
Therefore, there exist values R; and R; such that none of
the intervals [R;+kA/2s, R,+kA/2s], k €N contains
any possible Earticle distance. This disproves the conver-
gence of G(r) if the resolution is high enough. For
B /A irrational we can prove

lim G®(r)=1 (46)

r— oo
for all 8. This different behavior for rational and irration-
al values of B/A can be understood in the following way:
according to (43) the set of all possible particle distances is
the union of all possible jth-nearest-neighbor distances for
j=1,2,..., which are Cantor sets. The property of this
superposition depends on B /A4 in a similar way as the dis-
tribution of the numbers n XB/A (mod 1), n €N in the
unit intervals does. For B /A irrational this distribution is
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FIG. 7. Histogram G®(r) of the pair distribution function for (a) §=0.34, (b) 0.14, (c) 0.054, and (d) 0.02 4; and for p=%,

7=0.2.

uniform while it is discrete for B/A rational, i.e., there
are gaps. It is just this discreteness which prevents the
convergence of G®(r) for B/A a rational number. For
B /A irrational where this does not occur we can prove
Egq. (46) analogous to 1.

C. Structure factor

The Fourier transform of G®(r) is just the coarse-
grained structure factor or interference function S®(k)
which is shown in Fig. 8 for G®(r) given in Fig. 7(c).
There is a peculiarity not observed in experimental results
for three-dimensional disordered solids: Besides the nor-
mal peaks at k,=n X2m/[A +(p —+)B] there exist also
peaks at k,=(n—+5)X27/[A+(p—+)B] and at
k,=(n/2)X2mw/A for n >1. The peaks at k7 and at k4
can easily be identified in Fig. 7.

These additional peaks point out the existence of at
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FIG. 8. Interference function S‘®(k) for the pair distribution
function of Fig. 7(c).

least two more characteristic lengths which originate from
the fact that G®(r) differs for j even and j odd as already
discussed.

V. TWO-LEVEL SYSTEMS AND SPECIFIC HEAT

Now we show that for each chaotic configuration
{v,(o)} with energy E (o) there exist a set of other chaot-
ic configurations {v,(o’')} with energy E(o’) where each
o' differs from o only locally. {v,(c')} is connected to
{v,(0)} over a potential barrier V(o,0'). The transition
o— 0’ represents the excitation of a two-level system with
classical excitation energy (also called asymmetry):

A(o,0')=E(0)—E(0’), (47)

which may be positive or negative on account of the me-
tastability of the configuration {v,(o)}. In the following
we always assume o to be p-normal. (We have slightly
changed the notation with respect to II, thus adopting the
usual one, e.g., Ref. 11).

A. Two-level systems

Because the two-level systems are expected to be local-
ized one must have

S(o,—0,)=0. (48)

n

Using (48) we get from (10a’) that
S[vao)—v,(c")]=0, (49)
n

i.e., the length of the chain remains unchanged during a
transition 0—o’. The simplest transition for which (48)
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holds is the following: Let i —1 and i be such bonds for
which o; _;= —o0;. Then we choose o;_;=0;, 0; =0;_;
and o,=o0, for all nsi-—1,i. The new metastable
chaotic configuration {v,(o’)} is obtained from {v,(o)}
just by moving the ith particle over a potential barrier
with all the other particles fixed and then relaxing the
chain. Although o and o' differ only for two bonds, the
nearest-neighbor distances v,(o) and v,(c') of course
differ for all n but converge to each other for n—+ oo
(see Fig. 9). From (10a’) we get

i—1—n

, —n , n<i—1
v,(0)—v,(0')=0;2B(1—7) Y, (50)
which shows that |v,(0)—v,(0’)| decreases exponential-
ly with the “distance” |i —n | and that it is not only one
atom which changes its position but a group of atoms, the
number of which is determined by |n|. The energy
A;(o) of these two-level systems which we characterize
symbolically by

(1, - De(—1,1) (51
follows straightforward from (24) and (47):

AV =0 4To(1—1) S 01— 1) . (52)

n=1
For more complicated transitions, e.g.,
(1,—1,1,—1)«(—-1,1,—1,1), (53)

the energy of the corresponding two-level systems can also
be calculated exactly, but now more particles have to
move. This means that the effective mass of the tunnel-
ing group of atoms is increased, which implies rather long
relaxation times. Therefore their contribution to the low-
temperature specific heat can be neglected on a time scale
much smaller than the corresponding relaxation time. In
any case the discussion shows that there exists a hierarchy
of two-level systems classified by the number of particles
which are moved.

If we consider a transition for which (48) is not true,
e.g., o,=1(—1), o0; =—o0;, and o0, =0, for all n=i it is
no longer possible to choose, e.g., (') such that asymp-
totically for n— =+ the particle positions u(o’) and
u, (o) converge to each other. Therefore this type of tran-
sition is a nonlocalized excitation.

The A; [Eq. (52)] form a spectrum which is a Cantor
set symmetric to zero. This we will see when discussing
the density of states.

o -1 -1 =lu

.- Py °-

i 1

| 4K

. . Y V;._1 ‘Vi' .
+1 ui -1 +1

ot -1 -1

]

Py o

-1

FIG. 9. Comparison of two configurations {v,(0)} and
{vp=v,(0")} for o0;_ 1=0{=—0,=—0}_; and o,=0),
nsi —1,i. The vertical bars illustrate the difference between
the particle positions of both configurations.

B. Potential barriers

In order to calculate the potential barriers V(o,o’)
separating the configurations {v,(0)} and {v,(0’)} we
add external forces which change {v,(0)} continuously
into {v,(0')}. The potential barrier is then obtained from
the work done by the external forces. Considering only
two-level systems of type (51), we add to Eq. (1):

—F(ui—ui_l)——F'(u,-H—ui) (54)

and determine the equilibrium configurations for fixed F
and F’. These are solutions of

14
du,

= —F8 1y +(F—F)8,, +F'8 11, . (55)

Using (3) and (55) we get for the function I [Eq. (4)],
which is no longer an invariant because the symmetry (2b)
is broken: :

I(v; 3,0, _y,0;)=F,
I(v;_y,05,0; 4)=F", (56)
I(vy _1,0p,0, 41)=0 for n£i—1,i,
which yield the modified difference equation:
2YVp +Vp 1+ Vn 4 1=0W,) +F8; _y , +F'S; (57
This equation can easily be solved if
o, (F,F',0)=sgn[v,(F,F',0)—cl=0, (58)

for all n, i.e., the quenched-bond disorder remains un-
changed under the action of the external forces which can
only be true if F and F’ are small enough. Substituting
the ansatz,

v, (F,F',0)=v,(0)+w,(F,F'), . (59)

into (57), we get a linear but inhomogeneous difference
equation for w, [if we assume (58)]:

2Y Wy + Wy 1+ Wy 1 =F8; 1 +F'S;, , (60)
with the solution:
wo F,Fn'~1=" n<i-—1

wn (F, ") = wo' (F,F')" ™ n>i

(61a)
where the variations wy and w,’ of the nearest-neighbor
distances v; _; and v;, respectively, are given by

1 149
F,F')=— F ),

(61b)
wo' (F,F')=wO(F',F)k .

One can show?’ that there exists a range for (a,,a,,c,b)
such that (58) is satisfied for all n if |9| <+ and if
on(F,F',0)=0, for n =i —1, i, where the latter condition
restricts F and F' such that

O< |wolFF) | < |8y
(62a)
0< |wo(FF')| < |8;|
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with
8, =v,(0)—c (62b)

Now we can calculate the barrier heights b;(o0) with
respect to the energy level E (o0):

C,; 3
b,-(a)=—2—(1+77) ([v; —1(o)

The barrier b; (o) with respect to E (o’) follows similarly
and is related to b;(o) by

b/ (o)=b;(0)—A;(o)=b;(0") . (65)

Thus the potential barriers V; (defined as usual, e.g., Ref.
11) are

Vilo)=[b;(0)+b; (0)]/2=b;(0)—A;(0)/2 . (66)

A straightforward but laborious estimation?’ leads to the
followmg upper and lower bounds for V;(o) for all
Im| <+, all o and all i:

Vmin(n) <Vi(o) < Vimax(M) (67a)

with
Vain(M 2 5C1a_% Viyx<5C1a_2. (67b)

For |7| <<1 this estimation is, however, rough: For
|n| <<1 it follows from (37) that the nearest-neighbor
distances v; _;(o) and v;(0) deviate little from A¥B /2
and A+B/2 where the upper and lower sign holds for
o;=1 and o;= —1, respectively, and therefore b;(c)/C,
[Eq. (64)] cannot fluctuate much, and in particular one
has

lin})Vmax(n)/me('r])zl . (68)
7"—)

The bounds in (67) can be improved if one treats 7 >0 and
<0 separately We have found that Vi, (n)/
Vemin(1) <+ and <3 for >0 and 7 <0, respectively. In
any case the highest and lowest potential barrier are of the
same order.

Finally we note that the barriers b; or V; are not distri-
buted continuously, but form a Cantor set as the v; do.

C. Correlations between the asymmetries A;
and the potential barriers V;

The role of the correlations between the classical ener-
gies A; (asymmetry) and the potential barriers V; have
been discussed by Phillips.® For our model the potential
barriers for those two-level systems with energy smaller
than 10~* eV (later we consider only those for the specific
heat below 1 K) are weakly correlated with A;, and the
correlations- even go to zero for such asymmetries A;
which get arbitrarily small. This can be seen as follows:

From (52) it is obvious that for such i/ with
A;(0) <Cia’ n” one must have
Oiyn=0;i_1_n forl<n<wv. (69)
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(5‘ ,
b,«a):f(oo " ldwoF(wo,wh ) +dwiF (we,wh)],  (63)

where the line integral is path independent. Substituting
F(wg,wq’ ) and F'(wg,wy’ ), which follow from (61b), into
(63), we get finally

—c*—29[v; _ (o) —cl[v;(o) —c]+[v;(a)—c]?) . (64)

Using (69) and o; _;= —o0; (which characterizes the two-
level systems we are discussing) we get from (10a’):
B
vi_i(@)=A+> 1—+’1 —(1=n)a;
v—1

+ (141 3 17"0; 4n +0(1")

n=1

(70)
- Bl-n|1_mo
vi(o)= A+21+ [(1 n)o;
v—1
+(14+1) 3, 9" 4» +0(7")
n=1

Thus, the distribution of [v; _{(0c)—c] and [v;(0)—c] and
therefore also the distribution of the barriers b;(co) [Eq.
(64)] and V;, respectively, is mainly determined by all pos-
sible subsequences {0;,0;,1,...,0;,,_1}, wWhereas the
asymmetries A;(o) below Cja_?n" do not depend on
these subsequences. The remainder of the sequence o, i.e.,
0i_1-n and 0;, for n>v which determine the asym-
metries and their distribution below Cia_%7" uniquely,
influence the barrier heights only on an energy scale of or-
der Cya_%7*, as follows from (64) and (70). Therefore,
assuming that the barriers are of order 10~! eV with vari-
ations restricted roughly by (67), the asymmetries which_
are smaller than Cia_%7*=10"* eV influence the bar-
riers only on a scale of 10~* eV which can be neglected-
with respect to the scale of 10~ ! eV.

D. Quantum corrections

Because we will discuss the behavior of the specific heat
below 1 K we have to estimate the quantum corrections.
The corrected energies of the two-level systems are given
by5,6

AP™(0) = {(Ai(0) + +[Fiwg(o) —Fa(o’)]) >+ AL 12,
(71a)

where +#wo(o) is the zero-point energy of an equilibrium
configuration characterized by o, and o’ follows from o
just by interchanging o;_1 and 0;,=—o0;_; (see above).
As we have seen in Sec. III, the phonon frequencxes w(q)
and therefore #iw, given by

firg=" - fo dq fio(q) (71b)

do not depend on o. Thus the term %[ﬁmo(o)—ﬁwo(a’)]2
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in (71a) just vanishes. Ag; is the overlap between the

wave functions in both local energy minima and is ap-

proximately given by

AO,l’ zﬁwoexp( —k,) I
(71c)
hi~+QMV)V21 /%,

where / is a typical tunneling distance and M the total
mass of the tunneling unit which may consist of more
than one atom. The zero-point energy does not depend
sensitively on 7 and is well approximated by?’

T Hwo~ 3H(C, /m)/? . (72)

In the following we estimate Ag; and the rate I'; of the
transitions (51) which is roughly of the form:

I =Texp(—24A;) , (73a)
where

INy=awq . (73b)
For this estimation we assume

Vmax=~10"1 eV,

I=a_~1A, (74)

m =M ~16 u (oxygen atom) .

If we use the rhs of (67) for V,, we get C;=650
gsec™2, which leads to a zero-point energy:
]
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e~ 1.5X1073 eV . (75)

The maximum value for Ag,.x follows from (71c) for

Ai=Apin. Using for Viinm~3Vmax We get Apin~8.5
which leads to
Ao max=~3X107" eV, (76)

which can be neglected for those asymmetries A; in the
range 10™° ¢V and larger. Because

Amax=Vmax/Vmin )l/zlmin ~14.5
we find that
Fpin~1sec™!. : (77)

These estimations demonstrate that, e.g., for the set of
data given by (74) the resonant tunneling can be neglected
on a scale of 1075 eV and larger, i.e., in this regime the
asymmetries A; are the approximate two-level energies.

E. Density of states n (€) and specific heat

We approximate n(e) by the distribution function of
the asymmetries A; which is justified for € > =107 eV as
we have seen before. Then n(€) can be obtained quite
similarly from A; [Eq. (52)] as G(r) [see Eq. (38)] fol-
lowed from the v;’s [Eq. (10a’)]. Thus for an energy reso-
lution of order €yn” [€p=8|Jon | (1—n)] we find for the
vth order density of states n,(€):

[p(1—p) T Hp?+(1—pPY |~ for €€l 0 u

fl”(e)=n° [O otherwise ,
where
2 Inli-lﬂi_sv
i=1
S,=[n|"/(0—[7n]),
no=(1—|n|)p(1—ple",

I[u‘...’uv: € »€0

i=1

and u is the number of u;’s which are zero. Here we have
taken into account that for N particles there are
2p(1—p)X N two-level systems (if o is p-normal). For
p =75, Egs. (78) reduce to the result in IL. n,(€) is shown
in Fig. 10 for p =+. From (78) we find the scaling prop-
erty:

nyp([n]€)=[p>+(1—pPI|n|~'n€), (79)

for |€| <€ll—|m|)~! and v>1. This and also the
Cantor set structure (v— o) of the two-level energies be-
come obvious from Fig. 10. It is quite remarkable that we
obtain a Cantor spectrum with self-similarity for the
two-level systems of a disordered configuration. That
such a Cantor spectrum can be obtained for the vibration-
al modes of a fractal®® was recently demonstrated by
Alexander and Orbach?® and Rammal,®® but there the

v .
2 |nll—1”i+8v

(78a)

, ,l.I,,:O,il

(78b)

I

self-similarity is already included in the atomic arrange-
ment. For the fractal dimension®> d of our Cantor spec-
trum we get:

d=In(1/3)/In|7| , (80)

which is smaller or equal to 1 for || <. The spectral
dimension d introduced by Rammal and Toulouse®! is de-
fined by

n(e)~e?~1, e—0, (81)
and can be obtained from (79) (for v— o) which yields
d=In[p>+(1—p)*1/In|7 |

=dIn[p2+(1—p)*1/In($) . (82)
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FIG. 10. Density of states n,(e) for v=1, 2, and 3 and
p=% lnl=1

If we use the power-law behavior (81) for the density of
states we obtain for the specific heat ¢ (7):

c(T)~T2%, (83)

which holds, however, only for temperatures of the order
10~ eV or larger because only then the distribution of the
A;’s approximates well the density of states. For these
considerations we have assumed (i) that all two-level sys-
tems contribute to the specific heat, which is only true if
the time scale of the specific-heat measurement is much
larger than I'i=1 sec [Eq. (77)], and (ii) that the corre-
lations between the two-level systems and the barriers can
be neglected which is true for energies smaller than
~10~* eV which correspond to 1 K. Therefore in a
range between 0.1 and 1 K the specific heat of the two-
level systems (phonons excluded) should be given by (83)
with a fractional exponent d <0.63 if the time scale of the
measurement is much larger than 1 sec. d depends only
on the type of quenched bond disorder characterized by p
and on the ratio of the elastic constants C;/C,.

V1. GENERALIZATION OF THE MODEL

We have already discussed (in Sec. III F) a possible gen-
eralization of the model (1) with interaction potential V¥,
and ¥V, given by Egs. (6). We have found that the results
obtained with (6) change smoothly if we add further
anharmonic interaction to V. In particular we could also
smoothen the cusp in V; because for || <+ [and
(ay,a3,¢,b) in a suitable range] all the nearest-neighbor
distances of the equilibrium configurations (10a’) avoid
the neighborhood of ¢ (the location of the cusp). This
neighborhood increases with decreasing |7 |. Then (10a’)
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still represents metastable equilibrium configurations, but
there may exist additional ones. Further generalizations
would be the use of anharmonic next-nearest-neighbor in-
teractions or that of harmonic third-, etc. neighbor poten-
tials. These types of generalization we have not discussed
yet. We mention here a different kind of generalization:
The potential energy (1) is not of the form of a sum of
pair potentials, and the interaction between two particles i
and j in the chain depends on the number of particles si-
tuated between u; and u;, which constitutes a many-body
interaction. We have found, however, a pair potential
Vo(|u;—uj|) for which the stationary configurations
(10a’) remain metastable equilibrium configurations. V),
can be derived as follows: Let v and 7 denote the
minimum and maximum nearest-neighbor distance,
respectively, following from (10a’). Then, if the first-,
second-, and third-nearest-neighbor distances do not over-
lap, which holds if

v<2p, (84a)

(84b)

[(84b) implies (84a)], both potentials V|, and V, can be
joined to a pair potential:

27 < 3v

Vl(x)+k17 xE[g,ﬁ] )
Vp(x): V2(X)+k2, xe[22,2v] ’ (85)
0, x 6[31)., °°] »

with arbitrary constants k;. Within the intervals (0,v),
(U,2v ), and (27,3p), we can choose V), arbitrarily. That
one can easily find parameters a;, a,, ¢, b, and n for
which (84) is fulfilled is demonstrated by Fig. 11, which
shows a pair potential being in good qualitative agreement
with pair potentials obtained .from scattering data of
liquids by, e.g., see Schommers.?? If we would still
smoothen the cusp at ¢ (which we are allowed to do for
|| <) our pair potential would just exhibit the should-
er of the potential given in Ref. 32. That V,(x) vanishes
for x >3p may not be serious, for instance, an exponen-

Vp

Vi Vo

d1ar c |b

FIG. 11. Pair potential ¥,(v). ¥; and V, denote the part of
the nearest- and next-nearest-neighbor potential.
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tially decaying tail for x >3p may not influence our re-
sults much.

In any case for a certain class of pair potentials, Eq.
(85), we have proved the existence of chaotic, metastable
equilibrium configurations at T=0 K with properties
described in the preceding sections.

VII. DISCUSSION

Although the one-dimensional model we have studied
in this paper is translationally invariant it has an infinite
number of chaotic and metastable equilibrium configura-
tions. This demonstrates that competing and anharmonic
interactions, which induce frustration effects, may lead to
glasslike locally stable configurations (7' =0 K) classified
by sequences {0, } (p-normal) which characterize the type
of quenched bond disorder. The fact that the equilibrium
configurations are uniquely determined by {o,} is related
to the embedding of the Bernoulli shift into a map, the or-
bits of which correspond to the equilibrium configura-
tions of the chain. This situation is independent on the
different shapes of V; (see Fig. 1) and does not change
under small perturbations like further anharmonicities of
V,. We have further demonstrated the existence of pair
potentials for which our chaotic configurations remain
metastable equilibrium configurations.

The pair distribution function G (r) for these chaotic
particle arrangements shows roughly a glasslike behavior,
i.e., more or less pronounced nearest-, next-nearest-, etc.,
neighbor peaks and the absence of long-range order, but
each of these peaks itself can be resolved into finer peaks,
which is related to the bizarre and noncontinuous distri-
bution of the nearest-neighbor distances. This is not ob-
served in experiments, for which there may be several
reasons: (i) for finite temperatures the bizarre structure of
G (r) will be smeared out; (ii) usually the radial distribu-
tion function (averaged over the angles) is obtained, and
this only in an indirect way from the interference function
which can be measured only with a certain accuracy; and
(iii) we cannot exclude the possibility that this behavior is
specific to one dimension. The extra peaks appearing in
the interference function S(k) originate from the ex-
istence of two typical nearest-neighbor distances (classi-
fied by v, >c and v, <c) in our model. These peaks
should be observable for a chain with two species of dif-
ferent equilibrium length.

Our model also allows a microscopic justification of the
tunneling- or two-level systems. They are localized and
involve a finite number of particles which tunnel through
a potential barrier. These barriers and the energies of the
simplest (where the smallest number of particles are in-
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volved) two-level systems which themselves are part of a
hierarchy of two-level systems, we have calculated exact-
ly. The corresponding density of states is not constant, as
assumed in previous models, and it exhibits a scaling
property as a result of the Cantor spectrum formed by the
two-level systems which leads to a power-law behavior
c(T)~T* for the specific heat (only two-level systems)
between 0.1 and 1 K for measurements with time scale
larger than 1 sec. _

The fractional exponent d is nonuniversal and depends
only on |7| related to C,/C,, the ratio of the elastic
constants of the nearest- and next-nearest-neighbor in-
teractions, and also on p which characterizes the type of
quenched bond disorder. d tends to zero for either p—0
or p—1 which corresponds to a situation where one of
the two typical bond lengths is dilute and which is there-
fore comparable to the system studied by Geszti.'* This
behavior implies that d decreases under annealing for the
case where the ground state of the chain corresponds to
p=0 or p=1 and d increases for a glasslike configura-
tion with p#% if the ground state is of period two. For
our model 0 <d <1n2/In3=0.63. Such exponents smaller
than one are observed (see, e.g., Ref. 8) for three-
dimensional solids. Because, however, the two-level sys-
tems are localized excitations, their density of states and
therefore d possibly does not depend sensitively on the
Euclidean dimension. Specific heat and thermal conduc-
tivity measurements on [ aluminia (a quasi-two-
dimensional system) by Anthony and Anderson*® lead to
similar exponents ( <1 K) as for three-dimensional amor-
phous solids which support the conjecture. Therefore one
may find similar results for two- and three-dimensional
models. ‘

But, on the other hand, there exist layered compounds
or quasi-one-dimensional systems to which our model
may apply. For instance, the polymer chains investigated
in Ref. 18 which expand inhomogeneously under a tension
such that the chain consists of two types of elements of
different lengths might be modeled by the double-well-like
potential V; of Fig. 1.

In conclusion we can say that the one-dimensional
chaotic configurations we have investigated show, besides
typical glasslike properties, some peculiarities which may
or may not be specific to one dimension.
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