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Liquid helium on a surface: Ground state, excitations, condensate fraction,
and impurity potential
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We study the structure of films of "He atoms adsorbed to a plane substrate. The ground state is
described within a variational model developed earlier [E. Krotscheck, G.-X. Qian, and W. Kohu,
Phys Rev. B 31, 4245 (1985)]. Euler-Lagrange equations are solved for the one-body and two-body
correlations for three different models of the He-substrate interaction. The one-body density shows
structure indicating the formation of layers of one, two, three, ~ . . atoms above the substrate. The
solution of the Euler-Lagrange equation also provides the dispersion relation and spatial shape of
collective excitations in the system. The results of the ground-state optimization are used to calcu-
late the condensate fraction {i.e., the number of particles with zero momentum paralle1 to the sur-

face) and the binding energy of a He impurity.

I. INTRODUCTION

Microscopic calculations of properties of strongly in-
teracting quantum systems often start from a variational
ansatz for the ground-state wave function of the Feenberg
form '2
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where
~
4o) is an appropriately chosen model wave func-

tion reflecting the symmetries and the statistics of the sys-
tem under consideration. The u„(rt, r2, . . . , r„) are n

body correlation factors; they vanish whenever one or
more of the particles is moved far away from the rest.
The ansatz (1.1) is especially suitable for Bose systems,
where the model ground state

~
@o) can be chosen to be 1.

In that case, the form (1.1) is~ in principle, an exact repre-
sentation of the ground state.

The wave function (1.1) has been applied mostly to
studies of homogeneous quantum liquids. For liquid He,
the subject of this paper, the results are adequately re-
viewed in Refs. 3. The translational invariance of the sys-
tem in all directions simplifies the analytic structure of
the correlation functions substantially: u~(r) is a constant
and may be chosen to be zero. u2(r;, rj) depends only on
the distance r;J =

~
r; —rJ ~

between the two particles. It is
therefore easy to perform partial summations of the ener-

gy expectation value,
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in a diagrammatic cluster expansion. These may then be
compared with direct Monte Carlo integrations of the en-

ergy Hoo. It is also possible to optimize the pair correla-
tions by the variational principle, '

5HOO (r)=0 .
5u2

Of course, the Euler-Lagrange (EL) equation (1.3) is not
guaranteed to give the correct answer for the "best" two-
body correlations if it is applied to an approximate energy
expectation value. One of the important steps in the
development of the variational theory was to show 'that
optimizing the hypernetted-chain (HNC) approximation
for Hoo preserves the important properties of the full
variational principle. Moreover, when used with the
Euler-Lagrange equation (1.3), the HNC approximation
exhibits the known physical instabilities of the system: at
low densities against droplet formation, and at high den-
sities against the formation of a quantum solid. ' The
most important consequence of this property of the theory
for our application is that the HNC/EL theory has built-
in signs which tell us whether a given number of particles
fills this volume uniformly, or only partly.

There are also a number of studies of inhomogeneous
systems (in particular, the free surface of liquid He) using
the variational wave function (1.1). Worth mentioning are
the works of Woo and collaborators, ' Chang and
Cohen, ' and more recently, Saarela et al. ' Among
these, the pioneering work of Ref. 9 gave the best result
for a long time.

In an inhomogeneous system, the two-body correlation
factor uz(r;, rj) obtained from the Euler-Lagrange equa-
tion (1.3) depends on more than the distance between the
two particles. For the problem of a plane surface con-
sidered here and in Ref. 1 (hereafter called paper I),
u2(r;, rj) depends on both the distances of each individual
particle from the surface and on the distance between the
two particles parallel to the surface. This causes some nu-
merical difficulties, and for a long time it was believed
that the HNC/EL problem of an inhomogeneous system
was overly difficult to be carried out numerically. In I,
we have shown how the HNC/EL problem can be solved
in an inhomogeneous system with a reasonable numerical
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effort. In particular, it is hardly more involved to solve
the full optimization problem (1.3) than it is to solve just
the HNC equations. But in addition to the ground-state
properties, the solution of the HNC/EL problem also pro-
vides the dispersion relations and the wave forms of col-
lective excitations (Ref. 13, paper II).

The present paper reports applic'ations of the theory
developed in I and II to a physically different case, and
presents some extensions of that theory. In I, we have
considered free He films which are translationally invari-
ant in two directions (say, x and y) and have a symmetric
density profile in the z direction. For sufficiently thick
films, the theory of I provides a microscopic picture of
the free surface of He. Here, we again consider systems
with translational invariance in the x-y plane, but the
helium liquid is in a z-dependent substrate potential
U,„b(z) which models the adhesion force between "He
atoms and a substrate. The density profiles were quite
smooth in the case of a free surface; we wi11 see that the
combination of the geometrical restrictions acting on the
helium atoms and the compression of the liquid due to the
attractive substrate potential induce a layer structure in
the density. The layer structure of the one-body density
mentioned above is testimonial to the power of the uncon-
strained HNC/EL theory. One need not rely on "educat-
ed guesses" for the one-body density or the one-body
correlation factor u 1 (r).

The basic equations of the theory are reviewed in Sec.
II. Results for the ground-state energetics and the one-
body density are presented in Sec. III. Sections IV, V, and
VI turn to two simple extensions of the theory.

Section IV discusses the spectrum and wave forms of
the collective excitations. Section V studies the density
matrix, which is of interest for finite-temperature exten-
sions of the theory' ' and possibly experimentally acces-
sible through neutron scattering experiments. ' The
theoretical methods have been foreseen some time ago by
Ristig and Clark et al. ' The generalization of that work
to the inhomogeneous case is essentially straightforward
but it illuminates the diagrammatic structure of the clus-
ter expansions better than the theory for the bulk system.
Along with the derivation, we will formulate a new con-
sistency constraint for approximations for the density ma-
trix. The theory of the density matrix is not only of for-
mal and physical interest; it also has the amusing property
that the HNC theory for that quantity' sums precisely
the wrong classes of diagrams. The only quantity that

can be calculated reliably is the condensate fraction, and
we will present results for this quantity.

Section IV investigates the binding of a single He atom
to the surface of He. For all models under consideration,
we find two discrete bound states of the He atom, the
low-lying localized in the surface of the He layer, and
another close to the substrate. When the film is thick
enough, or in a strong substrate potential, a third bound
state appears; it corresponds to the state of a particle con-
fined in a box between the substrate and the surface of the
film. This state is the one which tends to the state of a
single He atom in He in the bulk limit. The final sec-
tion, VII, gives an overview of our results.

II. OPTIMIZATION OF THE GROUND STATE

(2.1)

(In practical applications, we will consider an external
field which depends on only one coordinate, say z. How-
ever, this simplification is not used in the formal develop-
ments. ) The wave function of the system is assumed to be
of the Feenberg form (1.1); we neglect all but the one- and
two-body comPonents, ul(r) and uz(r„rz). The ground-
state energy can then be written as

Hop (bE1)+(bEz), —— (2.2)
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'

J d'rl J d'rzpz(rl, rz)uyp(r], rz) . (2.4)

uJp(rl, rz) is the generalized Jackson-Feenberg interaction,

Let us now specify the model under consideration and
review briefiy the techniques used in solving the problem.
The reader is directed to I for details of the derivations.
We consider a system of interacting particles in an exter-
nal one-body potential, i.e., the Hamiltonian of the system
is of the form
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(2.5)

and pl(r) and pz(rl, rz) are the one- and two-body densi-
ties. The representation of the ground-state energy
(2.3)—(2.5) is derived by eliminating the one-body correla-
tion factor u 1(r) in favor of the one-body density using
the first Born-Green- Yvon equation

VP1(rl) Pl( 1)Vul(rl)+ f d rzpz(rl rz)V uz(rl 2)

(2.6)

The relation between the two-body density and the
two-body correlation factor is provided by the
hypernetted-chain equations:

Pz(rl rz)
g(rl, rz)=

P 1(rl )P 1(rz)

=exp[uz(rl, rz)+N(rl, rz)+E(r„rz)] —1, (2.7a)
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X( r&, rz) =g(r&, rz) —1 —N(r~, rz),

N(r~, rz)= f d r3P~(r3)[g(rq, r3) l]X(13 rz) .

(2.7b)

(2.7c)

energy at constant particle number. The corresponding
EL equation has the form of a Hartree equation for the
square root of the one-body density:

Equations (2.7) form a closed set of equations for calcu-
lating the pair distribution function g (r&, rz) from a given
two-body correlation factor uz(r&, rz) and a given set of
"elementary diagrams" E(r~, rz). The simplest choice is
the "HNC approximation" E(r&,rz)=0; we shall use it
throughout our paper. This approximation introduces nu-
merical uncertainites of a similar size to those caused by
the omission of three-body correlations. Given the two-
body Feenberg choice of the wave function, the HNC ap-
proximation is the only approximation used in the
ground-state part of our paper.

Using the HNC equations, the Euler-Lagrange equa-
tions can be put into a quite compact and plausible form.
Since we have already eliminated u &(r), we consider p~(r)
as the independent one-body function in minimizing the

)

2

V'[pi(r)]' +[U,„b(r)+ VH (r)][p,(r)]

=pl pi(r)]'", (2.8)
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Working formulas for VH(r) have been derived in I:

with

V~(r) = V~"(r)+ V~z'(r), (2.10a)

where p is the chemical potential, and VH(r) a general-
ized Hartree potential,

VH (r&)= dzp, (rz) V~ h(r&, rz) — [g(r&, rz) —1] V, p~(r~). V, + V,p&(rz) V, N(r&, rz)
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The "particle-hole interaction" V~ h(r„rz) appearing in Eq. (2.10b) will be defined below.
The Euler-Lagrange equation for the two-body correlations can be formulated in various ways. We have chosen in I

an "RPA-like" (where RPA denotes the random-phase approximation) formulation, which is well suited for both solving
the equations and studying excited states. In that formulation, the sets of "non-nodal diagrams" X(r&,rz) [cf. Eq. (2.7b)]
are related to the particle-hole interaction V~ h(r~, rz) through

g2
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with
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In the HNC approximation, the particle-hole interaction Vz h(r~, rz) has the form

f2
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Equation (2.11a) is' a boson-RPA equation with the
single-particle states generated by the one-body Hamil-
tonian

(2.11c)
I

permits an iterative scheme leading from an initial guess
of the pair distribution function to convergence. Details
of the procedure may be found in I.

H&(r)=—,zz Vp&(r) V
1 1

2m [p$(r)] ~ [p](r)]~~z
(2.12) III. STATIC PROPERTIES

Equations (2.7), (2.10), and (2.11) form a closed set which
We have solved Eqs. (2.10) and (2.11) for a number of

samples of helium atoms interacting via the Aziz poten-
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tial. ' The atoms are assumed to be in an externa1 field
U,„b(z) describing the adhesion of the helium atoms to a
graphite surface. The graphite substrate has the remark-
able property that, with the exception of a few discrete
densities, the experimental results can be understood com-
pletely in terms of the properties of the helium liquid
alone, i.e., the only role of the graphite is to confine the
helium to a two-dimensional layer. A simple form for
U,„b(z) is the potential obtained by averaging Lennard-
Jones interactions between helium and graphite atoms
over a half-space. ' One obtains

9 r 3

U,„b(z)=e 1 s s
(3.1)

15 z z

The potential (3.1) is an oversimplification in the sense
that the real graphite-helium potential is not translational-
ly invariant in the x-y plane due to the crystal structure of
the substrate. The breaking of translational invariance in
the x-y plane is relatively weak in the special case of a
graphite substrate, but it does give rise to interesting phys-
ical effects at discrete densities. These effects are ig-
nored in the present work. Moreover, the interaction be-
tween two individual helium atoms is changed in the pres-
ence of a substrate ' due to the substrate screening of
the van der Waals interaction. Our one-body densities
near the substrate should therefore not be considered as
quantitative predictions.

We have chosen here three different models of the sub-
strate potential. Two of them use a potential of the form
(3.1), and are characterized by the strength e and the

915
(z+10)'

(3.2)
0

[U,„b(z) is given in K, and z in A.] The last term is due
to the attraction of the underlying glass surface. The po-
tential is about half as strong as our model I.

Model III is an artificially weakened potential of the
form (3.1) with the parameters e =6 K and s =3.75 A.
The potential is meant primarily to model the surface of a
thick film of the order of 20 A thickness. Since the com-
putational effort involved scales as the third power of the

range s appearing in Eq. (3.1). Model I uses a substrate
potential of the form (3.1) fitted to the strength of the at-
tractive tail of the helium-graphite interaction. The po-
tential parameters are e=48 K and s=3.6 A, which is
about midway between the theoretical and experimental
predictiops quoted in Ref. 22. The potential minumum is
at 2.75 A, which agrees with the value suggested in Ref,
22 for a helium atom located directly above a graphite
atom. However, the attraction at the potentia1 minimum
is about a factor of 2.5 too weak. This is necessary to
avoid having the HNC/EL equations for the liquid be-
come unstable due to a local instability against formation
of a solid.

Model II is a potential suggested by Dupont-Roc. It
describes a system where a thin film of solid H2 of about
10 A thickness is adsorbed to a glass surface. The He
atoms see the van der Waals force due to both the hydro-
gen and the glass substrate. The potential form is

435 1.5X10' 0.9X10'

O
O

ocf

O
1l

FIG. 1. Density profiles for helium films are shown, for the strong substrate potential model I, for particle numbers n =0.l4, 0.16,
O. I8, 0.20, 0.22, 0.24, and 0.26 A . The substrate is located at z &0.
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z (A)

FIG. 2. Same as Fig. 1 for the substrate potential model II [Eq. (3.2)]. The surface coverages are n=0. 12, 0.14, 0.16, 0.18, 0.20,
and 0.22 A ~.

C)
C)

FIQ. 3. Same as Fig. 1 for the weak substrate potential IDode1 III. The surface coverages are n=0.08, 0.10, 0.12, 0.14, 0.16, and

0.18 A-'.
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film thickness, it was found more efficient to simulate the
larger distance to the substrate surface by using such a po-
tential. The repulsive part of the substrate potential must
still be included in order to guarantee the boundary condi-
tions. We believe that with these three models, we have
covered a sufficiently representative sample of different
physical situations.

Figures 1—3 show the one-body densities p'(z) for the
three potential models for helium films of different sur-
face coverages

n= p&z z. (3.3)

The coordinate origin is chosen to be a distance s/2 to the
right of the singularity of the substrate potential (3.1). All
density profiles have a strong peak at the location where
the substrate potential is most attractive. Depending on
the coverage n one to three additional density maxima in-
dicate the formation of a second, third, etc. layer of
atoms. This layer structure is the main new feature ap-
pearing in our present calculations. Comparable structure
has not been observed in the free films studies in I. Fig-
ure 4 shows a matching of the one-body density obtained
from the model calculations I and III, shifted by about 6
A. The first density peak of the weak-potential model
agrees well with the third peak of the strong-potential
model I. We also note that the two substrate potentials
are very weak and roughly of the same strength in that
area. The matching of those two shifted density profiles
should provide a reasonably good idea of the strength of
the layer structure in thicker films.

The results of model I suggest an enormous density of

about five times the calculated equilibrium density at the
location of the first atomic layer. We have already point-
ed out that the helium atoms should feel in that area the
presence of the discrete structure of the substrate and a
modified two-body interaction; a liquid model is certainly
an inadequate description of the true physical situation.
More realistic models of the two-body interaction sug-
gest that the attraction is weakened by about 20%, which
should noticably decrease the peak density. The second
atomic layer in that model still exhibits a peak density of
about twice the saturation density of bulk He. It is not
clear to what extent this prediction is a quantitative one.
It is known that the HNC approximation in bulk He
tends to predict too high a value for the compressibility.
One could therefore conclude that an improved calcula-
tion, including elementary diagrams and three-body corre-
lations, would lead to even stronger density fluctuations.
The weaker attractive part of the helium-helium potential
would tend to counteract; the net effect is hard to esti-
mate.

There is experimental evidence that the second layer,
when fully populated, is also solid. ' Variational calcu-
lations for bulk He predict that the liquid phase becomes
unstable against macroscopic admixtures of anisotropic
correlations at densities about 30% higher than the cal-
culated saturation density. This is not in contradiction
with the existence of locally stable liquid solutions of the
liquid HNC/EL equations, which exist '

up to a density
of about 0.052 A for the present interaction. The
geometric restrictions of an almost two-dimensional struc-
ture push the critical density for a local instability of the

C)
C)

C)
O

I

c)
C)
C)

0.0 5.0
I

t 0.0
z (~)

15.0 20.0

O

FIQ. 4. Combination of the density profile of model I with n =0.26 A and a shifted model III density profile with n =0.18 A —.
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TABLE I. Correlation energy E„adhesion energy E,„b, total energy E energy per surface area, ener-

gy per-particle E/n, and the chemical potential p for films of a surface coverage n between 0.14 and

0.26 A ~ in the strong substrate potential model I.

n (A ) Ec (KA ) E,„b (KA ) E (KA ) E/n (K) p (K)

0.14
0.16
0.18
0.20
0.22
0.24
0.26

1.03
1.01
0.90
0.84
0.79
0.72
0.63

—5.39
—5.57
—5.65
—5.76
—5.86
—5.93
—5.97

—4.36
—4.56
—4.75
—4.92
—5.06
—5.21
—5.34

—31.15
—28.52
—26.38
—24.59
—23.02
—21.70
—20.52

—12.02
—9.66
—9.08
—7.78

7.07
—6.72
—6.23

p( d) =p „—(a, —a)/d (3.5)

where a, =es is the strength of the substrate potential,
a/z is the van der Waals attraction of a free particle to
the bulk liquid surface, and d is an approximate or "nom-
inal" thickness of the film. For the case of a diffuse sur-
face studied here there is no unique way to define the film
thickness d. The surface width depends on the population
of the last layer, and an expression of the form (3.5) can
only be approximately true. One possibility is to define d
as d =n/po, po is some average density. Using this defi-

0

HNC/EL equations slightly above 0.1 A . The qualita-
tive features of the present model are the expected ones,
but there are still too many uncertainties to make a quan-
titative microscopic statement about the structure of the
first two layers.

Our results for the ground-state energies and the chemi-
cal potentials for the three inodels under consideration are
collected in Tables I—III. The results of model I are in-
teresting, because these high-density films are bound only
by the external potential. The correlation energy,

E = I d "Pi(r)
I
VlnPi(r)

l
+(~Et) (34

8m

[cf. Eq. (2.4)], is positive for all surface coverages con-
sidered. Model II lies on the boundary; the films with
n &0.16 A are held by the substrate potential, while
those with larger particle numbers are self-bound.

The chemical potential in model I decreases rapidly
with particle number. Given the uncertainties of the pre-'

dictions of the structure of the first two layers, it is con-
sistent with the experimental result of —40 K for a dou-
ble layer. One expects, roughly, the behavior

0

nition for d, po
——0.021 85 A, and the calculated asymp-

totic chemical potential' p, = —5.2 K, we found in
model I (p —p, )d =(a, —a) between 1750 and 2200
KA . This is in reasonable agreement with the asymptot-
ic form of the substrate potential es =2247 K A .
The values for (p, —p )d vary more strongly in model II;
they lie between 320 and ~~0 KA, which must be com-
pared with the coefficient of the 1/z term in Eq. (3.2).
The last term in the expression (3.2) is still smaller. In
neither of the two cases do we find that (p —p )d is a
monotonic function of d or n, which indicates the ex-
istence of corrections due to the layer structure. This is
also manifested in model III, where the substrate potential
is about eight times weaker, and the chemical potential is
not even a monotonic function of the particle number.

As expected, the results of model III are in much closer
agreement with the bulk properties of He. Figure 5
shows the decomposition of the ground-state energy of
model III into the "correlation energy" E, [cf. Eq. (3.4)]
and the "adhesion energy"

E,„b Jdz P i (z) U——,„b(z) . (3.6)

The correlation energy exhibits the near linear dependence
on n already found in I. The extraction of a surface ener-

gy from the asymptotic expansion,

E(n) =c7, +calf+ p„n, (3.7)

is not as straightforward as in I, since there are two quite
different surfaces {at the substrate boundary and at the
free surface) with different surface energies crf and cr, .
These cannot be uniquely disentangled. Hence, an asymp-
totic expansion as Eq. (3.7) gives at most an average sur-
face energy. We note that this average agrees reasonably

E,„b (KA-2) E/n (K)

0
TABLE II. Same as Table I for films of a surface coverage n between 0.12 and 0.22- A in the

medium-strength substrate potential model II.

n (A ) E (KA ) E (KA-') p (K)

0.12
0.14
0.16
0.18
0.20
0.22

0.20
0.13
0.03

—0.06
—0.15
—0.25

—1.74
—1.80
—1.83
—1.87
—1.89
—1.90

—1.54
—1.67
—1.80
—1.93
—2.04
—2.15

—12.80
—11.92
—11.28
—10.71
—10.20
—9.78

—7.21
—6.57
—6.32
—5.91
—5.68
—5.51
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n,

TABLE III. Total energy E per surface area, energy per par-
ticle E/n, and the chemical potential p for films of a surface

0
coverage n between 0.08 and 0.16 A in the weak substrate po-
tential model III. Column 5 shows the integrated condensate
fraction n„cf. Eq. (5.24).

pg (A 2) E (KA 2)

~

9 o( t) ) =exp(iH oot/A)
~'

A A

&&exp —,
' g u](i, t)+ —,

' g uz(r;, rj)

0.08
0.10
0.12
0.14
0.16
0.18

—0.35
—0.46
—0.57
—0.67
—0.78
—0.89

—4.37
—4.57
—4.71
—4.82
—4.89
—4.95

—5.20
—5.26
—5.31
—5.32
—5.27
—5.23

0.41
0.36
0.34
0.32
0.30
0.29

(4.1)

where ~ is the norm. We assume further that the ampli-
tude of the time d-ependent portion of the one-body corre-
lations is small such that one may linearize the equations
of motion for 5u](r, t)—=u](r, t) —u](r). These equations
are derived from an action integral,

W= f dt~]IIo{t) ~H+U (r t) ih—
~
+o(t)~

at
(4.2)

well with the surface tension found in I.
The "adhesion energy" (3.6) should approach an

asymptotic value as d, where d is the thickness of the
film. Figure 5 shows that, even in the weak substrate po-
tential, we have not quite reached this regime.

Our results on the static properties of the helium films
are entirely consistent with those found in I. In particu-
lar, no characteristic new features of the pair-distribution
function g(r], rz) have been found. The essentially new
feature appearing in the present calculations is the layer
structure of the one-body density. We believe that the
complicated structure in the one-body density is the most
convincing argument for using an unconstrained varia-
tional approach to the helium-substrate problem.

IV. COLLECTIVE EXCITATIONS

One of the most attractive properties of our formula-
tion of the HNC/EL problem is that the normal modes of
the system are a natural by-product of the optimization
procedure. The formal basis is the formulation of linear
response theory in strongly correlated inhomogeneous
Bose liquids. We have described in II an excited state of
the film in analogy to the Feynman phonon by writing a
time-dependent wave function,

by requiring stationarity with respect to the time-
dependent component of the wave function,

5M=0 . (4.3)

U,„,(r, t) is a small, time-dependent external field. We
note that meaningful equations of motion can be formu-
lated only on top of an optimized ground state. If the
ground state does not minimize the energy within the
space of trial functions, one must always expect spurious
instabilities which indicate that a better wave function can
be found.

Fourier decomposing the perturbing field,

U,„,(r, t) = U,„,(r)(e' '+e '"'), (4 4)

and the time-dependent induced density fluctuation, we
derived in II an expression for the density-density
response function

X '(r„rz;co) =Xo '(r], rz, co) —V~h(r], rz), (4.5)

where V~h(r], rz) is the particle-hole interaction (2.11b),
(2.11c), and Xo(r],rz) is the density-density response func-
tion of the "noninteracting" system characterized by the
one-body Hamiltonian (2.12). In the spectral decomposi-
tion,

H](r], rz) = y e;y;(r])y;(rz), (4.6)

0.05 0.10 0.15 0.20 Xo(r],rz,'co) has the canonical form

p] (r])y;(r])e;y;(rz)pI '(rz)
Xo(r„rz,o])=2

I A co —e.
(4.7)

FICi. 5. "Correlation energy" E, (small circles) and
"adhesion energy" E,„b are shown, as a function of the particle
number, for the (weak) potential model III. The dashed line

represents a linear fit to the correlation energy. X H](rz)pt(rz) =]rt totpt(r]) . (4.9)

The normal modes of the system are the nontrivial
solutions of the equation

f d rz X(r],rz', co)5p](rz,'co) =0 . (4.8)

%'e have shown in I and II that the most economical
way to solve the RPA equation (2.11a) is to consider the
eigenvalue problem

f d rz[5(r] —rz)H](rz)

+2[p](r])]' V~h(r], r, )[p](rz)]'
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From the solutions of Eq. (4.9) we can construct the pair
distribution function

1g(ri, r2) =1+
[ i(ri)]'"

1
X g [Hi(ri)gt(ri)][JIi(rz)1t'i(rz)]

E E

(4.10)
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FIG. 6. Dispersion relations of the five 1owest-lying nmdes
are shown for the film with n=0. 18 A in the weak substrate
potential III.

and the non-nodal diagrams X(ri, r2). During that proof,
it was also shown that the density fluctuations of the sys-
tern are given by

,n 5p, (r;co)
&p, (r;~)=, , =[a,(r)q, (r)] 5(~ ~, ) —. (4.11)

2[pi(r)]'"

Our approach to the excited states is similar to that of
Chang and Cohen, and one can derive their formulation
by eliminating the particle-hole interaction in favor of the
pair-distribution function, using the Euler-Lagrange equa-
tion (2.11a). The important new feature of our optimized
treatment of the ground state is that the static form fac-
tor, and hence the pair distribution function, is consistent
with the elementary excitations in the sense of the
fluctuation-dissipation theorem.

Figures 6 and 7 show the dispersion relations for the
five lowest-lying elementary excitations of helium films in
the weak and strong substrate potentials, respectively, as a
function of the momentum q parallel to the surface.
There are no continuum states due to the confinement of
the film in the z direction. A feature common to both
sets of dispersion relations is the closeness of the two
lowest-lying modes at q=1.5 A ', which suggests a
level-crossing effect in that momentum region. A similar
effect has been observed in II, where we could attribute
the feature to a level crossing between the surface (rip-
plon) and the volume (zero sound) excitations. A similar
level crossing has been predicted by Chang and Cohen
and by Woo. The situation is more complicated in the

C)

0.0
I

0.5
I

1.0 1.5
I

2.0 2.5

q {~')
FIG. 7. Same as Fig. 6 for the film with n=0.26 A in the

strong substrate potential I.

present case since we can have two qualitatively different
surface excitations: one at the free surface, and the other
at the substrate boundary.

The physical situation is clarified by considering the
wave shapes of the two lowest collective modes, see Figs.
8 and 9. Up to a momentum of about 1.5 A ', the
lowest-lying mode in the weak potential (see Fig. 8) is an
excitation of the free surface; the next one is an excitation
close to the substrate boundary. Both modes, of course,
have a considerable overlap for wavelengths longer than
the film thickness. In particular at q =0, the second ex-
cited state looks like a superposition of excitations of both
surfaces, much like the antisymmetric modes of the free
films studied in II. The identification as excitations at the
free surface and the substrate boundary becomes clearer
with increasing wave number.

Between a momentum of 1.5 and 1.6 A ', there is obvi-
ously a level crossing between the two surface modes, and
the one at the substrate boundary becomes energetically
lower. This effect has not been observed in the case of
free films studied in I and II. However, at slightly larger
wave numbers, we find a second change of the wave shape
into one bulk mode and one excitation at the substrate
boundary. Both level crossings are probably caused by the
approaching zero-sound mode, which is the lowest-lying
excitation at q ~2 A '. lt is unfortunately impossible to
identify the bulk mode with one of the higher-lying states
at long wavelengths. These states have two or more
nodes, and are extended over the full thickness of the film.
It cannot be clearly decided whether a given mode is a
bulk excitation or a superposition of two surface modes.

The character of the different elementary excitations is
most clearly identified for the case of the thickest film in
the weak substrate potential. At the smaller surface cov-
erages, the overlap between the excitations of both sur-
faces increases, which makes an identification of the dif-
ferent excitations less obvious.

The waveforms of the excitations in the strong sub-
strate potential are qualitatively somewhat different. Fig-
ure 9 shows that over a wide regime of wave numbers,
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the ground state. Related to this is the question of su-
perfluidity, which has been detected in films as thin as
two atomic layers. (We note that the present theory,
which assumes zero temperature, is not immediately com-
parable to the Kosterlitz-Thouless theory of vortex bind-
ing which applies to finite temperature ).n, (r) is, in the
bulk limit, the fraction of particles occupying the zero-
momentum Bose-Einstein condensate. The momentum is
no longer a good quantum number in an inhomogeneous
system. For the films under consideration here, we may
identify n, (r) with the fraction of particles at location z
having zero momentum parallel to the surface.

The variational theory for the density matrix in an in-
homogeneous system has not yet been worked out in the
literature; we must therefore review the basic steps of the

and

Az(1 I Il) expI [uz(1 rl)+uz{r' r1)]/2] —1 {5.4)

I~ ——f d r1 f d rz f d rz
~
'Po(r1, rz, . . . , rz)

~

(5.5)

Using the definitions of the n-particle distribution func-
tions of an A-particle system,

derivation. Our analysis follows largely a suggestion by
Feenberg3 which does not rely on cluster expansions
in terms of the pair correlations hz(r1, rz)
=exp[uz(r1, rz)] —1 as an intermediate step.

Let

3 . . . 3 2p(r1, rz, . . . , r„)= ', d r„+1 d r„+2 d r„~ Vo(r1, rz, . . . , rz )
~n!I—g

we find

IA —1
p1{r,r')=2 expI [u1(r)+u1(r')]/2I

(5.6)

x 1+ f d. r1 112(r,r', r1)p1(r1)+ —,f d 1 f d rzhz(r, r';r1)hz(r, r';r1)pz(rt, rz)+ (5.7)

Next, decompose the n-particle densities into the cluster functions

Pz(rl r2) P2(rl r2) Pl{rl )Pl{r2)

p3(rl r2 r3) P3(r1 r2 r3) Pl{rl)P2(rl r2) Pl{r2)P2{rl r3) Pl{r3)P2{rl r2)+2P1{rl)P1{r2)P1{r3)

(5.8)

Note that the cluster functions p„(r1, . . . , r„) satisfy the "cluster property, " i.e., they vanish whenever one or more of the
particles is moved far away from the others Insertin. g the cluster functions (5.8) and their higher-order generalizations
into (5.7), one finds

3p1(r, r') =2 exp [u1(r)+u, (r')]/2+ d r 1hz(r, r', r1)p1(r1)

+ —,
' f d r1d rzhz(r, r', r1)hz(r, r', rz)pz(r1, rz)+ . :—3 exp[q(r, r')] . . (5.9)

The ratio Iz/Iz 1 can be derived from Eq. (5.9), by let-

ting r=r' in hz(r, r';r;). We find

= f exp[q(r, r)]d r,

p1(r, r') = [p1(r)p, (r')]' exp[q(r, r') ——,
' q(r, r)

——,q(r', r')] . (5.13)

(5.10)

and hence

(5.1 1)

and find

exp[q(r, r')]
expq rr r

We finally eliminate the normalization integral by taking
the diagonal limit r=r' in Eq. (5.11):

exp[q(r, r)] (5.12)f exp[q(r, r)]d r

Note that the identity p1 '(r)exp[q(r, r)]=const is not
necessarily fulfilled in an approximate expression for the
one-body density and the function q(r, r). Rather, the
identity forms a consistency test on the approximations in
use.

The off-diagonal limit,
~
r —r'

~

—+ oo is obtained by ex-
panding

hz(r, r';r1) = I exp[uz(r, r1)]—1I I exp[uz(r', r1)]—1I

+ [exp[uz(r, r, )]—1]+[exp[uz(r', r, )]—1] .

(5.14)
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Subtracting the off-diagonal limit of q (r, r'),

q(r, r') =Df(r)+Df(r') Q(—r, r'),

Q ( r, r') —+0 (
I
r —r'

I
~ ac )

(5.15)

we arrive at our final representation of the density matrix,

pi(r, r') = [pi(r)pi(r')n, (r)n, (r')]' exp[Q (r,r')],
where

(5.16)

n, (r) =exp [2Df(r) —Dl, (r)],
Dl, (r)=q(r, r) .

(5.17a)

(5.17b)

1

D„{t- ) = o - -o;o

FIG. 10. The first few diagrammatic contributions to D~(r),
Ds(r), and Q(r, r'). The diagrammatic conventions are ex-

plained in the text. The shown combination of diagrams satis-

fies the identity (5.21). All but the last diagram are included in

the HNC summations.

Equations (5.16) and (5.17) are the proper generaliza-

tions of the working formulas of Ref. 17 to the inhomo-

geneous case. In order to facilitate the identification we

have used a notation as close as possible to the one of Ref.
17. The representation is exact; the relevant ingredients

may now be calculated either by using the cluster expan-

sion (5.9) to some finite order, ' or by summing infinite

classes of diagrams by an integral equation method. '

The cluster expansions for Df(r) and Di, (r) are topologi-
cally identical, differing only in that all functions

exp[uz(r, r;)/2] —1 occurring in Df(r) are replaced by
functions exp[uz(r, r;)]—1 in Dl, (r). Here, r is the coor-
dinate of the external point.

The first few cluster contributions to Dg(r), D&(r), and

Q(r, r') are shown in Fig. 10. The usual' graphical con-
ventions are used: The wavy line represents a factor,
exp[uz(r, r;)/2] —1, the dashed line a factor,
exp[ uz(r, r;)]—1, and the solid line a distribution func-

tion, g(r, r') —1. Solid dots indicate a density factor

pi(r;), and imply integration over the associated coordi-
nate space. The leading terms in Df(r), Di, (r), and

Q(r, r') containing the one-body factor ui(r) are not

spelled out explicitly.
Occasionally, the success and simplicity of the HNC in-

tegral equation technique for energy calculations has led

to a certain enthusiasm and blind faith in the method.
Later studies have pinpointed the reason for the success of
the HNC method for energy calculations: the method
provides an approximate, self-consistent summation of
ring and ladder diagrams; in particular it is exact in the
short- and the long-range limits ). In I, we have proven
that this statement also holds in the inhomogeneous case.

Nf {r i, rz) = f d 3r
3 Xf(r„r3)[g (r3 rz) —1] . (5.18b)

Given Xf(ri, rz), Nf(r„rz), and the ordinary graphical
quantities of HNC theory X(ri, rz), N(r&, rz), and g{ri,rz)
[cf. Eqs. (2.7)], one has, in the HNC approximation,

Df(r)= —,'ui(r)+ f d r'pi(r')Xf(r, r')

+ f rl 1 Nf (r, r')pi(r')[Xf (r, r')+Nf (r, r')]

(5.19a)

Dl, (r) =u i(r)+ f d3r'p, (r')X(r, r')

+ —,
' f d r'N(r, r')p, (r')[X(r, r')+N(r, r')],

(5.19b)

—Q(r, r')= f d ri Xf(r, ri)pi(ri)Xf(r', ri)

+ f &'ri f d'rzXf(r, ri)pi(ri)

X [g (ri, rz) —1]pi(rz)Xf(r', rz),

(5.20)

We will shortly see that the approximation for Q(r, r')

generated by Eqs. (5.18)—(5.20) is suspect. An approxi-
mation for the density matrix within an accuracy coxnpar-
able to that of the HNC method for the energy would re-

quire that the HNC approximation for Q(r, r') be exact
for

I
r —r'

I
~0 and

I
r —r'I ~Do. The long ranged limit-

is correctly reproduced by both the compact cluster ex-
pansion of Ref. 17, and by the HNC approximation. The
limit

I
r —r'

I
~0 is also known; from p, (r, r)=pi(r), we

conclude

The HNC technique has also been tried for other quanti-
ties, including the density matrix. ' But we will see (see
also Refs. 43 and 44 for recent numerical studies) that the
HNC method for the density matrix leads to the incorrect
answer in the limit of short distances

I
r —r' I, whereas

the long-ranged correlations are correctly described by the
second-order term of the compact cluster expansion for
Q (r, r'), more specifically, by the contributions of the first
and second diagram of Fig. 10 to Q(r, r'). On the other
hand we will see that the HNC approximation for the
one-body quantities Df(r) and Di, (r) is not plagued by
such inconsistencies.

The derivation of HNC equations for the density ma-

trix is a somewhat formal exercise, especially for Bose sys-
tems. As in the HNC theory for the distribution function
one introduces sets of "nodal" and "non-nodal" diagrams,
the only additional diagrammatic structures being objects
which have a factor exp[uz(r, r;)/2] —1 attached to a
specific external point r. These objects carry a subscript

f; note that they are not symmetric functions of the two
coordinates. (We adopt the convention that in a two-body

quantity the function exp[uz(r, r;)/2] —1 is attached to
the first coordinate appearing in the argument. ) The
HNC equations are (we omit "elementary diagrams")

Xf(r i, rz )=exP[ u z (r „rz)/2 +Nf (r i Iz )] 1 Nf ( ri, rz )

(5.18a)
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2'(r ) —Q(r, r) —Dl, (r) =0 . (5.21)

From the diagrams shown in Fig. 10, it is easily seen
how the identity (5.21) holds in any order of a properly
classified cluster expansion. Unfortunately, the HNC
method identifies the last diagram and corresponding
higher-order ones (see Fig. 11) as elementary and suggests
that these terms must be put in by hand at each order. In
other words, the last diagram shown in Fig. 10 (and all
the diagrams of the structure shown second in Fig. 11) is
omitted for r&r', but kept [embedded in 2D~(r) —Dq(r)]
for r=r. This inconsistency violates Eq. (5.21) in the
HNC approximation. In fact, in the HNC approximation
none of the nonelementary diagrams for Q(r, r'} are treat-
ed on the same footing as those included in the HNC ap-
proximation for 2D~(r) Dq(—r)

The violation of Eq. (5.21) is usually regarded as a mea-
sure of the importance of elementary diagrams. Our
analysis shows that this is incorrect: The inconsistency of
the diagonal limit of the HNC approximation for the den-
sity matrix is a measure of the nonelementary diagrams
that are kept in 2'(r) —D~(r), but ignored in Q (r, r).

A simple remedy would be to define the combination
2Df (r) —D~ (r) to be consistent with Q(r, r') through the
identity (5.21); in other words one might omit all dia-
grams for r=r' that are also omitted for r&r'. This is
probably adequate in nuclear systems, where the omitted
nonelementary diagrams are small, but dangerous in the
helium liquids. An interesting alternative is a scaling pro-
cedure suggested by Puoskari and Kallio, but it is not
clear how to generalize such a procedure to the inhomo-
geneous case. We regard the HNC method, in general, as
a unreliable scheme for calculating Q (r, r').

The situation is somewhat different if we restrict our-
selves to the "condensate fraction, " which needs only the

I

FIG. 11. Two typical diagrams contributing to Q(r, r'} of a
class that must be kept together to satisfy the identity {5.21).
The first one is included in the HNC summation, the second one

is classified as "elementary" and omitted.

function 2'(r) —D~(r). Since the inadequacy of the
HNC equations may be solely attributed to inadequacies
in the representation of Q (r, r') for r=r'; we may use the
HNC equations as long as we restrict our attention to the
long-ranged, off-diagonal limit of the density matrix.

It is straightforward to verify that the HNC approxi-
mation (5.19b) for Di, (r) satisfies the identity (5.12) [cf.
Eq. (5.17b)]. The proof is carried out by differentiating
Eq. (5.19b) and using the HNC equations to obtain

VDq(r) =Vlnp&(r) . (5.22)

Since only the combination 2D~(r) —D~(r) is needed
for calculating the condensate fraction, it is convenient to
rewrite the equations in terms of ~(r, r') =X~(r, r')
——,'X(r, r'). This has the advantage that the substantial
cancellations between 2D~(r) and Dp, (r) are automatically
taken into account, thus improving the convergence of nu-
merical calculations. Also, the correlation factors u&(r)
and uz(r&, rz) are eliminated in favor of the physical dis-
tribution functions, and no long-ranged quantities appear.

The final form of our equations after this reformulation
1s

b, X(r),rz) = [g(r],rz)]' exp[EX(r), rz)] ——,
' g(r], rz) ——,

'- —bX(r), rz),

aX(r„rz) = f d r3 p~(r3)~(r~, r3)[g(r3 rz) —1],
/

D&(r, ) —,'Dl, (r&}=f d —rzpl(rz}~(r&,rz) ——,
' f d rz [~(r„rz)+AN(r&, rz)]p&(rz)b&(r&, rz)

——,
' f d'r, bX(r&, rz)p&(rz)[g(r„rz) —1]+—,

' f d rz[g(r„rz) —1]p,(rz)X(r&, rz) .

(5.23a)

(5.23b)

(5.23c)

Equations (5.23) have been solved on the background of
the helium-film calculations of model III discussed in Sec.
III. This model has been chosen since it gives a better
representation of the behavior of the local condensate
fraction in the vicinity of the surface of bulk He. The lo-
cal condensate fractions (i.e., the fraction of particles in
the zero momentum state parallel to the surface, at a cer-
tain distance z from the substrate} are shown in Fig. 12;
the integrated condensate fractions,

f p&(z)n, (z)dz
&c= (5.24)

pi(z)dz

are given in Table III. We find, as expected, that the con-
densate fraction increases with decreasing density; the lo-
cations of the minima of the condensate fraction shown in
Fig. 12 agree essentially with the locations of the density

ED
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FIG. 12. Local condensate fractions n, {z) are shown for the
helium films in the weak substrate potential.
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maxima shown in Fig. 3. The trend persists in models I
and II; the condensate fraction within the first (model II)
and the first two (model I) layers is virtually zero. Thus,
the largest portion of the condensed phase resides in the
low-density outer layers of the film. This fact lends relia-
bility to the Inodel in the sense that it does not predict a
significant condensate fraction in areas where one should
expect that the liquid model is unphysical. As a result of
the HNC approximation, the density profiles obtained in
Sec. III are somewhat lower than what one would expect
from experiments. Improvements of our calculations
should therefore lead to slightly smaller condensate frac-
tions, especially in the high-density regimes, without
changing the overall picture very much.

VI. IMPURITY POTENTIAL

There is presently a major experimental and theoretical
thrust toward generating spin-polarized quantum liquids
and understanding their properties. An important step in
the experimental effort is to construct samples that mini-
mize spin-flip transitions F.or that purpose, chambers
are used with walls covered by He. Thus it is of interest
to study the interaction between a helium film covering a
wall and an impurity atom.

Systems of He atoms adsorbed on the free surface or
to films of liquid He are also of independent special in-
terest. This system is an (almost) ideal two-
dimensional Fermi liquid; a layer of He atoms with a
density less than that of a monolayer may be considered
as an impurity model. Gn the surface of bulk He, the
impurity particles have a binding energy ' ' of about 2.2
K relative to the state where the He atom lives in bulk
He. The physical picture becomes more complicated for

the case of He atoms on films of He. A second "lay-
ered" state may exist within the medium, which gen-
erates a mixture of a quasi-two-dimensional and a three-
dimensional system. The ability to change the properties
of the He with the thickness of the He background
makes these systems experimentally very interesting, and
poses a challenging theoretical problem.

Studies of the interaction between a homogeneous or in-
homogeneous helium liquid and an impurity atom are
abundant. 9 ' The reconsideration of this problem is
required by the better wave function available through the
present work. We recall also the special experimental in-
terest in our specific physical model which explicitly takes

into account the presence of the substrate and the layer
structure. We will see that the layer structure of the den-
sity leads to an average field that is significantly different
from semirnicroscopic approaches ' ' used recently to
study the same problem.

If the impurity atom is of a different species (for exam-
ple, hydrogen), one must introduce two different kinds of
two-body correlations, ' and essentially repeat the
optimization procedure described here for the helium-
impurity correlations. The numerical application of this
aspect of our theory is in progress

The problem is much simpler for the case of a He im-
purity atom. Since the He- He and the He- He interac-
tions are the same, it is reasonable to assume ' ' ' that
the two-body correlation factor u2(r;, rj) is independent of
the species. We may therefore use for the A +1 particle
system, consisting of one He atom and A He atoms, the
wave function

%0(ro, ri, . . . , rg )

-=exp —,'ui '(ro)+ —,
' g ui(r;)+ —,

' g u2(r;, rj)
i,j =0

l (J

with

f2
V P(r)+ U(r)g(r)=eg(r),2' 3

(6.2)

and

g(r) = [pi(r)]'~ exp t [u 1 '(r) —u, (r)]/2J,

(6.1)

A second reason that the wave function (6.1) is sufficient
for calculating the binding energy of a He impurity is
that usually binding energies depend only weakly on the
two-body correlations as long as these are within reason-
able bounds. A third reason will become apparent below,
where we will show that the contribution from two-body
correlations to the average field seen by the impurity atom
is weak and quite structureless.

Using the simple ansatz (6.1) for the many-body wave
function, Lekner minimized the total energy with
respect to the one-body correlation u'1 '(r) to obtain a
one-body Schrodinger equation for the impurity wave
function

V'[p, (r)]'"U(r)=- "+2m 3 [pi(r)]1~2
—1 W'(r),

m3

(6.4)

W(r) = d ri d r2 d rz%' (r0,r ri, .2. . , r~) — V„'po(r, ri, r2, . . . , rz) .pi(r) 2' 4

(6.5)

Equations (6.4) are more general in the sense that they also hold if species-independent multiparticle correlations are
present. The eigenvalue e of Eq. (6.2) is the difference in energy between an (A +1)-particle system of He atoms and a
system of A He atoms plus one He atom. In the special case of one- and two-body correlations, the potential 8'(r) is
given explicitly in terms of the known ingredients of the variational theory:

r

~(ri) Pl ( 1)V PI(rl)+V ul(rl)+ J d r2P1(r2)g(ri 2)V u2(r1 r2)Sm4 I')
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As usual, it is convenient to eliminate the correlation functions u i(ri) and u2(ri, r2) in favor of the one-body density, the
pair distribution function, and the other compound-diagrammatic quantities of the HNC theory. Doing this, we arrive
at the HNC approximation for the impurity potential,

~'[PI(ri)]'"
2m4 [pi(ri)]i~z 2nz4 (6.6)

In order to estimate the importance of the different
terms in the mean-field equation (6.2), we compare in Fig.
13 the full mean field U(z), the substrate potential
U,„b(z), and the term (Irt /2m4)pi

' (r)V pi (r) for the
thickest film in the medium strength substrate potential
model II. Models I and III, respectively, show weaker
and stronger fluctuations. The one-body potential has
been extrapolated smoothly to its asymptotic value —p,
since the variational ground-state calculations become nu-
merically inaccurate below a few percent of the maximum
density. We found, in agreement with Ref. 56, that the
strongly bound eigenstates of Eq. (6.2) depend very weak-
ly on the asymptotic details of the one-body potential.
The uncertainty in the higher-lying states is somewhat
larger; the energies depend somewhat on how the extrapo-
lation to the asymptotic value is done. From numerical
tests we concluded that the third state is accurate within
about 10%.

Most of the structure of the one-body potential is obvi-
ously due to the structure of pi

' (r)V pi (r) which, in
turn, is induced by the layer structure of the one-body
density. This finding lends credibility to the Lekner ap-
proximation: One should expect that this approximation
becomes morse with increasing density. But the approxi-
mation enters only second term in Eq. (6.6), whereas the
first term becomes the dominating one in the first two or
three layers. We regard therefore the Lekner approxima-
tion for the impurity wave function as adequate. The po-
tential is characterized by its broad minimum close to the
free surface, and by one or more sharper minima in phase
with the layers of the density profile. Depending on the
balance between potential and kinetic energy, one should
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FICx. 13. The effective potential seen by a He impurity is
shown for the potential model EI, and the film with a particle
number n=0.22 A 2 (solid line). Also shown is the bare sub-
strate potential (long-dashed line} and the term
(fi /2m4)pi ' (r)Vipi (r) (short-dashed line).
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FIG. 14. Occupation probabilities of the three bound states
of a He impurity (solid, long-dashed, and short-dashed lines
with increasing energy) are shown for the film with n=0.26
0

A in the strong substrate potential model I. Also shown is,
for comparison, the impurity potential (short-dashed line in the
lower half of the figure). The normalization of the occupation
probability, 5p', '(z) =

~
%(z) ~, is arbitrary.

l

expect at least two bound states, one close to the surface,
and another one in the deepest of the secondary potential
minima.

Our solutions of the eigenvalue problem (6.2) confirm
this expectation; the three models under consideration
cover a broad range of the possibilities. Figures 14—16
show the occupation probabilities 5pi '(r)=

~

%(r)
~

of
the He impurity for the thickest films in the three poten-
tial models I—III. In all three cases, we find that the
lowest state is localized in the surface by the broad
minimum of the potential there.

The second bound state of the impurity atom is local-
. ized more toward the substrate boundary, but the degree
of localization and its position depend on the strength of
the potential wells, and hence on the local density. In the
strongest potential, the second state is located at about the
third atomic layer. The impurity does not penetrate into
the very high-density regimes of the first two layers, in
which the liquid model is only a crude approximation.
We have argued above that only the first monolayer of
model II should be solid. We see (cf. Fig. 15) that the
second bound state in that model can partly penetrate the
third layer, but still has a very small occupation probabili-
ty inside the first layer. Finally, in the weak potential
model III, the second bound state is mostly localized
within the first atomic layer. The density of that layer is
sufficiently low that a liquid model is adequate. We con-
clude from this that the second bound state will penetrate
into the system up to a certain maximum density. There
is no a priori reason that this density is related to the soli-
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e2 (K) e3 (K)

TABLE IV. The bound states of a He atom in the He films
in the strong substrate potential model I.
n(A 2) e2 (K)

0
Q. o

KO v-

O
! «j

N I
n = 0.22K'

0.14
0.16
0.18
0.20
0.22
0.24
0.26

2.83
2.14
1.99
1.94
1.79
1.71
1.64

5.83
4.60
4.61
4.27
3.90
3.75
3.57

7.66
7.89
6.58
5.51
5.45
5.28
4.98
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FIG. 15. Same as Fig. 14 in the potential model II for
n=0.22A ~.

dification density of a monolayer. But it is reassuring
that the model does not have the unphysical feature of
predicting the penetration of the impurity into a solid
layer of high density.

The third state looks very much like that of a free par-
ticle confined in a box of the size of the film, being only
little affected by the details of the one-body potential.
(Note that this state does not appear in the very thin films
of model III.) The only qualitative difference in model I
is that this third state can penetrate the second atomic
layer. It is not clear to what extent this possibility is an
artifact of our assumption of a liquid state throughout the
film. It seems plausible to identify the third state with the
lower bound of a set of continuum states which should
appear as the thickness of the film is increased. These
continuum states correspond to He particles of finite
momentum that live in bulk He.

This interpretation is confirmed by considering the
eigenvalues of Eq. (6.2), which are given in Tables IV—VI.
The third eigenvalue (note that the chemical potential p
must be added to obtain the energy compared with a par-
ticle of energy zero at infinity) is close to the binding ener-

gy of a He impurity in bulk He. To interpret the differ-

ence between our eigenstate and the bound state of an im-
purity in the bulk fluid, the reader is reminded of the dif-
ferent physical situation: The impurity particle is here
confined to a box only five times its size, which should in-
crease its zero-point energy. On the other hand, addition-
al binding comes from the attractive substrate potential.
A comparison of the dependence of p (Tables I—III) on
the film thickness in the three models under consideration
should give an adequate estimate of that effect.

Our results are in good agreement with the ones of
Refs. 9 and 56; taking this interpretation of the third
eigenstate as the continuum boundary for impurities in
the bulk, we obtain approximately 2.4 K for the energy of
the bound state in the surface for model III. This is in
good agreement with the experimental value ' ' of 2.22
K. The weak-potential model III, corresponds most close-
ly to a bulk system.

Interesting implications follow from our result for the
problem of dilute layers of He atoms in films of He. In
particular, we find two locations where a two-dimensional
layer can form. This second state has not been found in
comparable recent work ' ' which assumes a simpler
structure in the one-body density. The existence of such a
second state is in agreement with experimental evidence
and theoretical predictions. We hesitate, as discussed
above, to identify the third excited state with a localiied
one that would be needed to give indication for additional
layered substructures. This is not in contradiction to ex-
periment: DiPirro and Gasparini point out that
specific-heat data can equally well be fitted with a three-
dimensional model of the He component. It also seems
plausible that the second state contributes little to specific
heat data in thick films, since the overlap with the surface
state decreases with the thickness of the film.

TABLE V. The bound states of a He atom in the He films
in the medium strength substrate potential model II.

8

!
n = 0, &8A' n (A-') e) (K) e2 (K) e3 (K)

I

3.0 6.0
I

9.0
I

12.0
I

15.0 1 8.0

FIG. 16. Same as Fig. 14 in the weak potential model III for
n=0. 18 A 2.

0.12
0.14
0.16
0.18
0.20
0.22

1.93
1.71
1.66
1.62
1.56
1.55

4.06
3.66
3.56
3.38
3.24
3.17

5.10
5.06
4.86
4.55
4.41
4.25
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TABLE VI. The bound states of a 'He atom in the He films
in the weak substrate potential model III. There is no third
bound state below n=0. 12 A 2.

n(A )

0.08
0.10
0.12
0.14
0.16
0.18

1.76
1.88
1.92
1.97
1.97
1.99

e2 (K)

3.44
3.37
3.30
3.32
3.32
3.34

e3 (K)

5.15
4.87
4.62
4.44

Our results for the energy difference De=@3—e& agree
qualitatively with those of Refs. 33, 49, and 50. Differ-
ences may be attributed to different substrate models.
References 33, 49, and 50 consider He on Nuclepore fil-
ters, whose van der Waals interactions are about halfway
between models I and II in strength. The reader is also
reminded that no information on macroscopic properties
of bulk He or on He films went into our calculation.
This restricts the accuracy of the predictions to the gen-
eral accuracy of the HNC theory of bulk He.

VII. SUMMARY

Let us briefly discuss the achievements and implica-
tions of the theory that was derived in I and II and ap-
plied and extended here. As far as the calculation of
ground-state properties are concerned, we have achieved
the best that can be done within the restrictions of one-
and two-body correlations and the HNC approximation.
The accuracy with which we could predict ground-state
properties is consistent with what we found in I and with
the general uncertainties of the HNC approximation.
"Better" agreement of earlier work .

' with experimental
surface tensions is a consequence of additional approxi-
mations such as local-density approximation or
parametrized correlation functions, not due to a better mi-
croscopic theory. To improve upon the microscopic
description, elementary diagrams and three-body correla-
tions must be included or fitted to known Monte Carlo
data or experiments.

Surface energies, and consequently the dispersion rela-
tion of the collective modes, should be most strongly af-
fected by an improvement of the ground-state description.
But we believe that the layer structure, which is charac-
teristic for a film on a substrate, is described correctly in
both amplitude and wavelength.

We have commented separately on the credibility of the
HNC theory of the density matrix. We believe that the
results presented in Sec. V are within the typical accuracy
of the HNC theory, i.e., within about 20%. The impurity
states discussed in Sec. VI are probably the quantities
described best within the present theory, since the dom-
inant part of the impurity potential does not depend on
the main uncertainty of the theory, i.e., the saturation
density.

The most important achievement of this series of pa-
pers is the demonstration that the optimization problem
can be solved efficiently, and that the solutions can be in-
terpreted physically and used for further applications. As
in I, the computational effort is reasonable and leaves
room for further refinements: depending on the thickness
of the film, one iteration of the complete PPA procedure
takes between 10 and 40 min on a VAX 780 computer.
About ten iterations are needed to reach convergence.

Further application of the methods developed here are
foreseen. One of the most immediate goals is a more gen-
eral impurity theory; ' another field of interest could be
the study of interfaces. It is quite straightforward to
derive an impurity-impurity interaction in the sense of
Ref. 62. But we believe that a quantitative treatment of
the properties of two-dimensional layers of He atoms re-
quires the inclusion of momentum-dependent correlations,
either in the trial wave function, or in a perturbative

'way within the method of correlated basis functions. 2
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