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We present results of variational calculations for the jellium model of metal surfaces. The

ground-state wave function is represented by a product of local one- and two-body functions and a

model Slater function. The correlation functions and the single-particle orbitals entering the Slater

determinant are calculated by an unconstrained optimization procedure. Results for the surface en-

ergy and the work function are somewhat higher than previously published values.

I. INTRODUCTION

Physical quantum systems like atoms, molecules, solids,
solid surfaces, or nuclei generally have density distribu-
tions p&(r), which are spatially strongly inhomogeneous.
Whereas relatively small systems, like atoms, can be
theoretically treated by traditional approximation
methods like the Hartree-Fock equations, the Rayleigh-
Ritz variational method, configuration space interaction,
etc., these methods cannot be applied to systems consist-
ing of an infinite (or very large) number of particles, like
solids. For such systems, density-functional theory'
(DFT) has proved to be a simple and very useful ap-
proach. Most calculations of the electronic structure of
solids, solid surfaces, etc. in the last 10 to 20 years have
used this method.

While density-functional theory is formally exact, for
practical purposes approximations to the exchange-
correlation functional E„[p&(r)] must be made. The
most common is the local-density approximation, which
is based on the assumption that the density p&(r) varies
slowly as a function of r. Several useful corrections have
been developed, but the assumption of a relatively slow
spatial variation of p~(r) underlies all of them. Although
this assumption is not well satisfied in typical physical
systems, results have been rather satisfactory.

In this paper we approach the problem of inhomogene-
ous systems using the (Fermi) hypernetted-chain (FHNC)
equations. Whereas DFT, by construction, is "exact" for
homogeneous systems, FHNC theory is not because it ap-
proximates correlation effects by a two-particle Jastrow
correlation uz(

~
r; —r~

~

) and calculates the energy expec-
tation value in an approximate manner. However, the er-
rors are very small for the homogeneous electron gas. In
contrast to DFT, FHNC theory does not assume slow spa-

tial variation of the one-body density p~(r). One may
therefore expect that, when applied to large, strongly
nonuniform systems, it will lead to results whose accuracy
is comparable to the very high accuracy obtained for
homogeneous systems. In the present paper we show that
the solution of the FHNC equations, including the optim-
ization of the correlation function uz(r&, rz), for inhomo-
geneous systems is, in fact, feasible. Although the compu-
tational effort is very much larger than in a DFT calcula-
tion, we found, for the case of metal surfaces, that all cal-
culations reported in this paper could be carried out in
about 250 h of VAX 780 time.

This paper reports on progress in the application of a
variational theory developed earlier (Refs. 4, 5, and 6,
hereafter called papers I, II, and III, respectively) for in-
homogeneous Bose and Fermi systems. Our previous
work dealt with the theoretical development for both
Bose" and Fermi systems, and numerical application of
the theory to the structure and the collective excitations
of the free surface and films of liquid He. The variation-
al approach to metal surfaces has been pioneered by Woo
and collaborators, ' who start from the same ansatz for
the wave function. Our theory differs from the one by
Woo in that it uses the more common Fermi
hypernetted-chain method for the summation of infinite
classes of diagrams, and involves the optimization of the
single-particle basis and the two-body correlations
through Euler-Lagrange equations. It is one of the most
appealing aspects of the hypernetted-chain theory that
this optimization hardly complicates the calculations.
This paper presents the first application of the Fermi
hypernetted-chain theory for inhomogeneous systems to
the case of the electron gas in a metal surface.

In the simplest model of a metal, one assumes that the
ion lattice is static and may be represented by a distribu-
tion p+(r). The Hamiltonian of the system is then

g2
~,. + —,

' f d ri d rzp+(r&)p+(rz)uc( r~ —rz
~

) —g f d r uc(
~
r; r~ )p+(r—)+ —,

' g uc(
~
r; —r

~
) .
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Here, vc(r):—e /r .The simplest jellium model of a metal
surface assumes that the background charge p+(r) is a
step function.

The variational method for an interacting many-
particle system starts with an explicit ansatz for the
ground-state wave functions, usually of the Feenberg
form'o

~

'I'p) =exp —,
' gu2(r;)

(1.2)

~

C7o) =det
~
y;(r )X(2')

~

(1.3)

The X(i) are the spin eigenfunctions. The spatial single-
particle orbitals P;(rj ) are usually generated by a one-body
equation

(~ is the norm) which is made unique by requiring that
each of the u;(r2, r2, . . . , r;) (i &1) satisfies the cluster
property. '

~

C&p) is the ground-state wave function of a
suitably chosen model system which reflects the statistics
and the symmetnes of the physical system under con-
sideration. In the Fermi system under consideration here,
the "noninteracting" model state

~

C7p) is the determinant
of a set of single-particle orbitals p;(j)—:p;(r )X(i)
(i,j =1,2, . . . , A), i.e.,

classes of reducible diagrams and to produce, thereby, a
very compact cluster expansion.

Section III discusses briefly the equations that must be
solved for the determination of the optimal two-body
correlations, and discusses the FHNC//0 approximation
which we use to connect the pair correlation factor
uz(r2, rz) to the observable one- and two-body densities.
Section IV gives the working formulas used for the energy
expectation value, and presents the essential steps in the
derivation of the one-body Hamiltonian which determines
the single-particle wave functions. Section V presents our
results for the one-body densities, pair-distribution and
correlation functions, energies, surface energies, and work
functions for the jellium models of metal slabs. At this
level, we discuss only briefly ion-lattice corrections since
we feel that the jellium model, while not providing a com-
pletely realistic picture of a real metal, is the most cleanly
defined problem. Section VI reviews our results and pros-
pects for further investigations.

Appendix A presents the formulation of the FHNC//0
equations for the infinite systems, and gives results for the
ground-state energies for the same materials as considered
in our computations for metal films. Appendix B gives
some details on the numerical solution of the Euler-
Lagrange equation for the two-body correlations, and Ap-
pendix C discusses our approximate treatment of the non-
local Pock term.

Ho[A]1t7 (r, ) =&;0;(r,),

where, as in Hartree or Hartree-Fock theory, Hp[gk] is a
functional of the single-particle orbitals. In a sense, the
one-body factor u2(r) is redundant; we have shown in pa-
per III that it can always be absorbed in the model state
by a suitable unitary transformation of the single-particle
basis. But it is very useful to retain this factor and use the
additional flexibility to construct a cluster expansion
which is as compact as possible. An intermediate conse-
quence of this construction is, as we will see, that the
"Hartree" density calculated from the single-particle basis
P;(j) is as close as possible to the true one-body density.

The n-body functions u2(r), u2(r;, rj), . . . are deter-
mined by minimization of the ground-state energy,

5(e, iH ceo) =0 (12 =1,2, . . . ) .
5u„(r2, . . . , r„)

We will be concerned here mostly with n =2; the special
role of the one-body function u 2(r) will be reviewed in
some detail below. In addition, the energy expectation
value can be minimized with respect to the single-particle
orbitals p; (j), which leads to a generalized Hartree-Fock
equation.

Our paper is organized as follows. The next section re-
views the results of paper III to the extent that they are
specific to inhomogeneous systems. Special attention is
paid to the construction of an optimal single-particle basis
{P;(rj)]. We demonstrate the important role of the one-
body function u, (r) which may be used to cancel certain

II. SINGLE-PARTICI, E WAVE FUNCTIONS

The derivation of cluster expansions and partial sum-
mations for the energy expectation value of the Hamil-
tonian (1.1),

Hpp ——( 4o
i
H

i

%'p ), (2. 1)

with respect to the wave function (1.2) is most convenient-
ly performed using a graphical representation. In paper
III, we generalized the diagrammatic methods"' used in
the FHNC theory of bulk quantum liquids to formulate
the Euler Lagrange equations for the optimal two-body
correlations uz(r;, rJ), to determine the most convenient
choice of the one-body function u, (r), and to derive a
generalized Hartree-Fock equation for the single-particle
orbitals. This section and the next one are devoted to a
brief review of these formal developments.

In the absence of a one-body function u2(r), the only
reference to the model Slater function is through the one-
body density matrix

pF(r, r') = g n (k)yk(r)yk(r') . (2.2)

it 2 (r) =exp[u 2 (r) ]—1 (2.3)

and a generalized one-body density matrix

We have abbreviated the single-particle orbitals P;(r)X(i)
by their labels i; n (k) (0, 1) is the occupation number of
the kth orbital. In the presence of a one-body function,
one defines
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p, (u,
I
r, r') =—[I+h t(r)]' pt(r, r') ——[p, eh, s pt](r, r')+ [pt eh t s pt s h t s p, ](r,r') — . [I+h t(r')]' (2.4)

where v is the degeneracy of the single-particle states. For the electrons under consideration here, v=2.
We have introduced here a shorthand natation for convolution products of two-point functions. For a pair of two-

point functions A (r„rz) and 8(r&, rz) we define

[A *8](rt, rz) —= f d'r, A (r&, r3)& (r3, rz) . (2.5)

Functions of one variable are interpreted as diagonal, i.e., h t (r) =—h t (r)5(r —r'). Note that, for u, (r) =0,
pt (0

I
r, r') =pt (r, r'). It was shown in paper III that the construction pt (u t I

r, r') has the spectral representation

pt(u) I
r, r')= g n(i)1i,*(u)

I r)p;(u)
I

r'), (2.6)

where the g;(u t I
r) are a set of single-particle wave functions, i.e., pt(u ~ I

r, r ) is, in fact, for all u &(r) the density matrix
derived from a Slater determinant of single-particle orbitals g;(u t I

r).
Cluster contributions to the "generating functional"

6 [u 1 uz] =»&@o
I

exp 'X u ~(r; )+ 2 uz(ri ri )
1 (J

the one- and two-body densities

f d "z f d "3 f d'r&
I
+o(rt rz

pi(rt)=A 2f d rt f d rz ' ' ' f d rw
I

Po(rt rz

and

f d r3 f d r4 f d rg I%'o(rt, rz, . . . , rg)
I

pz(rt, rz) =A (A —1) 2f d r) f d rz ' f d rg Ilo(rt rz, . . . , rg)I

(2.7)

(2.8)

(2.9)

and the two-body distribution function

pz(rt r»
pt(r))pt(rz)

(2.10)

are most conveniently represented as diagrams using the
following graphical elements.

(i) Small open circles ("external" or "reference" points)
represent the coordinates of particles. Solid circles
("internal" or "field" points) involve an integration over
the coordinate space of that particle and a spin sum. (We
deviate here from the usual convention which includes a
density factor. )

(ii) Dashed lines ("correlation lines" ) between two cir-
cles i and j represent dynamical correlations

hz(r;, rJ)=exp[uz(r;, rj)]—1 .

(iii) Solid, ariented lines from point i to point j
represent dressed one-body density matrices ("exchange
lines" ) pt(ut I r;,ri).

The expansion of G in terms of correlation functions
and exchange functions (one-body density matrices) is
represented by the set of all topologically distinct connect-
ed diagrams without external points constructed accord-
ing to the following rules:

(iv) Each n-body diagram (i.e., a diagram containing n
points) has a counting factor 1/n!.

(v) Each point is attached to at least one correlation line
hz(r;, rj). Two different points may be connected by at
most one correlation factor.

(vi) Each point is attached to exactly one incoming and
one outgoing exchange line.

(vii) Exchange lines occur always in closed polygons
and carry a factor ( —v)' ", where n is the number of
points connected by the exchange loop.

These rules are closely related to the corresponding
rules for homogeneous Fermi systems. "' The essential
new feature is that the expansion contains reducible dia-
grams. (A diagram is called reducible, if, when cut at one
point, it divides into two separate subdiagrams, one of
which is not connected to any of the external points. )

Otherwise, the same topological rules apply. In the case
of the homogeneous system, the reducible diagrams cancel
due to momentum conservation.

Figure 1 shows the diagrammatic representation of
some of the simplest contributions to the generating func-
tional G. Translating the graphical language into an alge-
braic form, the first diagram shown in Fig. 1 is

1

2 2

2

FIG. l. Graphical representation of the first few terms of the
cluster expansion of the generating functional G. Note that the
directed line represents the function p~(u & I

r;, rj).
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b, Gz" f d r]d rzp](u] lr], r])

&& Iexp[uz(r], rz)] —1Ip](u] I rz, rz), (2.11)

whereas the second diagrams is

&Gz ' ————f d'r]d'rzp](u]
I
r],rz)

X Iexp[uz(r], rz)] —1Ip](u] I rz, r]) .

1
+

2

(2.12)

From the generating functional G, one can conveniently
derive expressions for the one- and two-body densities by
functional variation with respect to the one-body function
u](r):

FIG. 2. Graphical representation of the first few terms of the
cluster expansion of the one-body density.

F5p](u]
I
r] rz) ] F= —,p](u]

I
r],rz)[5(r] —r)+5(r —rz)]

5u ] (r)
66 =p](r) (2.13) 1 F Fp](u] r] r)p](u]

I
r rz) (2.15)

5G
=pz(r], rz) —p](r])p](rz) .

5u] r] 5u] rz
(2.14)

We have to keep the dependence of p](u]
I
r, r') on

u ] (r) in mind when we calculate distribution functions by
the functional variations (2.13) and (2.14); i.e., we must
observe [cf. Eq. (2.4)] that

Using the construction (2.13)—(2.15), one finds that (a)
the one-body density is represented by the sum of all dia-
grams having one "external" point, and (b) the two-body
density is represented by the sum of all diagrams having
two "external" points. The diagrammatic representation
of the first few diagrams contributing to the one-body
density is shown in Fig. 2. The first three terms in the ex-
pansion have the algebraic form

(~p])o"(r])=p](u]
I
r] r]»

(bp])']"(r])=p](u]
I
r],r]) f d rzIexp[uz(r], rz)] —1Ip](u]

I
rz, rz),

(bp])I '(r])= f d rzd r3p](u] r],rz)p](u] lrz, r])Iexp[uz(rz, r3)] —1 jp](u] lr3, 13) .

(2.16)

(2.17)

(2.18)

Attention is now directed to the special set of corrections
to the one-body density beyond the Hartree-Fock approxi-
mation (first diagram of Fig. 2) that contains one factor
p](u]

I
r, r). Examples of such structures are the second,

sixth, eighth, and the tenth diagram shown in Fig. 2. We
write the sum of all these diagrams as

p](u]
I
r, r)Iexp[y(r)] —1I .

The structures, such as shown in Fig. 3, contributing to
'the factor Iexp[y(r)] —1I, also occur in other diagrams,

e.g., diagrams 3, 7, 9, and 11 of Fig. 2. These diagrams
are called "1reducible. " -Figure 4(a) shows a d-reducible
diagram, Fig. 4(b) a reducible (but not d-reducible) dia-
gram, both contributing to the two-body density. The oc-
currence of d-reducible diagrams along any exchange path
suggests the introduction of a dressed exchange function
p](u]+y

I
r, r'), which sums all these diagrams. Exam-

ples of diagrams included in the dressed exchange func-
tion are shown in Fig. 5. The dressing procedure is analo-
gous to the one performed in the derivation of p](u]

I
r, r')

in Eq. (2.4). The algebraic definition of p](u]+y I
r, r ) is

1——0
2

FIG. 3. Graphical representation of the first few contribu-
tions to exp[y(r)] —1.

(a)
FIG. 4. Two contributions to the pair correlation function

g (r~, r2). Diagram (a) is "d-reducible", ' diagram (b) is not.
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p&(u&+y lr, r')=[I+br(r)]' p~(u =0lr, r') ——[p&(u =0)ehrep&(u =0)](r,r')+ [1+h (r )]' 2, (2.19)

with

h&(r)—:exp[u~(r)+y(r)] —1:—exp[ur(r)] —1 . (2.20)

One may now reformulate the cluster-expansions for
the generating functional and the one- and two-body den-
sities in terms of this new, generalized density matrix.
The modified diagrammatic rules are the following:

(iii) Solid, oriented lines from point i to point j
represent one-body density matrices ("exchange lines" )

p, (ut+y lrg, rj).
(vii) No d-reducible diagrams occur.
For given functions u~(r), u2(r;, ri), the dressed ex-

change line must still be calculated, but the task is consid-
erably simplified by the optimal choice of the single-
particle basis: We have shown in paper III that the op-
timal single-particle basis is generated by the generalized
Hartree-Fock equation

V'+U, „,(r) P;(r)

2

(ETJF)2 ='—(1) ~ 3 3 F«2P$(r2 r2)
Smv

X jexp[u2(rq, r2)] —1I

XV~pf(r~, rr) . (2.26)

This choice of the single-particle states leads to optimal
one- and two-body functions, which satisfy the relation

u ) '(r)+y[u )~', u2"'](r) =0 . (2.27)

The determination of the single-particle states through
Eq. (2.21) not only gives the lowest energy that can be ob-
tained in the space of all correlated wave functions of the
form (1.2), it also leads to the most compact cluster ex-
pansions in the sense that all d-reducible diagrams vanish.
We assume from now on that we have chosen this basis,
and omit all further reference to u&(r) and y(r), i.e., we
write

&[E2+TJF]+ d r, F p;(r&)=e;p;(r),
5p&(u &

——0
l
r, r&)

(2.21) p, (u r~' ——0
l
r~, r2) =

p& (r&, r2) .

with the Jackson-Feenberg kinetic-energy correction

g2
tgp(r), r2) = — [D(1)+D(2)]u2(r(, r2),

Sm

D(i)= V, p,
—(r;) V, ,

1

p((r;)

and

2

JF d r VFp, (r) .
8m

(2.23)

(2.24)

(2.25)

In Eq. (2.25), the operator VF differentiates in a graphical
representation of the one-body density only the exchange
functions attached to point r. For example, the second di-
agram shown in Fig. 2 contributes a term

1+—
2

FIG. 5. Examples of the first diagrams summed in

p&(u & +y l r;, rj ). Note that the directed line represents the func-
tion p, (u&

l
r;, r, ).

where

E,= —,
' J d'rl Id r2p2(rl, r2)[Uc(lri —r2l)+t&F(rl r2)]

(2.22)

The one-body density in this basis is still not identical
with the Hartree-Pock density p~(r, r)=p~(ur=0

l
r, r),

but many diagrams have been eliminated, which we would
otherwise need to calculate. The elimination of these dia-
grams is, for optimized pair correlation functions, not only
a matter of convenience: The sum of all d-reducible dia-

grams diverges for the long-ranged optimal correlation
functions. The correct way to regularize this divergence
is to first take the zero-momentum limit, and then go to
an infinite box size. The optimal choice of the single-

particle states makes such a procedure unnecessary, but it
will be needed if the optimal correlations calculated here
are to be used in a more accurate Monte Carlo evaluation
of the energy.

The remaining diagrams contributing to the one-body
density (the same sets appear also as reducible diagrams
contributing to the pair-distribution function) are of a
quite different nature and must be kept together with
correction terms to the particle-hole propagators.

III. TWO-BODY CORRELATIONS

The next step in the development of the theory is the
calculation of distribution functions and the optimization
of the two-body correlations. We have restricted ourselves

- in paper III to the simplest version of the FHNC theory
of Ref. 9 (called FHNC//0), which sums ring and ladder
diagrams, but omits corrections to the particle-hole propa-
gators. The approximation works reasonably well9 for
liquid He. Appendix A describes the implementation of
the method for the bulk electron gas, we see there that the
approximation is also quite satisfactory.

The FHNC//0 equations derived in paper III give a re-
lation between the pair correlation function u2(r~, r2), the
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static form factor of the model system

I pi(ri rz)
I

'
SF(ri, rz) =5(r, —rz) ——

[pi(ri, ri) i(rz, rz)]'" (3.1)

Ndd(rl r2) [Xdd+SF+~dd](rl r2) ~ (3.3)

Here we have introduced for any two-point function
A (ri, rz) the abbreviation

~ «1 rz) =[pi(ri)]'"~ (ri, rz)[pi(rz)]'", (3.4)

and the sets of "non-nodal" and "nodal" dd diagrams
Xdd(ri, rz) and Ndd(ri, rz), respectively:

Xdd (ri, rz) =exp[it 2 (ri, rz)+ Ndd (ri, rz) ]—1 —
Ndd (ri, rz),

(3.2)

(3.7)—Xdd +Hi eXdd](ri, rz) =2Vp h(ri, rz) .

SF in Eq. (3.7) is the inverse of SF in the sense of the
convolution product (2.5), and

1 1H]=- , /z Vpi(r) V, . (3.8)
(r)]1/2 [ (r)]1/2

S(ri rz) =SF(ri rz)+[SFel dd @SF](ri,rz) . (3.6)

The equations reduce to the Bose HNC equations for
SF(ri, rz) =5(ri —rz). Using the FHNC//0 approxima-
tion (3.1)—(3.6), we have derived in paper III the Euler-
Lagrange equation for the two-body quantities. Our for-
mulation of the equation is the generalization of the corre-
sponding equation for Bose systems derived in paper I:
After some lengthy algebra one arrives at the following
final form of the Fermion Euler-Lagrange equation:

—[SF +Hi eXdd+Xdd @Hi eSF
—j.

~dd( 1 r2) =Xdd(rl r2)+Ndd(r1 r2) . (3.5)

In the same approximation, the static form factor of the
interacting system is

The particle-hole interaction V~ h(ri, rz) can be expressed
in terms of the bare two-body interaction uc(ri —rz) and
the compound-diagrammatic quantities Xdd(r„rz),
Ndd(ri, rz), and I'dd(ri, rz) introduced above:

Vp h(ri, rz) =[pi(ri)pi(rz)]' [1+1dd(ri, rz)]uc(
I
ri —rz

I
)

2

+ I I
V,,[1+I dd(ri, rz)]'

I + I V, [1+1dd(r„rz)]'

Equations (3.7) a g
equation (3.3), a closed set of equations for the determina-

tion of the required two-body quantities from the bare

two-body potential uc(
I
ri —rz

I
) and a given static form

factor SF(ri, rz) for the model system. These may be

solved numerically by a straightforward iteration; we

describe the procedure in detail in Sec. V. We will refer to
Eq. (3.7) as to the "paired-phonon-analysis" (PPA) equa-

tion since it is the generalization of the Bose paired-

phonon-analysis equation originally derived by Campbe11

and Feenberg' for homogeneous Bose systems and ex-

tended by us to inhomogeneous Bose and Fermi systems.

where

is the kinetic energy,

E„=f d ri f d rz[p, (r, ) —p+(r, )]

&& [pi(rz) —p+(rz)]uc(
I
ri —r2

I
)

,' I dd(ri, rz)[—Ndd+Hi+SF '+SF'*Hi+Ndd+Xdd eH1 eXdd](ri, rz) .

nd (3.9) form, to ether with the chain E = TF +Ebs +E~ +E~

(3.9)

(4.1)

(4.2)

(4.3)

IV. ENERGY CALCULATION
AND ONE-BODY POTENTIALS

We present j.n this section the manipulations that are

necessary to represent the ground-state energy and the
Hartree-Fock potentials needed in Eq. (2.21) in a form
that is convenient for further applications. The total ener-

gy in the FHNC approximation used in this paper has the
orm

is the kinetic energy

E = —fd ri f d'rz[pi(ri)pi(rz)]'

x [sF(ri, rz) —5(ri —rz)]uc(
I
ri —r,

I
)

(4.4)

is the exchange energy, all calculated in the optimized
single-particle basis IP; I, and

(4.5)

(4.6)

E,= f d ri f d rzI[pz(ri, rz) —pz(ri, rz)luc(
I
ri rz

I )+[pz(ri rz) pi(ri)pi(rz)]tiF(ri, rz)I+Tip

is the correlation energy [cf. Eq. (2.23) for the definition of tiF]. pz(ri, rz) is the two-body density of the model system

p2(ri rz) pl (ri )pi (rz) ——
I pi (ri, rz)

I

F F F 1 F 2

In the FHNC//0 approximation used here, the term T2F has the simple form
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Tip — d rid rz[pz(ri rz) —pi(ri)pi(rz)l[D ( 1 )+D (2)]I'dd(ri, r, )
16m

To isolate an "RPA energy, "we write in ti~, Eq. (2.23),

uz(ri, rz) =in[1+ I dd(ri, rz)] I d—d(ri, rz)+Xdd(ri, rz) .

At the same time we add and subtract the particle-hole interaction and represent the correlation energy as

Ec ~Epot +~TJF +ERPA

with

~Epot z f d r I f d rz[pz(rl rz) pz(rl rz)][Uc(
I

r& —rz ) Vp-h(rl rz)]

TJp p f d r, f d rz[pz(ri, rz) —pi(ri)pi(rz)] [D ( 1 )+D (2)]Iln[ 1 +I dd(ri, rz)] —I dd(r„rz) I8m

(4.7)

(4.&)

(4.9)

(4.10)

(4.11)

ERpp, = —, f d'ri f d'rz [pz(ri, rz) —pz(ri, rz)]Vugh(ri, rz) —[pz(ri, rz) —pi(ri)pi(rz)] [D(1)+D(2)]Xdd(ri, rz)
8m

+[Pz(ri rz) Pi( &)P&( z)] [D( )+D(2)]~dd(r& rz)
8m

(4.12)

The last term (4.12) allows for a number of significant
simplifications in which the Euler-Lagrange (PPA) equa-
tion (3.7) is used to eliminate V~ h(ri, rz). After a few ele-
mentary manipulations we arrive at the more convenient
and compact form

Eap~ = ——,
' f d r[SI; eXdd +Hi +Xdd](r, r) (4.13)

In the high-density limit we can identify the particle-
hole interaction, V~h(r;, r~) with the bare Coulomb in-
teraction, Uc(

I
r; —rJ I

), so that by Eq. (4.10), AE~„=O.
Furthermore, we can neglect

I

I dd(ri, rz)
I

in comparison
with

I

I dd(ri, rz) I, so that, by Eq. (4.11), ETJp —0 Tllus,
the correlation energy E„Eq. (4.9) is entirely given by
ERp~. Equation (4.12) is the generalization of a similar
expression given in Ref. 14 for the homogeneous electron
gas.

Some care must be exercised in the choice of approxi-
mations for the distinct contributions to the correlation
energy. A fully consistent implementation of the optim-
ized FHNC equation requires summation or at least ade-
quate estimates of three- and four-point functions, and in-
volves a coupled system of eight integral equations. Here
we do not attempt such an effort. As a consequence one
must either live with slight inconsistencies between
coordinate-space and momentum-space representations of
the same quantity, or one must sacrifice exact properties
either in coordinate or in momentum space. The issue has
been discussed in detail in Ref. 14. The two energy con-
tributions ERPA and ATJF are typical examples: ERPA
sums the long-ranged quantities; it is therefore important
to use an approximation that is exact in momentum space
in the long-wavelength limit. This is clearly

pz(ri, rz) = [pi(ri)]' [S~e I dd +S~](r„rz)[pi(rz)]'~

+pz(ri, rz) .F

On the other hand, the term

in[1+I'dd(ri, rz)] —I dd(ri, rz)

is short ranged; in fact, it is very large for small distances
I
ri —rz

I
. Therefore, it is important to keep the common

factor 1+I dd(ri, rz) which occurs in the FHNC expres-
sion for the two-body density, in order to screen the
short-range structure. The simplest way to do this is to
keep just the term 1+I dd(ri, rz) in the pair-distribution
function occurring in ATJF. This leads to the compact
representation

2

ATJp ——— d r, d rz pi(r&)pi(rz)I dd(ri, rz)
4m

&& I I
Vi[1+I dd(ri, rz)]'

+
I
Vz[1+I dd(rl rz)]'"

I

'I

(4.14)

The approximation obtained in this way for the
ground-state energy is not quite as good as can be ob-
tained in a more elaborate' FHNC/C calculation, but it
is reasonable and probably sufficient for our further pur-
poses. Appendix A gives the bulk limit of the Euler-
Lagrange equations and the approximation for the energy
derived above, and a comparison of 'energies for the bulk
electron liquid between Green's-function Monte Carlo
(GFMC), RPA, the best FHNC calculation, and the
present approximation.

To conclude the formal parts of this work, we now
derive the expressions for the Hartree and Fock terms
needed in the one-body equation (2.21). It is most con-
venient to use diagrammatic arguments. As in the deriva-
tion of the two-body equations (3.7) and (3.9), we start
from the energy expectation value [(4.1)—(4.7)]. The
functional derivative of the ground-state density with
respect to pi(ri, rz) consists of two parts, (a) the Hartree
term, which combines all contributions in which the vari-
ational derivative (2.21) is carried out with respect to a de-
generate exchange loop pi (r, r), and (b) the Fock term con-
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taining the variational derivatives of diagrams having
nondegenerate exchange lines pi(r„rz). The algebraic ma-
nipulations are somewhat tedious and will be sketched
here only briefly. Consistent with the present level of
FHNC approximation, we identify pl(r) =pl(r, r).

The variation of the Coulomb energy with respect to
the one-body density gives rise to the familiar Hartree
term of the Hartree-Fock approximation:

(O)
VH —= = d rlfpi(ri) —p+(ri)luc(

I
r —rl I

)
5p(r)

from the following: (a) The derivative of the expression
(4.5) with respect to the one-body density appearing as a
factor of uc(

I
rl —rz

I
). Note that this term contains only

diagrammatic contributions to the two-body density,
where a degenerate exchange line is attached to the exter-
nal point. Consequently, there is no contribution from
TzF to this term, which can be written in the form

VIr' '(r}= f d rl I d(r, rl)uip(r, rl)pl(rl) (4.16)

with

(4.15) I'd(ri, rz):—[I eSF](rl, rz) . (4.17)

The variational derivative of the correlation energy E,
gives three structurally different contributions, arising

(b) The second term arises from the density derivative of
rdd(r;, rj ). Using diagrammatic arguments, one arrives at

VH '(r)= —,
' f d rl f d rz I d(r, rl)pl(rl)Xdd(rl, rz)pl(rz)l d(r, rz)

fi f d rl f d rzI dd(r, rl)I[D(1)+D(2)][pz(rl —rz) —pi(rl)pi(rz)]II'dd(r rz) .
16m

(4.18)

(c) Finally, the third term comes from the appearance of the one-body density in the operator D(l) in tiF and TJF.
These terms can be combined into

VH '(r) = f d r, V,([pz(r, rl) —pl(r)pl(rl)]. V, I in[1+ I dd(r, rl)] —Ndd(r, rl) I )
8mp, (r)

'r$, p2 r, r] —p] r p$ r] . ,~gg *,r] (4.19)
8m pl(r)

In the further algebraic manipulations we use repeatedly the Euler-Lagrange equation. Also, arguments corresponding
to the ones discussed in the derivation of ELF [cf. Eq. (4.14)] are used to bring the generalized (local) Hartree potential
into its final form

4

VH(r)= g V~'(r),
i=0

where V~ ' is the bare Hartree potential given in Eq. (4.15), and

vII" ——f d'rl I d(r, ri)uc(
I

r —rl
I )pl(rl)

~H d "1
I
V. Xdd(r rl)

I
'pl(ri»

Sm r&

fi2
VH'= d rl V,Id(r, rl).V+dd(r, rl)p, (r, ),

Sm

$2
VH'= —" f d'r, rdd(r rl) I I V.[1+Idd(r rl)]'"

I

'+
I V. [&+I dd«rl)l'"

I
']pl«l) .

2pl
r ~ r&

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

The derivations of the generalized Fock term are, com-
pared to the Hartree term, relatively simple. Since we
have retained only the simplest exchange loops which con-
nect no more than two points, the Fock term has the form

parallel exactly the derivation of the single-particle spec-
trum for the infinite system' ' and need not be repeated
here. The final form is simple compared with the result
of Refs. 15 and 16 since no "cc diagrams" are summed.
Qne finds

~[E2+TJF ] 1
F VF(rl r2)pi(rl r2)

5PI (rl r2) F k

(4.25)
VF(rl r2) I dd(rl r2) 4 [Hl I dd+ I ddQHl ](rl, rz),

(4.26)
where the subscript Fock indicates that the variational
derivative is carried out only with respect to nondegen-
erate exchange loops. The derivation of a closed-form ex-
pression for VF(rl, rz) is again most conveniently per-
formed using diagrammatic arguments. The arguments

where the second term originates from the variation of
TJF. [See paper III for the diagrammatic definition of
I «(rl, rz). ] Using the Euler-Lagrange and the FHNC
equations, expression (4.26) can be simplified to
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VF(r&, rz)= —, [—SF eH&eI ~+I ddeH, +SF '](r&, rz) .

(4.27)

This derivation completes the formal aspects of our
work. It is worth noting that the Fock potential Vz(r&, r2)
is short ranged due to the inclusion of the RPA screening,
which is implicit in the summation of the chain diagrams
in the FHNC theory. With the generalized Hartree poten-
tial [(4.19)—(4.23)] and the corresponding Fock term
(4.26), the equation for the optimized single-particle basis
1s

V + U,„,(r)+ VH(r) P;(r)2'

due to our geometry, the effective one-body potential de-
pends only on z, and the single-particle wave functions
have the form

y. (r)=y (z)e (5.5)

The general derivation of the procedure may be found in
Ref. 17, details of the implementation for our geometry
will be given-in Appendix C. Additional credibility to
this approximate treatment of the Fock term will be
drawn a posteriori from the fact that the nonlocalities con-
tribute only a relatively small correction to the total one-
body potential, i.e., the local Hartree-potential VH(z) and
the effective potential U(z) differ only by about 10%.

The equations were solved as follows: Let

——J d r' VF(r, r')p&(r, r')P;(r') =e;P;(r) . (4.28) U(z) = VH '(z)+ b, VH(z)+ VTs(z)

with

(5.6)

V. JELLIUM MODEL OF METAL SLABS
4

b, VH(z)= g VH'(z) . (5.7)

A. Numerical model and approximations

y. (r) ~. (z)e "II qll (5.2)

where r~~ and q~~ are the coordinate and wave number
parallel to the surface. An unpleasant feature of the full
Hartree-Fock problem is that the perpendicular com-
ponent y; z (z) of the wave function depends explicitly on

the wave number q~~ parallel to the surface. The need of
diagonalizing the Hartree-Fock equation separately for all
of these wave numbers would not only increase the com-
putational effort substantially, but also require the numer-
ical computation of all phase-space integrals to fill the
Fermi sea. We felt that this would lead to unnecessary
additional numerical uncertainties. Therefore we have
resorted to an approximate treatment of the Fock term,
originally suggested by Talman and Shadwick. ' This
procedure generates approximate single-particle states by
a local one-body equation

In this work we have chosen to consider metal slabs
which are translationally invariant in the x-y plane and
symmetric about z =0. The jellium model takes for the
positive-charge background

po if —d/2&z &d/2,
p+(z) = . 5.10, elsewhere .

The solution of the full generalized Hartree-Fock equation
(2.21) would be very complicated: The single-particle
wave functions are of the form

VTs(z) is the correction to the one-body potential induced
by the exchange terms.

Starting at r, =1 from a reasonable guess' for the one-
body density, we set b, VH(z)= VTs(z)=0 and solve the
Hartree equation (5.3). The so-called imaginary timestep
method' proved to be an efficient and stable algorithm
for this purpose. Using V~q(r&, r2)=vc( r& —r2

~

) as an
initial guess, we then solve the PPA equation (3.7). The
solution of this equation allows us to compute a new esti-
mate for the particle-hole interaction V~h(r&, r2) [cf. Eq.
(39)], the components VH' (i = 1,2, 3,4) [Eqs.
(4.21)—(4.24)], and the Fock term (4.27). The correction
VTs(z) can then be calculated by the averaging procedure
described in Appendix C. Using b, VH(z)+ VTs(z) as a
fixed external potential, the Hartree equation (5.2) is
solved again and the procedure is repeated until conver-
gence is reached. This first solution can then be taken as
an initial estimate for solutions at different r, values and
film sizes d. Since we have decreased the density in rath-
er small steps of r„ the convergence is excellent; stable en-

ergies are typically reached within three to six iterations.
For comparison, we have used the same method to

solve the uncorrelated Hartree-Fock equations, i.e., the
corresponding one-body equations with VH' ——0 for
1 &i &4 and

VF(r& r2)="c( Ir~ —r2
~

) .

Calculations were performed for a number of metals of
physical interest in the range 2.07 & r, & 5.23: Al, Pb, Mg,
Li, Na, K, and Rb.

V + U(r) P;(r) =e;P(r),
2&l

(5.3)
B. Energies, densities, and one-body potentials

where the effective one-body potential is calculated by
minimization of the total ground-state energy, i.e., by
solving the equation

5E[U]
5U(r)

The simplification has the immediate consequence that,

We have solved the coupled FHNC —Euler-
Lagrange —Hartree-Fock equations for each of the above-
mentioned materials for slab dimensions d =Saor„
10aor„12aor„and 14aor, (ao is the Bohr radius). From
the ground-state energy as a function of the slab width d
and hence, the particle number n, we can obtain by extra-
polation
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TABLE I. Ground-state energies for different slab dimension d for a variety of metals. The d = tx) results are extrapolated from
the finite slab results as described in the text. All energies are given in rydbergs. The second entry in each row is the corresponding
correlation energy E,. The numbers in parentheses in the last column are results from the bulk FHNC//0 calculation described in
Appendix A.

d (r,ao)

2.07

2.30

2.66

3.28

3.99

4.96

5.23

Metal

Al

Pb

Li

—0.009 25
—0.075 19
—0.055 84
—0.070 87
—0.09906
—0.065 36
—0.13124
—0.057 85
—0.140 77
—0.051 31
—0.13786
—0.044 56
—0.135 76
—0.042 96

10

—0.008 93
—0.076 59
—0.056 01
—0.072 33
—0.099 71
—0.066 66
—0.13223
—0.058 89
—0.141 83
—0.052 08
—0.138 90
—0.045 25
—0.136 83
—0.043 68

—0.008 79
—0.077 35
—0.056 22
—0.073 07
—0.10023
—0.067 39
—0.132 95
—0.059 63
—0.142 61
—0.052 88
—0.13964
—0.045 92
—0.137 32
—0.044 17

14

—0.008 69
—0.077 84
—0.056 38
—0.073 55
—0.10060
—0.067 84
—0.13346
—0.06005
—0.143 15
—0.053 27
—0.140 11
—0.046 25
—0.13749
—0.04444

—0.0079 ( —0.0070)
—0.0814 (—0.0801)
—0.0571 (—0.0563)
—0.0771 (—0.0757)
—0.1027 {—0.1021)
—0.0711 (—0.0699)
—0.1364 (—0.1360)
—0.0630 (—0.0620)
—0.1463 (—0.1459)
—0.0556 {—0.0551)
—0.1431 (—0.1409)
—0.0486 (—0.0480)
—0.1398 ( —0.1407)
—0.0464 (—0.0463)

2o„=E[n]—E„n
both a surface energy o.„and a bulk energy E . The
asymptotic energy E should agree with the energy ob-
tained in an independent calculation of the homogeneous
electron gas. This is an important test for the numerical
accuracy since calculations for the bulk system can be
done on a much finer mesh.

Table I shows our energies per particle for the above-
mentioned materials and slab dimensions. The asymptot-
ic energy E has been obtained by a linear fit of these
data. Also shown are correlation energies E„cf.Eq.
(4.9), the extrapolated values E and the corresponding
bulk energies obtained in the calculation described in Ap-
pendix A. We see that the extrapolated and the calculated
bulk energies agree within about 1%, which lends credi-
bility to our numerical treatment. (The case of Al is ex-
ceptional since the total energy results from large cancel-
lations between kinetic, Coulomb, exchange, and correla-
tion energy. A comparison of the extrapolated and the
bulk correlation energy gives a more realistic estimate of
the numerical accuracy. )

Slight deviations from a linear behavior of the ground-
state energy are caused by the fact that the number of oc-
cupied orbitals y;(z) changes. This induces an uncertainty
in the surface energy. We have estimated this uncertainty
by calculating the surface energy independently for each
slab dimension d from the extrapolated ground-state ener-

gy E . An error estimate is then obtained from

1.25-

1.00-,:—.:—
,:::.:,,:, ,

c, 0.75-::::.:

0.50-:::::::

0.00 "'
—1.0

Z

1.0
(a r)

3.0

of the single-particle basis and the one-body function
u&(r). The density profiles are shown, for the slabs of
14aor, thickness, in Fig. 6. The density profiles in the vi-
cinity of the jellium edge do not change noticeably with
the thickness of the slab.

Figure 7(a) shows, for potassium ( r, =4.96), a compar-
ison of our density profile with the one obtained by Lang
and Kohn at r, =5. We find that in our calculation the
first peak of the density is somewhat less pronounced than

ho„= —,
' I([E(n) E„n] )I'~—(5.9)

Consistent with our approximation of the FHNC equa-
tions, the one-body density p~(r) is simply the Hartree
density derived from the single-particle wave functions
P;(rj). While the identification is not exact, we have el-
iminated large classes of corrections by the optimal choice

FIG. 6. The one-body density p&(r) is shown for Rb, K, Na,
Li, Mg, Pb, and Al. The density with the largest peak corre-
sponds to Rb, the one with the smallest peak to Al. The shaded
area is the jellium background. All densities are from calcula-
tions for the slab dimension d =14aor, . Coordinates are chosen
such that z =0 at the jellium edge.
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1.25 0,0

r = 4.96

—0.5-

—1 0-

0.25-::..::.:.:.:..'. .-::;:.::.:.:..::..::.:..:.::..'

0.00

1,25

—1.0 1.0
(a r)

r = 2.07

3.0

2.5 5.0
z (a,r)

7.5 10.0

FIG. 8. The composition of the full one-body potential U(z),
Eq. (5.6) (solid line), from the electrostatic potential V~'(z)
(shart-dashed line), generalized Hartree-potential VH(z), Eq.
(4.20) (long-dashed line), is shown for aluminum. The jellium
edge is at z =7aor, .

~ 0.75-:::::::::

0.50-:::::::::

0.00 —1.0 1.0
(a,r )

3.0

FIG. 7. (a) Our one-body density for K ( r, =4.96) (solid line)
is compared with the Lang-Kohn result for r, =5 (dashed line).
The shaded area is the jellium background. (b) Our one-body
density for Al (r, =2.07) (solid line) is compared with the
Lang-Kohn result for r, =2 (dashed line). The shaded area is
the jellium background.

for the other materials.
The comparison of the full one-body potential with the

one obtained in Hartree-Fock approximation is quite in-
teresting (Fig. 10). Due to the absence of the RPA screen-
ing, the induced term VTs(z) is much larger, whereas the
Hartree term remains essentially the same, and the total
optimized one-body potential changes very little.

These jellium-model surface energies as calculated by
the extrapolation outlined above are shown in Table II.
We show also the results obtained by Lang and Kohn
and by Sun et al. Other calculations are worth noting:
the work of Monnier and Perdew ' and Sahni et al. We
will restrict our comparisons to the work of Refs. 8 and
20: The Lang-Kohn theory is the first calculation of this
kind, and the work of Ref. 8 is most closely related to
ours. We find that our jellium surface energies are, except
for r, =2.07 and r, =2.3, somewhat above the results of
Refs. 20 and 8.

0.0

the one found by Lang and Kohn. The difference in the
DF profiles and ours decreases with increasirig density.
At r, =2.07, our density is virtually indistinguishable
from the Lang-Kohn density at r, =2, cf. Fig. 7(b).

Figure 8 shows, for aluminum, the decomposition of
the one-body potential into the Hartree term VtI'(z) of
Eq. (4.15), the full local-one-body potential VH(z) of Eq.
(4.20), and the local potential correction VTs(z) induced
by the exchange term V~(r&, rz). We see that the pair
correlations have a substantial effect on the local-one-
body potential; the Hartree term is enhanced by about a
factor of 2. On the other hand, the nonlocalities play a
rather small role; they add only a 10% correction to the
local generalized Hartree potential V~(z). Figure 9 shows
these potentials for potassium; the situation is very similar

-0 2-

2.5 5.0
z (a,r)

FIG. 9. Same as Fig. 8 for potassium.
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0.0

—0 5.

TABLE II. Comparison of the surface energies obtained for
the jellium model by Lang and Kohn (Ref. 20), column 3, Sun
et al. (Ref. 9), . column 4, and in the present work in the
jellium-background model (FHNC//0, column 5). All surface
energies are given in ergs/cm . The error estimates are generat-
ed by comparing the surface energy predicted by each individual
calculation when compared with the extrapolated bulk energy
(column 6 in Tables I and II).

—1.0-

2.5 7.5.0 5.0 10.0
z (a,r)

FIG. 10. The one-body potential U(z) in the Hartree-Fock
approximation (solid line) and the electrostatic potential (dashed
line) are shown for aluminum. The jellium edge is at z =7aor, .

rs

2.07
2.30
2.66
3.28
3.99
4.96
5.23

Metal

Al
Pb
Mg
Li
Na
K
Rb

—730
—130

110
210
160
100
85

SF&

102
278
309
363
204

94
76

FHNC//0

—222+5.0
181+6.0
383+3.0
360+1.6
261+1.2
159+0.6
105+3.9

C. Pair distributions and correlation functions

One of the major objectives of our calculations is to obtain information on the importance of density-dependent and
anisotropic correlations. The most obvious quantity to study in this connection is the pair-distribution function g(r, r ).
We have used in this work the expression

p2(r, r') = [1+I dd(r, r')] [p2(r, r')+ [p, (r)p&(r')]' [Sz @I dd +ST I dd
—](r,r') t,

p2(r, r')
g (r, r') =

p, (r)p)(r')

(5.10)

(5.11)

The expression is derived from the. static form factor
S(r,r') [Eq. (3.6)] by adding, after Fourier transform, all
those diagrams that are missing in (3.6) to obtain the com-
mon factor 1+1dd(r, r'), but which would violate the
correct long-wavelength behavior of the static form factor
unless higher-order "elementary" diagrams are inc1ud-

ed 9, 14

The coordinate system in which the anisotropy of the
pair correlation function is minimal is the one where the
center of mass of the two particles is fixed at a certain dis-
tance z, =(z~+z2)/2 from the center of slab, and the
pair correlation function is considered as a function of the
distance rtt of the two particles parallel and

~
z& —z2

~

perpendicular to the surface. In the center of the slab, one
should expect bulk behavior and a comparison of the
pair-distribution function with the corresponding bulk
distribution function gives an estimate for the numerical
accuracy of the calculation. This comparison is shown,
for the Al slab of d =14aor„ in Fig. 11. The agreement
is shown to be excellent, the pair-distribution function is

isotropic within drawing accuracy. The situation for the
other materials is identical.

Anisotropies are to be expected in the vicinity of the
surface. We show in Figs. 12(a)—12(c) the pair-
distribution function for two particles located at about
0.61a0r, inside the jellium edge, on the jellium edge, and
0.61a0r, outside the jellium edge. Comparison is made
with the local-density approximation obtained by interpo-

lation from the bulk electron-gas calculations. We see
that anisotropies can be larger then 10%%uo and the deviation
from the local-density approximation is of the same order
of magnitude. In particular, in the low-density regime,
the local-density approximation fails severely. Our results

1.25

1 00-

N 0.75-
I

N

0.50-
N

0.25.

2.07
z, = 0.10 ar
p(z ) = 1.00 p

0.00
0.0 1.0 2.0 3.0

(a,r )
40 5.0

FIG. 11. The pair-distribution function g (z ~,z&, r
~ ~

) for
aluminum is shown for a pair of particles having the center-of-
mass coordinate z, close to the center of the slab. The values
of the pair-distribution functiori parallel and perpendicular to
the surface are indistinguishable. The circles indicate that the
results from a bulk calculation at the same density.
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E
N

1.25

1 00-

0 75.

0.50-

0.25-

0.00-—
0.0 2.0

r, , )z, —z, f

3.0
(a,r )

4.0

t = 2.07
z = 6.39 ar
p(z ) = 1.00 p

5.0

are very similar for other materials; as another example
we show in Figs. 13(a)—13(c) the corresponding pair-
distribution functions for potassium.

The anisotropy of the pair distribution function is
displayed more clearly in a coordinate system, where one
particle is held fixed. We show in Fig. 14 for aluminum,
a contour plot of the pair-distribution function
g(zt, zz, r~~) for two particles, one of which is held at the
jel1ium edge.

In view of further applications of the optimal correla-
tion functions calculated in our work, for example, in a
more accurate Monte Carlo evaluation of the energy-
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FIG. 12. (a} The pair-distribution function g(z~, z2, r~j) is
shown in aluminum, for a pair of particles having the center-
of-mass coordinate z, close to the jellium edge inside the slab,
as a function of r~~ for

~

z~ —zz
~

=0 (solid line) and as a func-
tion of

~
z& —zz

~

for r~~=0 (dashed line). The local density at
the center of mass is equal to the central density po. The circles
indicate the results from a bulk calculation at the same density
p~(z, ). (b) Same as (a) for a pair of particles having their
center of mass z, on the jeBium edge. (c) Same as (a) for a
pair of particles having their center of mass z, slightly outside
the jellium edge.
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FIG. 13. (a) Same as Fig. 12(a) for potassium. (b) Same as
Fig. 12(b) for potassium. (c) Same as Fig. 12(c) for potassium.
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4.0.
O

O

2.0

g(zi, z, rii)

I

I

I

I

I

r = 2.07
z = 700 or
p(z, ) = 0.41 p,

cal density. We see that the anisotropy and density depen-
dence is less pronounced than for the distribution func-
tions. But the correlation function in the surface deviates
notably from the one in the center of the slab. Whereas
local-density or isotropic approximations for the pair
correlation functions might be considered acceptable, the
assumption of density independence of the correlation
function is certainly not. The situation is very similar for
other values of r,

0.0
2.Q 3.0 4.Q 5.Q 6.Q 7.Q 8.0 9.0 10.0 1 1.0 1 2.0

z, (a,r)

FIG. 14. For an electron located in Al at the jellium edge
{i.e., zq is kept fixed), we show the lines of constant g (z&,z&, I

~~
).

The contours correspond to g(z&, z2, r~t) =0.2,0.3, . . . , 0.9.

expectation value, it is also interesting to study the pair
correlation function

1.25

1.00.

= 4.96

CV
N 0 75.
I

N

5 0.50.
N

0.25-

0.00
0.0 2.0

r, jz, —z, I

4 Q

(a,r )
6.0

FIG. 15. The upper three curves show, for potassium, the
pair correlation function f2(z, m,

~
z& —zz I, r~~ }for a pair of par-

ticles with their center of mass z, in the center of the slab,
parallel (solid line) and perpendicular (dashed line) to the sur-
face. The circles indicate the corresponding bulk correlation
function. The lower three curves show the same comparison for
a pair of particles whose center of mass is on the jellium edge.

f (r~, rz):—exp[uz(r~, r2)] .

We have seen above that both the local-density approxi-
mation and the assumption of isotropy for the pair-
distribution function g(r~, rz) fail in the surface. The ap-
proximations made in earlier variational work on inhomo-
geneous systems have been even more severe: Generally,
the pair correlation function exp[uz(r&, r2)] has been as-
sumed to be a density-independent, isotropic function
throughout the system. These assumptions can be easily
tested within our theory. For given Add(r&, r2) and
I zd(r„r2), we obtain from Eqs. (3.2) and (3.5)

f'«i rz) =[1+1dd(ri r2)] exp[ —&~~(rl r2)] .

We show in Fig. 15, for IC and the slab dimension 14aur„
the pair correlation function f (rt, r2) in the center of the
slab and on the jellium edge. Comparison is made be-
tween the values of this function in different directions,
and the bulk correlation function at the corresponding lo-

D. Remarks on lattice corrections and work functions

The jellium model is an idealized model of a real metal.
As was first studied by Lang and Kohn, there are large
corrections to the surface energy of a metal due to ex-
istence and nonuniformity of the ion-lattice background.
Lang and Kohn have estimated the size of the lattice
corrections by first-order perturbation theory, using aver-
aged pseudopotentials originally suggested by Ashcroft. '

Later improvements of that by Monnier and Perdew and
by Sahni et al. included somewhat better estimates of
the effects of the nonuniform background potential and
the relaxation of the first lattice plane. Monnier and Per-
dew have pointed out that the nonuniform background
potential can cause, especially for lead, significant changes
of the electron density. This makes an estimate of lattice
corrections by first-order perturbation theory question-
able. In fact, the potential correction term 5u(z) is not
small compared with the effective one-body potential
U(z). Monnier and Perdew have therefore included back-
ground effects in a variational, but averaged way. Since
our present approach does not make any assumption on
the form of the background potential, it is easy to imple-
ment a one-dimensional oscillating potential 5u(z) in the
generalized Hartree-Pock equation. (2.21). But it turns out
that the full inclusion of the background potential induces
unrealistically large density fluctuations (up to 25% for'
lead). Therefore, we felt that the question of the nonuni-
formity of the ion background involves considerations
quite distinct from the problem of describing the electrons
adequately and have decided, for the sake of comparison,
but aware of the deficiencies, to use the Lang-Kohn first-
order approximation.

To include the lattice corrections, we follow the route
of Ref. 20, which leads to two correction terms to the sur-
face energy, (a) the classical cleavage energy o,&

and (b)
the energy

5rrz, ——J 5u (z)[p(z) —p+(z) ] (5.13)

caused by the direct modification of the electron density
due to a nonuniform background poteritial 5u (z). The an-
alytic form of the potential correction 5u (z) may be found
in Appendix D of Ref. 20.

The cleaving energy 0.,~
is independent of the electronic

structure of the metal; we can take here the results of Ref.
20 and their extensions by Monnier and Perdew and
Sahni et a/. The correction term oz, caused by the
nonuniform background potential is calculated using the
one-electron density of the jellium model. The decompo-
sition of the total surface energy into the jellium contribu-
tion, the classical cleavage energy, and the background
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TABLE III. Composition of the total surface energies a=0„+50,i+5o~, in the ion-lattice model
into the jellium-model contribution o.„,the classical cleavage energy 5o.,i, and the lattice-correction term
5o~. The values for 5a.,~ were taken from Refs. 20, 22, and 23. All surface energies are given in
ergs/cm~.

2.07
2.30
2.30
2.66
3.28
3.99
4.96
5.23

Metal

Al
Zn
Pb
Mg
Li
Na
K
Rb

Face

(»1)
(0001)
(111)
(0001)
(110)
(110)
(110)
(110)

—222
181
181
383
360
261
159
105

5o.p,

1136
580

1159
296
134
24
12

—1.0

50,i
409
99

397
131
59
33
17
15

1323
860

1737
810
5.53
318
188
119

correction is shown in Table III; a comparison of our re-
sults with those of Refs. 8 and 20 and experimental
work is given in Table IV.

Our surface energies are in all cases higher than the ex-
perimental values, and also higher than all previously
published results. The discrepancy is especially pro-
nounced in lead. We attribute most of this to the missing
relaxation to the nonuniform background. We note also
that the correction 5o~, is a rather sensitive functional of
the one-body density since the net energy correction is to
the cancellation of large positive and negative terms.

As for the lattice corrections, we adopt also for the cal-
culation of the work function the Lang-Kohn procedure. 3

There, the work function is given by

correction term which needs an independent calculation
of the change of the one-body density if one particle is re-
moved. The correction term is relatively small in the
Lang-Kohn work and depends also on details of the
nonuniform background potential. In view of our above
considerations we postpone the study of these corrections
until the background corrections are included in a more
self-consistent way.

The bulk chemical potential can be obtained via Eq.
(5.15) from the bulk correlation energy. Here we have fol-
lowed a procedure adopted by Ceperley, ' who makes a
global Fade approximation to the correlation--energy per
particle as a function of r, :

P =4&„—p —(5@), (5.14)
E, /A =

1+pir, +p2r,
(5.17)

where p is the bulk chemical potential,

d (nE/A)p= (5.15)

This identification is justified if the electrostatic potential
is sufficiently constant inside the slab. (5@) is a lattice

In our case of a slab geometry of finite dimension, we
have

(5.16)

We have adopted the same analytic form for our
FHNC//0 results and calculated the chemical potential
for both the variational Monte Carlo results of Ref. 31
and our bulk FHNC calculation. The Coulomb barrier
can be obtained from the variational calculations for the
inhomogeneous system. Results and a comparison with
the calculations of Refs. 8 and 30 and the experimental
data of Ref. 29 are shown in Table V. Again we see that
the jellium-model work functions are throughout notice-
ably above those of earlier calculations.

TABLE IV. Comparison of the theoretical predictions for the surface energy as given by Lang and
Kohn (LK, Ref. 20), Sun et al. (SWF, Ref. 9), and FHNC//0. The experimental values are minimum

and maximum values found in Refs. 24—29. All energies are given in ergs/cm .

2.07
2.30
2.30
2.66
3.28
3.99
4.96
5.23

Metal

Al
Zn
Pb
Mg
Li
Na
K
Rb

Face

(111)
(0001)
(111}
(0001)
(110)
(110)
(110)
(110)

LK

730
480

1140
546
380
230
140
120

977
547

1118
672
465
264
124
107

FHNC//0

1323
860

1737
810
553
318
188
119

Expt.

965—1170
350—1040
593—690
712—785
470—522
220—275
125—145
95—117
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Expt.SF%'@FHNCPMC PFHNC

TABLE V. Electron-gas chemical potentials obtained from the variational Monte Carlo equation of
state {column 3) and the FHNC//0 equation of state {column 4). Column 5 shows the dipole barrier ob-
tained in our calculation, and column 6 the jellium-model work function. Columns 7 and 8 give the cor-
responding results of Refs. 30 and 9. {The results of Ref. 9 include the lattice correction. } Column 9
quotes the experimental results of Ref. 29. All energies are given in eV.

Metal LK

Al
Zn
Mg
Li
Na
K
Rb

2.07
2.30
2.66
3.28
3.99
4.96
5.23

2.30
0.94

—0.39
—1.52
—2.03
—2.22
—2.23

2.39
1.03

—0.30
—1.42
—1.93
—2.11
—2.11

7.29
5.84
4.08
2.40
1.43
0.72
0.61

4.90
4.81
4.38
3.92
3.36
2.83
2.72

3.87
3.80
3.66
3.37
3.06
2.74
2.63

3.6
3.0
3.0
3.6
2.9
2.7
2.2

4.19
4.33
3.66
3.1

2.7
2.39
2.21

VI. SUMMARY

In this paper we have presented results of what we con-
sider to be at present, the most advanced application of
microscopic many-body theory to large inhomogeneous
systems. It is the first application of the optimized
FHNC theory for an inhomogeneous problem. The
theory contains no adjustable parameters; the only ap-
proximations are the form of the correlated wave function
and the level of FHNC approximation. The correlated
wave function (1.1) has proved ' to be an excellent choice
for homogeneous electronic systems. The FHNC//0 ap-
proximation causes some additional uncertainties, but it is
also quite satisfactory for the bulk electron gas. The use
of more sophisticated FHNC approximations (such as the
FHNC/C approximation of Ref. 14) would increase the
computational effort by about a factor of 2, in other
words it is quite feasible. But experience from studies of
homogeneous systems ' suggests that the higher-order
correction terms are rather random in nature, and that the
basic physics is described correctly within the FHNC//0
approximation.

The results of our calculations are, nevertheless, some-
what disturbing in the sense that they produce higher
values for the jellium surface energy and the work func-
tion than expected. A possible source of uncertainty is the
approximation p&(r)=p~(r), which is the only one that
has not yet been tested. The need for cluster expansions
for the one-body density is a new feature of theories of in-
homogeneous Fermi systems. One may investigate the ac-
curacy of this approximation by calculating the first-order
correction terms, i.e., the fourth and fifth diagram shown
in Fig. 2. However, instead of going beyond the
FHNC//0 approximation and calculating some more sets
of diagrams, we feel that it is more instructive to pursue
immediately a Monte Carlo evaluation of the energy and
the densities using our optimized correlation functions.
Such a calculation is under way. The jeHium model,
which does not suffer from the uncertainties of the inho-
mogeneous ion lattice background, is a sufficiently weH-
defined system and will allow conclusive comparisons.

Only slight rearrangements of the algorithm used here
allow the same method to be used for the surface of liquid
He or adsorbed films. Spherical systems can be treated

in a very similar way, though the flat-surface geometry is
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well as by the Institute for Theoretical Physics and by the
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APPENDIX A: BULK ELECTRON-GAS
CALCULATION

%'e give in this appendix the bulk limit of the
FHNC//0 and Euler-l. agrange equations used in our
work, and present numerical results for that approxima-
tion. For a description of the full FHNC/C procedure in
electronic systems, the reader is referred to Ref. 14. In
that paper, all diagrams had been summed that can be
summed with two-body equations, and estimates for
higher-order exchange diagrams were included to all or-
ders. To avoid an excessive computational effort, the
present work has employed the simplest version of the
FHNC theory. The FHNC and the Euler-r. agrange equa-
tions for the bulk electron gas assume the form

S~ k
S(k)=

[I+(4mp/A' k )SF(k) Vp h(k)]'~
re

3k /4kF k /16k~, k (2k~-
S~(k)= 1, k)2k,

(A 1)

is the static form factor of the noninteracting Fermi sys-
tem. The particle-hole interaction V~ h(r) has the form

computationally more efficient. With the proper exten-
sion of the optimized FHNC theory to state-dependent
correlations finally in sight, we believe that microscopic
calculations for finite nuclei will also be feasible in the
foreseeable future.
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h(r) =[1+I dd(r)]~c(r)

g2
+ I

~[1+1 dd«)]'"
I

'+ I dd«)wz(r»
m

(A4)

and I'« is related to the static form factor S(k) through

S(k)=S,(k)+S,'(k)rdd(k) .

TABLE VI. Comparison of the correlation energy of the
bulk electron gas as obtained from the variational Monte Carlo
calculations of Ref. 31 (MC, column 2), in the random-phase ap-
proximation (RPA, column 3), in the FHNC/C calculation of
Ref. 14 (column 4) and in the present FHNC//0 approximation
(column 5) as a function of r, (column 1). All energies are given
in rydberg units.

(A5)

Finally, the "induced interaction" wz(r) is of the form

Wk
u, (k)=-

4m
S(k)
SF(k)

1 1

S(k) SF(k)
(A6)

The tilde denotes the dimensionless Fourier transform

f(k)—:p f d rf(r) exp(ik r) .

rs

1.0
2.0
3.0
4.0
5.0

—0.122
—0.087
—0.072
—0.062
—0.055

RPA

—0.158
—0.124
—0.106
—0.094
—0.085

FHNC/C

—0.134
—0.094
—0.073
—0.064
—0.056

FHNC//0

—0.113
—0.082
—0.065
—0.055
—0.048

Equations (Al) —(A6) form a closed set which allows
the calculation of the static form factor S(k) from the
bare Coulomb potential Uc(r) From. an initial guess of
the particle-hole interaction VF h(r) one computes via Eq.
(Al) the static form factor and from Eqs. (A2) and (A4)
the quantities I dd(r) and wz(r). These are used in Eq.
(A3) to compute a new particle-hole interaction, and the
process is repeated until convergence is reached. At high
densities r, &1 it is sufficient to start with the bare
Coulomb potential, at lower densities one can use one of
the higher-density results as a starting point of the itera-
tions. Depending on the density, convergence is reached
after 3—10 iterations. The procedure works more effi-
ciently than in systems with a hard-core interaction, since
no precautions need to be made to maintain a proper
short-ranged behavior of I dd(r).

Once a numerical solution of the Euler-Lagrange equa-
tions is obtained, the energy can be calculated via Eqs.
(4.9), (4.10), (4.13), and (4.14). For the homogeneous sys-
tem, these expressions assume the simple form

b, E~,/2 = f [S(k)—SF(k)][Uc(k)—VF h(k)],1 d k
2p (2m. )'

(A7)

Q2
&TrF/+ = f d r I dd(r)

I
V[1+I dd(r)]

2m

(A9)

Ec ~EPot +ERPA +~TJF (A10)

is shown in Table VII. We see that AERpA is dominant
only at high densities.

APPENDIX 8: NUMERICAL SOLUTION
OF THE PPA EQUATION

The results of the simplified FHNC/EL calculation are
shown in Table VI in comparison with the Green's-
function Monte Carlo results of Ceperley and Alder, the
random-phase approximation (RPA), and the full
FHNC/C treatment of Ref. 14. The simplified FHNC
treatment is not quite as good as the full FHNC/C calcu-
lation, especially at lower densities, but it compares favor-
ably with the RPA, and the uncertainties in the bulk
ground-state energy are likely to have no large effect on
the surface energy. The decomposition of the correlation
energy

d ~ [S(k)—SF(k)]
ERPA/~ = k

gmP (2m )' S'(k)SF(k)
(Ag)

Our algorithm for solving the PPA equation (3.7) is
closely related to the normal-mode decomposition pro-

TABLE VII. Decomposition of the correlation energy of the bulk electron liquid in the FHNC//0
approximation as a function of r, . All energies are given in rydberg units. The last two columns give
the chemical potential derived from the FHNC//0 results (column 6) and from the variational Monte
Carlo energies (Ref. 31).

2.00
2.07
2.30
2.66
3.00
3.28
3.99
4.00
4.96
5.00
5.23

ERPA

—0.0592
—0.0579
—0.0540
—0.0489
—0.0450
—0.0422
—0.0367
—0.0366
—0.0313
—0.0311
—0.0301

AEpot

—0.0388
—0.0384
—0.0371
—0.0351
—0.0333
—0.0320
—0.0290
—0.0289
—0.0255
—0.0254
—0.0247

0.0165
0.0162
0.0153
0.0141
0.0130
0.0122
0.0105
0.0105
0.0088
0.0087
0.0084

E,
—0.0815
—0.0801
—0.0757
—0.0699
—0.0653
—0.0620
—0.0551
—0.0550
—0.0480
—0.0478
—0.0463

PFHNC

0.2141
0.1751
0.0755

—0.0219
—0.0760
—0.1044
—0.1414
—0.1417
—0.1550

0.1551
—0.1555

0.2081
0.1690
0.0691

—0.0287
—0.0831
—0.1117
—0.1489
—0.1492
—0.1628
—0.1629
—0.1632



5710 E. KROTSCHECK, W. KOHN, AND GUO-XIN QIAN

cedure developed in papers I and II for Bose systems. We
use

of sidelength L will be

N[EF]=
Xdd(r(, rz) =SF '(r), r2) —S '(r), r2)

and rewrite Eq. (3.7) in the form

[S 'eH ) eS '](rt, r2)

(81) e;. ( pe)
ll

=L'g ™(E,-~, )e(Z, —~, ) .
; 2M'

(C3)

=2 Vp h(rt, r2)+[Sp 'eH( +ST '](r), r2) .

Consider now the eigenvalue problem

f d'r2I2Vp h(r), r2)+[SF '+Hi +SF '](ri, r2) I

X H&P'"(r2) =A' co~P'"(r&) . (83)

$(r&,r2)= g [H, g (r~)][H&g (r2)],
I

and the inverse, in the sense of the convolution product
(2.5), is given by

S '(r~, rz) = g Rco~g' '(r~)P' '(r2) .
I

(85)

The problem (83) has the same structure as the eigenvalue
problem discussed in papers I and II; in particular, the
eigenvalues fi co~ are real. It is then easily shown that the
static form factor defined by Eq. (82) has the form

[Actually, the argument is rigorous only if the single-
particle orbitals are solutions of our full generalized
Hartree-Fock equation (2.21). We assume here that the
single-particle states generated by the approximation
equations (5.2) and (5.5) are sufficiently close to the
single-particle states generated by the full Hartree-Fock
equation (2.21).] Equation (C3) is used to determine the
Fermi energy from a given particle number X which is
given by the requirement of charge neutrality, i.e.,

X=p+L d . (C4)

Given the Fermi energy, we can ca1culate the local-one-
body density and the density matrix of the noninteracting
system:

p&(r, r') =p&(z,z', r~~)

d qll e E„—~, — q~ q, (z)(2~)2,. 2m

The set of non-nodal diagrams X~d(r&, rz) can now be ob-
tained from Eq. (81), and the function I dd(r~, r2) can be
constructed from S(r&,r2) through

X%;(z') exp[iq~~. (r~~
—r~~)] (C5)

I dd(r), r2)=[S~ +See ](rt, r2) —S~ '(rt, r2) . (86)

We see that the solution of the Fermion PPA equation is
hardly more involved than the solution of the correspond-
ing Bose problem. The central step is the solution of the
eigenvalue problem (83) which is identical for Bose and
Fermi statistics. The additional manipulations necessary
in the Fermi case involve only the convolution products
with SF and SF .

APPENDIX C: SINGLE-PARTICLE DENSITIES
AND THE TALMAN-SHADWICK

EFFECTIVE POTENTIAL

p (z)=,+e(E~ e; )(E~ e—; )
~
q;(z) —

~

' .
2~Ii

The static form factor of the uncorrelated system, S~,
is needed in a representation, where the coordinate parallel
to t'he surface is Fourier transformed,

f d T(( [ p&(z,z, p()) )
e

Sz(z,z',
qadi

) =5(z —z') ——
[pg(z)pg(z')]'

We present in this appendix the detailed form of the
one-body density and the density matrix generated by the
single-particle wave functions (5.5) and the equations used
to calculate the optimal one-body potential U(z) [or
equivalently, VF(z)] of Eqs. (5.3) and (5.6). We assume
periodicity in a box of length L parallel to the surface,
and normalization of the z component of the wave func-
tion

Inserting the representation (C5) leads us to

SF(z,z', q))) =5(z —z')

g N (i,j,q
~~

)y; (z)q,'(z')g J*(z)q, (z')

[pt(z)pi(z')]'

where

(C8)

f dz iver;(z) i
=1. (Cl)

The energy of a particle in state i with momentum
q~~

parallel to the surface is

Q2
+ qll '

2m
(C2)

If the Fermi sea is filled up to a certain Fermi energy EF,
the total number of particles in a square piece of the film

, e EF
(2n-) 2 ' 2m

EF
2m

(C9)

We now calculate the variation of the total ground-state
energy with respect to the effective one-body potential
U(z). The energy depends on U(z) only through the
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single-particle orbitals gr(z), i.e.,

5E d, 5E 50'i~(z )
(C10)

The single-particle states q&;(z) are determined through
(5.3) by the effective one-body potential U(z). Using
first-order perturbation theory, Talman and Shadwick'
found that

5qr,*(z')

5U(z)

q)q'(z') yj (z)
q,'(z) .

j (~i) ~j ~i
(Cl 1)

For the case of our geometry, the summation over the oc-
cupied states appearing in Eq. (C10) involves integration
over the momentum q~~ parallel to the surface. Carrying
out these phase-space integrations and using the fact that
5qr,*(z')/5U(z) projects into a subspace orthogonal to
gr; (z), we finally find the condition

g ri'0=g l Va(zi) —«zi))q (zi)
(2~)2 ' 2m 5U(z)

gll 5q,*(z) )

z dz& dz2 X(i,j;q~~ ) V~(z&, z2, q~~ )pj(z& )pj"(z2)y;(z2) +c.c. ,
(2m. ) 5U(z)

where

VF(z],zz, q~() = d r)( V~(z), rz, r(()e2 '
ll qll

(C12)

(C13)

Inserting (C10) and VTs(z) —= VH(z) —U(z), we finally arrive at the compact form of the optimization condition for the
effective one-body potential

q'(z)q'J (z) vmg e(EF ~) ' ', (E —~)U„—V„=o (C14)
j {+I ) ~j ' ~) 2'7Tfl

with

Ug~ —— z y; z yj*. z VTs z (C15)

VtJ
——— " f dz& f dz2+N(k, Z;q)Vz(z&, z&, q~~)p,*(zj)pk(z&)pk(z2)p&(z2)

(2m ) k

(C16)

With the definitions (C15) and (C16), Eq. (C14) is a linear
equation for the unknown function VTs(z) which can be
solved for any given Fock term V~(r~, r2). Note that, due

to the orthogonality of the single-particle states yt(z), the
effective interaction is determined only up to an additive
constant.
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