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Double-valence-fluctuating molecules and superconductivity
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We discuss the possibility of "double-valence-fluctuating" molecules, having two ground-state
configurations differing by two electrons. We propose a possible realization of such a molecule, and
experimental ways to look for it. We argue that a weakly coupled array of such molecules should
give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition tempera-
ture.

The first theory of superconductivity where electron
pairs played an essential role was proposed by Shafroth,
Blatt, and Butler. ' In their picture, electron pairs tightly
coupled in real space undergo a Bose condensation to the
superconducting state. As is well known, the subsequent
BCS theory, with the essentially opposite point of view in
which weakly coupled highly overlapping electron pairs
form at T, has been enormously successful in explaining
the properties of most known superconductors. Neverthe-
less, the possibility of very strongly coupled superconduc-
tors where the Shafroth-Blatt-Butler picture applies is ap-
pealing and has not been ruled out theoretically. In fact,
quantum Monte Carlo calculations on one-dimensional
models clearly show that tightly coupled electron pairs
can develop power-law correlations typical of the type of
superconducting pairing correlations expected in one-
dimensional systems.

In this paper we discuss a possible mechanism to obtain
such tightly bound pairs at the molecular level which,
when weakly coupled through an intermolecular matrix
element would give rise to a strong-coupling superconduc-
tor of the type discussed above. The idea is to obtain
"negative- U centers" through an electronic excitation
mechanism. Such centers have been proposed by Ander-
son to exist in amorphous semiconductors. In Anderson's
and subsequent models, however, the source of the
electron-electron attraction is a local electron-phonon in-
teraction. In that case, the pair-hopping matrix element is
exponentially suppressed by a Frank-Condon overlap ma-
trix element, and a superconducting state is therefore un-
likely. In our model, the effective intermolecular hopping
is reduced by an algebraic instead of an exponential fac-
tor.

Our model consists of weakly coupled "double valence
Auctuating" rnolecules. Similarly to the case in rare-earth
atoms where one can have two electronic valence configu-
rations differing by one electron being degenerate or very
close in energy, we envisage a situation where the two de-
generate states differ by two electrons. We discuss below
one possible realization of this idea. It should be pointed
out, however, that there well could be other different
mechanisms by which this is achieved; in fact, double-

valence-fluctuating molecules may already have been ob-
served in organic charge-transfer salts.

Consider a transition-metal atom surrounded by
ligands, as shown in Fig. 1. A Hamiltonian that describes
the valence electrons of this basic unit in a tight-binding
scheme is

H =e~n~+eyznyz+Ey, ny, +ay, ny, t(d p, +—p&d„, )

t(dyzpp +pgdyz }+ Un ny + U(n/ nzz +ny nzz )

+ Un~, n

where d~, dy„d~ are d orbitals of the transition-metal
atom, and pi and p2 are p orbitals of the neighboring
ligands, which hybridize with the transition-metal orbi-
tals d~ and d~„respectively, through a matrix element t.
For simplicity we will treat the case in which

FIG. 1. Schematic view of a transition-metal atom and sur-
rounding ligands. The transition metal d„, orbital (short-dashed
line) and d~ (long-dashed line) hybridize with the antisymmetric
linear combination of p, orbitals on neighboring ligands in the x
and y directions, respectively, through a matrix element t.
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EP ] 'EP 2 EPp 6'» Ey and only one electron is in each
of the d»-ligand and d», -ligand orbitals. Including addi-
tional electrons does not alter our conclusions. Finally,
we assume the d orbital overlaps with similar orbitals on
neighboring units and carries the conduction electrons.
Denoting by E(n) the ground-state energy of one such
unit with n =(n, +n», ) d electrons, the "effective
Hamiltonian" for the d electrons in this unit is

h,rr= Ueff1l»)+gal»g p(—1t»g+B»g)+c,

U,ff =E(&)+E(0) E(1—)
It is straightforward to solve for U,f~ and study its

dependence on the parameters of the Hamiltonian Eq. (1).
As we will see, in the atomic limit U is larger than U and
U. However, (U —U)/U«1 so that in studying the
dependence of U,rr on t, e», and e it is useful to set
U=U=U. Figure 2 shows the dependence on t and
e=e» —e» =e» —e~ for U = U = U. It can be seen that

p& xz p2 yz

the Coulomb repulsion is completely screened out for
t —+0, e= U, and would become negative if U could
exceed U. The basic idea is simply that the first d elec-
tron pushes the d and d», electrons onto the neighboring
p-orbitals, so that the next d electron does not feel the U
repulsion from the d» and d», electrons. It is this highly

1.0

0,8

U,g ——U+ U —2U . (3)

We can obtain the transition-metal d-orbital Coulomb in-
teractions from the appropriate integrals over atomic orbi-
tals:"

U=(d d
l

e'«12ld d )=Fo+4F2+36F4

e'/r~2
I
d d ) =Fo+2F2 24F~-

U=(d»d»,
l
e /r, 2 d»d», ) =Fo —2F2 4F4 .—

The effective interaction, Eq. (3), is then

U,g ——2F2+80F4 )

(4)

and from calculations based on Slater orbitals for transi-
tion metals, "one finds F4/F2-0. 7, so that

U,ff ——3.6F, .

For Ni, we obtain' U,ff-0.69 eV. This is certainly
much smaller than the bare interaction U-24 eV, but it
is still positive. Thus, the "excitonic mechanism" in our
molecule certainly succeeds in screening the Coulomb in-
teraction by a large amount, however, it does not over-
screen it. Now Eq. (3) can be written in the form

2

U,rr= Jd x jd x'[p~(x) —p2(x)]
lx —x'

l

nonlinear mechanism that opens up the possibility of
overcoming the direct Coulomb repulsion U between d
electrons.

Having seen that t~0 and a=U provide the most
favorable conditions, we consider the effective interaction
in this limit for U & U. It has the form
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FIG. 2. Effective interaction U,fq for the d electrons of the
unit shown in Fig. 1 with U=U=2. (a) Dependence on t. (b)
Dependence on e=E'p E' Note that U,ff &0 the most favor-
able situation ( U,ff

——0) occurs when e= U, t =0.

X [p((x' ) —p3(x' )],

with p] ——p~, p2 ——p», and p3 ——pyz As noted above, this
is positive for atomic d orbitals, but it can in principle be-
come negative. ' Here, however, we will explore a dynam-
ic mechanism for achieving a net attractive interaction.

To incorporate dynamics, we consider two units similar
to the one described by Eq. (1) which are coupled by a
hopping t] between the d orbitals. For simplicity, we
now neglect the dy, orbital and consider just a d„, orbital
hybridized with one ligand in each unit. We again consid-
er the case U=-U, which for a single transition metal
atom unit gives a U,ff which cannot become negative just
as for the case discussed above. However, it turns out
that the dynamics of the d electrons in the two-unit
model can produce a net attractive interaction for realistic
parameters. Figure 3 shows the effective interaction for
various values of the parameters. The reason that the net
interaction can now be attractive is essentially that the ex-
citonic mechanism can still be arranged to be as effective
as for the single-site case for appropriate parameters,
while the repulsive interaction U is reduced by the
dynamical motion of the d electrons. The fact that U is
greater than U does not alter this conclusion. It only
slightly reduces the attraction. Note that a crucial param-
eter is the energy difference ep —e, between ligand orbital
and the transition metal atom xz orbit. This must be in a



32 DOUBLE-VALENCE-FLUCTUATING MOLECULES AND SUPERCONDUCTIVITY 5641

0.4

0.2

0.0

-0.2

-0.4

0.2
l

0.4
f

}

0.6 0.8

0.75

I I I I
}

I I I I
}

I I I I I I I 'I

}
Ig

0.50

0.25

0.00

-0.25

-050 —» I I I

0 0.5
I I I I I I l I i I I

1.5 2

FIG. 3. Effective interaction for a two transition-atom unit
surrounded by ligands. t&

——1, U= U=2. {a) Dependence on t.
(b) Dependence on e. Note that U,q~ can now become negative.
The most favorable situation is e= U/2, t =0. Larger t& gives a
wider range of parameters with U,ff (0 (always centered around
e= U/2).

well-defined range to give an effective attractive interac-
tion. Furthermore, the hybridization t cannot be overly
large. For complexes with more units, for example of
three atoms, we find that the range of parameters where
attractive interactions occur is further enlarged. We be-
lieve that it should be possible to synthesize materials
whose parameters lie within the required range to make
Ud~ attractive.

From an experimental point of view, there are various
approaches for identifying these "pairing molecules. " The
energy to remove one electron from such a molecule
should be larger than the one needed to remove a second
electron. This should easily be seen with various spectro-
scopic techniques such as photoemission or optical ab-
sorption. Very recently, Vardeny and Tauc' have dis-
cussed an optical modulation technique for the determina-
tion of U,ff for defects. Furthermore, when two such
molecules are brought together a disproportionation reac-
tion should occur.

Assume now that we arrange these units to form an ex-
tended structure. The simplest geometry is one-
dimensional, with the d orbitals overlapping and form-
ing a conducting spine. We require the overlap between
d orbitals of different units t to be much smaller than
the intramolecular overlap t&, so that the above discg. ssion
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FIG. 4. Effective Heisenberg coupling J,ff/t between two-
atom units versus t for U=U=2, @=1, t~ ——1.

remains valid. One could also imagine pairing molecules
which could be arranged in higher-dimensional structures.
In the limit where the overlap between units t is much
smaller than the hybridization energy t, the Hamiltonian
describing the motion of the d~ electrons is the attractive
Hubbard model. The parameter t plays a similar role to
the phonon frequency in the electron-phonon case and if
it becomes comparable to or smaller than t, retardation ef-
fects start to play a role. ' In that case the attractive
Hubbard model is no longer applicable, and in particular,
in one dimension superconducting correlations are strong-
ly suppressed by retardation. Thus, we assume t (&t in
what follows.

Even though one cannot solve the attractive Hubbard
model exactly, a great deal is known about it. In the
half-filled-band case, an exact symmetry exists which in-
terchanges charge-density-wave (CDW) and singlet pair-
ing correlations. In one dimension, it is known' that
both decay algebraically with the same power independent
of the size of U,ff. In two dimensions, the ground state
has long-range order in these correlations for arbitrary
U,ff which corresponds to the antiferromagnetic order of

the repulsive Hubbard case, if the Fermi surface is nest-
ed. '7 For non-nested Fermi surface, this is still likely to
occur for sufficiently large U,ff. In three dimensions, one
expects a transition at a finite temperature to a state ex-
hibiting coexisting CDW and superconducting long-range
order. If the band is not half full, it is known in one di-
mension that superconducting correlations will dominate
over CDW correlations. ' In higher dimensions, since
there will not be nesting of the Fermi surface in general,
superconductivity will certainly dominate in the non-
half-filled band case. This has been recently verified by
Monte Carlo simulations. '

In the limit f « U,ff we can perform a strong-coupling
expansion which leads to an effective Hamiltonian having
the form of an antiferromagnetic Heisenberg model:

Heff Jeff g CTI' CJj +AQCTI'
&i,j&

with J,ff determined by the overlap matrix elements of
various states of the molecules. Details of this calculation
for a one-dimensional array are given in Ref. 5. Figure 4
shows Jeff versus t for one case. The main feature of J,ff
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is that it vanished as t —+0 but only algebraically instead
of exponentially as in the electron-phonon case, and we
can have a parameter regime where both J,f~ and U,f~ are
appr'eciable. In the Heisenberg model, pairing correlations
correspond to in-plane ( x -y) correlations, and CDW
correlations correspond to z-z correlations. If retardation
effects are not negligible, the effective Hamiltonian be-
comes an anistropic Heisenberg model, with larger cou-
pling in the z directions, favoring a CDW state. The —,'-
filled-band sector corresponds to the zero magnetization
(or magnetic field) sector.

We can obtain estimates for the transition temperature
in the strong-coupling regime from studies of the antifer-
romagnetic Heisenberg model in three dimensions. High-
temperature series results for the s=

z Heisenberg anti-
ferromagnet estimate T, = 1.93J/kz in the zero-field sec-
tor. ' We are not aware of calculations for the nonzero
field case. For the classical Heisenberg model, Monte
Carlo calculations have been performed both without and
with a magnetic field. For h =0, T, =2.89J/k~ and
this is slowly reduced as the magnetic field increases.
Thus, it is clear that T, is of the order of J,fr/kz, which
can be up to tenths of an eV for typical molecular para-
meters. In two dimensions, ' we expect a Kosterlitz-
Thouless-like transition in the absence of interplane cou-
pling, while in 1D there is no transition at finite tempera-
tures. However, in those cases we would still have large
superconducting fluctuations at temperatures of order of
J,ff and a small three-dimensional coupling would stabi-
lize the superconducting state at a lower temperature.

The superconducting properties of a system such as the
one considered here have been discussed by Alexandrov
and Ranninger (AR). They find properties similar to a
superfluid of Bose particles, somewhat differing from the
BCS case. In their case of "bi-polarons, " the critical tem-
perature decreases rapidly with the electron-phonon cou-
pling constant because of a band-narrowing effect. In our
model, that effect does not occur. To illustrate this, Fig. 5
shows the dependence of U,rf and Jgff on U= U for fixed
e, t, and t~. In addition, the effect of retardation in the
bi-polaron case (neglected in the AR treatment) will give a
highly anisotropic Heisenberg Hamiltonian, ' which is
likely to give CD% rather than superconductivity. The
reason is that the model requires A, /2X » t (k =
electron-phonon coupling constant, K = phonon elastic
constant) for the strong-coupling expansion to be valid,
and unless co »A, /2X (co= phonon frequency) retarda-
tion will be dominant. It appears unlikely that one would
obtain a superconductor with appreciable transition tem-
perature under those constraints. In our model, since all
energies are electronic in origin, it appears to be much
easier to obtain the desired regime.

An omission of our model is the neglect of longer-range
Coulomb interactions. If these are large, they would
presumably stabilize a CDW state even in the non-half-
filled band cases. It may be necessary to have other elec-
trons in the system to provide sufficient screening to sta-
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on U= U for

bilize the superconducting state discussed here.
In summary, theoretical calculations on a variety of

many-body models ' ' show that a strong coupling
Shafroth-Blatt-Butler superconducting state can indeed
occur if there exist molecular units having two ground-
state configurations which differ by a single electron pair.
As discussed, the concentration, transfer overlap and
screening of the pairs must also be within certain parame-
ter regimes.

'

In the model described here, the local pairing
is produced by a dynamic electronic excitation mechanism
which not only sets the energy scale to be eV but also pro-
duces only an algebraic decrease in the intermolecular
hopping. Physically, our model describes one realization
of a "double-valence-fluctuating" molecule. We believe
that the possibility of achieving this new type of super-
conducting state is such that an experimental effort to
produce and identify double-valence-fluctuating molecules
is warranted.
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