
PHYSICAL REVIEW B VOLUME 32, NUMBER 9 1 NOVEMBER 1985

Dissipation in combined normal and superfluid flows of He II:
A unified description
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We have measured the dissipation associated with superfluid turbulence in circular tubes for com-
bined normal and superfluid flows spanning the V„-V, plane from pure superflow to thermal coun-
terflow. For relatively small values of V„the dissipation is consistent with a homogeneous distribu-
tion of quantized vortex lines in the superfluid if it is assumed the lines are dragged by the normal-
fluid Aow. For larger values of V„this unified description is destroyed by the phenomenon associat-
ed with the TI- TII transition in thermal counterflow.

I. INTRODUCTION

It is now generally accepted that the large dissipation
associated with the flow of liquid He II through small
tubes is the result of an interaction between the normal-
fluid excitations and a random array of quantized vortex
lines in the superfluid. The condition of superfluid tur-
bulence then can be described in terms of the macroscopic
dissipation that is present in a flow, or the particular dis-
tribution of quantized vortex lines that is present. A ma-
jor problem in the description of superfluid turbulence has
been the observation that apparently different states of
turbulence are produced in different physical situations.
In pure superflow the dissipation is independent of tube
shape ' suggesting the turbulence is homogeneous. In
thermal counterflow, where the superfluid flow is accom-
panied by a flow of the normal component in the opposite
direction, the situation is far more complex. The dissipa-
tion depends qualitatively on the tube shape. In tubes of
square or circular cross section, the turbulence evolves
from a low-density state TI to a high density state TII as
the counterflow is increased.

Schwarz has shown that it is possible to simulate a
state of homogeneous superfluid turbulence with a collec-
tion of vortex lines obeying simple dynamical rules. Each
line moves under its local self-induced velocity and the
normal-fluid friction, while line-line crossing events both
randomize the distribution and allow the system to relax
into a steady state. The simulated homogeneous vortex
line density is in excellent agreement with the dissipation
measured in pure superflow experiments, ' and the vortex
line density measured in state TII in large tubes. It has
not yet been possible to simulate the more complex
behavior observed in thermal counterflow associated with
the state TI and the TI- TII transition.

The experiments reported in this paper are intended to
bridge the gap between the pure superflow results and
those in thermal counterflow. We measure the dissipation
associated with the superfluid turbulence produced in a
small diameter glass tube in which a superfluid flow can
be supplemented by a counterflow of the normal fluid at
selected velocities. In this way we map out the dissipation

in the V„-V, plane for all velocity combinations between
pure superflow and thermal counterflow. Previous mea-
surements of dissipation in the V„-V, plane have been re-
ported by workers at Leiden. ' These pioneering exper-
iments established the global features of the dissipation in
the plane, and focused on the oscillatory phenomena
found in certain regions. To the extent that our data over-
lap these previous results the agreement is quite good.
Our purpose is to examine in great detail that region of
the plane which connects pure superflow with thermal
counterflow, and to establish a data base suitable for de-
tailed testing of theoretical predictions. The results are
also amenable to phenomenological interpretations which
can be useful as a guide to a deeper understanding of the
dynamic processes involved in superfluid turbulence. The
results also give quantitative descriptions of the vortex
line density that can be useful in further experimental
studies.

II. APPARATUS

The basic requirements for this experiment are a well
characterized flow tube, a method for producing and ac-
curately measuring superfiuid and normal-fluid velocities,
and good temperature regulation and measuring capabili-
ties. The essential features of the apparatus are shown in
Fig. 1. The flow tube connected a large reservoir at tem-
perature Tl with a small chamber containing a heater H2.
This Hq chamber was connected to a "fountain pump"
consisting of a superleak, heater H ~, and long tube
("fountain pipe"). The superleak prohibited heat flow be-
tween the H~ and H2 chambers, but allowed the super-
fiuid component of the He II to pass freely. With heater
H~ energized, superfluid was pumped from the reservoir,
through the flow tube, and expelled into the main helium
bath. The superfluid flow rate through the flow tube, the
superfluid velocity V„was determined unambiguously
from the rate at which the level in the reservoir changed
with time. A normal-fluid flow was produced in the flow
tube by energizing heater H2. Since the H2 chamber was
thermally isolated by the superleak and the vacuum space,
the heat flux through the flow tube gave the average
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turbulent state TI and at the transition to state TII are
also in excellent agreement with previous data ' and in-
dicate that the present flow tube is entirely equivalent to
those used previously.

A fountain pump was used to produce pure superflow
through the flow tube. The term "fountain pump" has
traditionally been used to describe any system that pro-
duces mass flow using the fountain effect. The essential
features of a pump are a long pipe with a constriction on
top and a heated chamber on the bottom with a superleak
connection to the helium source. With the heater turned
on, superfluid is pulled through the superleak by the foun-
tain pressure and is expelled out of the tube by either
evaporation or by spilling over the top. In designing the
actual fountain pump for our apparatus it was essential to
include the effects of "source impedance, " that is the in-
fluence of the chemical potential of the H2 chamber on
the mass flow rate. We modeled the pump-flow tube sys-
tem extending the analysis of Broulik and Hess, ' so that
the superfluid velocity through the flow tube V, was
given as a function of the power dissipated by the pump
heater H, all for a given pipe constriction. The constric-
tion could then be chosen to meet the desired velocity
range, the anticipated source chemical potential, and the
physical constraints of the apparatus. The majority of the
data reported in this paper was obtained with a constric-
tion consisting of 29.5 cm of 0.038-cm i.d. glass tubing.
With this constriction we were able to generate superfluid
velocities 0& V, &15 cm/s over the range of temperature
and dissipation encountered in the experiments.

The actual superfluid velocity V, through the flow tube
was determined from the rate of change of the level in the
reservoir. A cylindrical level sensing capacitor surround-
ing the epoxy vacuum can was designed to optimize the
velocity determination. The capacitor was 5.7 cm high
with a mean gap diameter of 5.3 cm and gap width of
0.042 cm. The ends of the capacitor were electrically
guarded, and teflon spacers were employed to assure the
gap was uniform. The entire assembly was rigidly sup-
ported from the top flange of the reservoir. From the
known geometry of the reservoir, capacitor, and flow tube
it was possible to calculate the superfluid velocity through
the flow tube from the time rate of change of the capaci-
tance AC/ht. The capacitor was monitored with a Gen-
eral Radio 161S capacitance bridge and an Ithaco 393
lock-in amplifier. A small computer was programmed to
read the lock-in output for up to about 5 min and display
the superfluid velocity. A careful assessment of all the
factors involved in the determination of V, suggests a
maximum systematic error of about 5% and a maximum
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FIG. I. Details of the apparatus. The H2 chamber is
thermally isolated by a vacuum space and a superleak.

normal-fluid velocity V„.
The flow tube was identical to the one used in the pure

superflow experiments reported previously. A nominally
100 pm i.d. glass tube, 10 cm long was covered with a fi-
berglass sheath and impregnated with Stycast 1266 epoxy
resin. The ends of the encapsulated tube were smoothly
dressed and the length was measured to be 9.90 cm.
Epoxy reinforced flow tubes have proven to be quite
rugged and trouble free. The expansion coefficient of the
composite structure was very close to that of the epoxy
alone and simplified construction of the apparatus. The
vacuum can shown in Fig. 1, as well as the H& and H2
chambers and the fountain pipe, were fabricated from
1266 epoxy. Consequently there was very little thermal
stressing of the flow tube when the apparatus was cooled
to helium temperatures.

Running the experiment in the thermal counterflow
mode only, with the fountain pump heater Hi off, it was
possible to ascertain that the flow tube was functioning
properly. If the power dissipated in heater H2 is Q, then
the two-fluid model gives the average normal-fluid veloci-
ty down the tube to be

V„=Q/pSTA,

where p is the HE II density, S the specific entropy, T the
average temperature, and A the flow tube area. For suffi-
ciently small values of Q the only dissipation is that due
to the normal-fluid viscosity q and the temperature differ-
ence b, T=T2 —Ti is linear in Q. The tube diameter d
obtained from the slope

random error of about 0.06 cm/s.
The temperature in the H2 chamber was determined

with a CGSOO carbon glass resistor. At 1.6 K this device
has a resistance of about 100 KO and a sensitivity
b,R/Rb, T of about 4.0 K '. The sensitivity was extreme-

128ql
hard (pS) T

(2) ly stable from day to day, and the resistance drift on a
given day was of the order of 1 0/h. The resistor was
monitored with a SHE 120 resistance bridge, adjusted for

is (134+2) pm. This result is quite comparable to the di-
ameters of other tubes from the same lot used previous-
ly. ' ' The critical heat currents at the onset of the first

maximum sensitivity without self-heating. The tempera-
ture of the reservoir was electronically regulated using
standard techniques. Averaging over 3 s, the fluctuations
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were less than 5 pK. We estimate the overall error in
determining the temperature difference Tz T—i hT——to
be 50 pK.

III. PROCEDURE

The experiments consisted of measurements of the tem-
perature difference b, T as a function of the velocities V„
and V, . A simplified diagram of the apparatus is shown
in Fig. 2 (upper), and Fig. 2 (lower) shows the region of
the V„-V, plane accessible to the experiments. Using only
the counterflow heater Hz with the fountain pump off,
the trajectory given by the counterflow condition of no net
Iilass flow,

pn Vn = —ps Vs (3)

. FOUNTAIN PUMP

is followed in the V„-V, plane. Using only the fountain
pump with the counterflow heater H2 off, the pure super-
flow trajectory ( V„=0) is followed. For appropriate
combinations of the fountain pump and the counterflow
heater it is therefore possible to study all regions of the
V„-V, plane between pure superflow and thermal counter-
flow. In practice we would set the counterflow heater to
give a particular value of V„[Eq.(1)], and keeping this
constant, would measure AT as the fountain pump was
used to change the superfluid velocity V, . The dashed
vertical lines in Fig 2 show the trajectories followed in
this procedure.

As mentioned above in Sec. II, we also measured the
temperature difference along the thermal counterflow line
largely for comparison with previous data to insure the
flow tube was well characterized. The present apparatus
is not particularly well suited to pure counterflow mea-
surements due to very long time constants encountered
when the dissipation is large. Small changes in Q produce
large changes in AT and in the chemical potential of the
H2 chamber. Since the superleak is a chemical-potential
short, the level of the helium in the fountain pipe must

make a large change, and this is a slow process since the
helium must all flow through the superleak. By monitor-
ing the level capacitor however, it was possible to insure
that a steady state had been reached before the tempera-
ture difference was recorded. When Q was sufficiently
large, the level of the helium in the fountain pipe was ac-
tually pulled below the H& chamber, and since no more
draining could occur, the time constants for reaching a
steady-state temperature difference decreased substantial-
ly. Of course when the Hi chamber is empty, the foun-
tain pump is no longer operational, and this sets an exper-
imental limit on the region of the V„-V, accessible in
these experiments: We were not able to study the dissipa-
tion close to the thermal counterflow line at large values
of V„.

IV. DATA

b, T=hTz+lF, „/p,S . (4)

The mutual friction force F,
„

is proportional to the vortex
line density I. and the relative velocity V between the nor-
mal and super fluids,

Fg„',(p„p,/2p)z——B—VL . (5)

Here B is the Hall-Vinen coefficient and x is the quantum
of circulation. In the region of the V„-V, plane accessible
to these experiments (Fig. 2) the two fluids have velocities

The temperature difference b T was measured as a func-
tion of V„and V, following the procedure outlined above
at bath temperatures of 1.4 and 1.6 K. At 1.4 K we fol-
lowed the trajectories V„=O,2.4, 4.6, 7.4, and 9.7 cm/s.
At 1.6 K we followed the trajectories V„=0, 0.65, 1.6, 3,
4.9, 5.9, 7, 7.77, 8.28, 8.8, and 9.2 cm/s. We have taken
the traditional step of reducing the temperature difference
data to give the "equivalent homogeneous vortex line den-
sity" L Essenti. ally L is a measure of the dissipation due
to the superfluid turbulence present in the combined
V„-V, flow. The total temperature difference can be writ-
ten as the sum of a viscous term and a mutual friction
term,
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FIG. 2. Schematic diagram of the apparatus showing the
directions of the normal-fluid and superfluid flows (upper).
Third quadrant of the V„-V,plane showing the thermal coun-
terflow trajectory and the experimental trajectories (dashed
lines) (lower).
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FIG. 3. "Equivalent homogeneous vortex line density" L as a
function of the relative velocity V at two different values of the
normal fluid velocity at 1.6 K.



32 DISSIPATION IN COMBINED NORMAL AND SUPERFLUID. . . 5635

0
0

V„(cm/s )

4 6

—6

)I/O

of different sign. The magnitude of the relative ve-
locity V is thus the algebraic sum of the magnitudes of
the two component velocities

V=V„+V,.
Figure 3 gives some representative data, where the tem-

perature difference has been reduced to give the line densi-
ty L as Eqs. (4) and (5) above. The dimensionless quanti-
ty obtained from the product of the square root of the line
density times the tube diameter. d is actually plotted in
this figure. These data were obtained at 1.6 K, for V„=O
and V„=5.9 cm/s trajectories in the V„-V, plane. The
results shown in Fig. 3 are typical of all the different V„
trajectories measured in that the line density (the dissipa-
tion) at a given value of the relative velocity V is actually
seal/er at larger V„.It has been traditional to regard the
line density as a function of the relative velocity only.
Our data clearly show that this is an oversimplified view
of the superfluid turbulence. The line density (or the dis-
sipation) must be considered a function of both V and V„
(or equivalently of V„and V, ).

It is possible to give all our experimental data in the
form shown in Fig. 3, but the result is rather cluttered
since there are eleven V„trajectories at 1.6 K and five at
1.4 K. Furthermore, although this representation of the
data most accurately reproduces the actual experimental
trajectories, it obscures other cuts through the V„-V,
plane that may be more revealing. We have chosen in-
stead to give our entire data set in the form of contour
plots of L'~ d in the V„-V, plane. The results at 1.6 and
1.4 K are given in Figs. 4 and 5, respectively. If the line
density only depended on the relative velocity V, the con-
tours of constant L ' d would be a set of equally spaced,
parallel, 45' lines. The extent that the data ip Figs. 4 and
5 deviate from this simple picture is an indication of the
more complex dependence of the dissipation on the veloci-
ties Vn and Vs.

The shaded region near the origin in Figs. 4 and 5
represents an area in the plane where the line density is
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FIG 5. Contours of constant line density L in the V„-V,
plane at 1.4 K.

zero, and there is no measurable mutual friction dissipa-
tion. We have discussed this phenomenon and the critical
line in the V„-V, plane in a previous publication. '

Another region of interest is found in Fig. 4 (1.6 K) near
V„=7,V, = —4. A rather large distortion of the contour
plot occurs in this area, and is associated with the transi-
tion from the state TI to TII along the thermal counter-
flow line. We will postpone discussion of this feature to
the end of Sec. V. Generally, however, the contour plots
and the dissipation surface they represent are rather
featureless, suggesting that the superfluid turbulence
varies smoothly in the region between superflow and
thermal counterflow.

V. INTERPRETATION

The experimental results given in Figs. 4 and 5 consti-
tute a solid data base for comparison with future theories
or numerical simulations. Lacking these at the present,
we have considered various phenomenological interpreta-
tions of the data that may in fact have heuristic value. In
these interpretations we specifically ignore the complex
behavior associated with the TI- TII transition seen at 1.6
K (Fig. 4) and focus instead on the evolution of the tur-
bulence from pure superflow to the low line density state
TI in thermal counterflow.

One straightforward way to parametrize all of the data
is to consider cuts at constant V„through the dissipation
in the V„-V, plane. The results obtained from such cuts
would appear as the data in Fig. 3. We can approximate
these curves by straight lines, where

—10 =y( V„,T)[V—Vo( V„,T)] . (7)

—12

I i I i !

FICx. 4. Contours of constant line density L in the V„-V,
plane at 1.6 K.

This form for the vortex line density has been used exten-
sively in the literature, although without the explicit V„
dependence of y and Vo which is provided by the present
experiments. It is possible to fit all of the dissipation data
(outside the TI-TII region) to about 10—15% using Eq.
(7). The results of these fits are given in Figs. 6 and 7 as
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FIG. 6. Values of the coefficient y in Eq. (7) as a function of
V„for two different temperatures.

the functions y and Vo. If the results in Figs. 6 and 7 are
used in Eq. (7) to generate the vortex line density along
the thermal counterflow trajectory we obtain values of
I. ' that are slightly nonlinear in V and extrapolate to an
intercept somewhat smaller than actually observed. Still,
Eq. (7) gives a moderately good representation of the vor-
tex line density in these combined V„-V, flows and at
least clearly displays the important explicit dependence on
the normal-fluid velocity. There are serious conceptual
problems associated with an interpretation of the data
based upon Eq. (7), however. The vortex line density L is
the "equivalent homogeneous line density" obtained from
the dissipation using Eqs. (4) and (5). It is difficult to in-
terpret Eq. (5) unless the line density L and the relative
velocity V are assumed to be uniform across the flow
tube. If the line density is uniform however, the explicit
dependence on V„given by Eq. (7) appears to be without
foundation, if not contradictory.

Another interpretation of the data which we find far
more attractive is that, in the region of the V„-V, plane
between superflow and the TI state in thermal counter-
flow, the vortex line density actually remains at the homo-
geneous density Lo found explicitly in superflow, but that
Eq. (5) is incomplete. Equation (5) expresses in average
macroscopic terms the fact that there is a nucroscopic dis-
sipative frictional force between a vortex line and
normal-fluid excitations. We consider the possibility that
in going to the macroscopic average a coupling constant
between the lines and the normal-fluid flow is introduced.
If we define this coupling constant to be a(V, V„),then
Eq. (5) becomes

I',„=—,(p,p„/2p)zBVLc( V)a( V, V„).

Comparison of Eq. (8) and Eq. (5) indicates that we have
absorbed the V„dependence of the dissipation into the
coupling constant 0,, while the line density is assumed to
have the homogeneous value I.o which only depends on
the relative velocity V. In attempting to fit the dissipa-
tion data of Figs. 4 and 5, to this modified mutual friction
expression, we have considered various cuts through the
V„-V, plane. The most successful fit of the dissipation
was obtained by considering radial cuts in the plane, that
is lines of constant V„/V. The pure superflow and the
therrtial counterflow trajectories are lines of constant
V„/V. From these cuts we found that the data could be
fit well to Eq. (8) by choosing the coupling constant of the
form

28—
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24—

o

12—

a=(1—a V„/V),
where a is a coefficient that depends on temperature. The
degree to which this procedure is successful can be seen in
Figs. 8 and 9. Here we have taken the data for the dissi-
pation to calculate F,

„

from Eq. (4) and used Eq. (8) to
calculate the homogeneous line density L,o. The parame-
ter a was varied until the results obtained from different
V„/V cuts converged. For the data at 1.6 K shown in
Fig. 8, a =0.95+0.05. For the data at 1.4 K shown in
Fig. 9, a =0.80+0.05. Clearly the data virtually collapse
onto a single line defined by the pure superflow results.
The solid line in each figure is Schwarz's result for the
line density in a numerical simulation of a homogeneous
vortex tangle. Regarded as simply an empirical fit to our
dissipation data Eqs. (8) and (9) are quite successful.
Combining Eqs. (8) and (9) gives an expression for the
mutual friction force that is similar to one proposed by
de Haas and van Beelen from a much broader survey of
the V„-V, plane. '

Considering the empirical success of Eqs. (8) and (9) we
might take seriously the idea that the line density is actu-
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FIG. 7. Values of the intercept Vo in Eq. (7) as a function of
V„for two different temperatures.

FIG. 8. Homogeneous vortex line density Lo obtained from
the dissipation using Eqs. (8) and (9). Results are shown for a
range of V„/Vcuts through the V„-V, plane at 1.6 K ranging
from pure superflow to thermal counterflow. The solid line is
the result of the Schwarz numerical simulation for homogene-
ous turbulence using g =0.168.
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FIG. 9. Homogeneous vortex line density Lo obtained from
the dissipation using Eqs. (8) and (9). Results are shown for a
range of V„/Vcuts through the V„-V, plane at 1.4 K ranging
from pure superflow to thermal counterflow. The solid line is
the result of the Schwarz numerical simulation for homogene-
ous turbulence using g =0.136.

ally homogeneous, but that the mutual friction dissipation
is reduced by a coupling constant. The factor —', in Eq. (8)
was originally introduced by Vinen' to account for the
fact that in a homogeneous distribution of vortex lines
only about —', of them would be normal to the direction of
the normal fluid velocity and provide dissipation.
Perhaps the coupling constant cz should be associated with
the —', factor, suggesting a normal-fluid driven polariza-
tion of the vortex tangle. When V„=O,a= 1, and the
lines are randomly oriented. For V„/V—+1 however, such
as for thermal counterflow at low temperatures, a~O im-
plying that the lines would be strongly polarized in the
direction of V„.We consider this to be very unlikely.

Another more appealing interpretation of the coupling
constant can be obtained by considering the term aV in
Eq. (8) to represent the relative velocity between the nor-
mal fluid and the vortex lines (not necessarily the super-
fluid):

n V=V„—Vl .

Using Eqs. (6) and (9) then gives a vortex line drift veloci-
ty of magnitude

VI ——V, —aV„,
and suggests that the vortex lines are dragged by the nor-
mal fluid. In the absence of the normal fluid drag,
a =0, &x=1, and VL ——V, . The assumption that the vor-
tex lines drift with the average superfluid flow V, is in
fact implicit in the unmodified mutual friction expression
in Eq. (5).

Our analysis of the dissipation data in the V„-V, plane
are consistent with a rather simple picture of the super-
fluid turbulence in combined flows. The vortex line den-
sity is maintained at the homogeneous value determined

by the relative velocity between the normal fluid and su-
perfluid. The normal-fluid flow produces a drag on the
vortex lines which reduces the average velocity between
the normal fluid and the lines, reducing the mutual fric-
tion dissipation. Ashton and Northby' have reported a
vortex line drift of this nature although their directly ob-
served drift velocities are about a factor of 3 smaller than
would follow from Eq. (11). Awschalom et al. have re-
ported a very similar experiment in which no drift of the
vortex tangle in the direction of V„could be detected. In
these two experiments, the results were obtained in
thermal counterflow well into the TII region, and cannot
be directly compared to our interpretation of the dissipa-
tion data.

Finally we wish to make some remarks about the onset
of the TII region of superfluid turbulence. This shows up
very clearly in the contour plots at 1.6 K in Fig. 4. At 1.4
K our data do not extend to sufficiently large values of
V„ to reveal this phenomenon. From the shape of the
contours it is clear that the onset of the TII region would
appear quite abrupt along the thermal counterflow trajec-
tory near V„=9cm/s, leading to the notion of a critical
velocity for the onset of the TII state. Several experi-
ments ' have revealed anomalous dynamic behavior of
the turbulence near this critical velocity. The contours do
not tell us how to extend this critical velocity into the
V„-V, plane. Indeed, it appears that the phenomenon as-
sociated with this transition vanishes continuously as
V„~O. The dissipation data taken along the V„=5.9
cm/s trajectory (see Fig. 3), for example, show no evi-
dence of any transition to a higher line density state. It
would be interesting to explore the area above the thermal
counterflow line, where the contours appear to be con-
verging. Data from Leiden indicate that there is locus of
points in the first quadrant of the V„-V, plane along
which the vortex line density changes very abruptly (the
"steep branch" )."' We are presently modifying our ap-
paratus to allow access to this region. It should also be
noted that the TI- TII transition in thermal counterflow is
not observed in tubes of high aspect ratio rectangular
cross section. ' Only a single turbulent state with a vortex
line density nearly equal to the homogeneous value ' is
present in this geometry. The homogeneous state with
vortex line density Lo is present in pure superflow in
these same tubes. Consequently, although the dissipation
has not been measured in the region of the V„-V, plane
between superflow and thermal counterflow we can antici-
pate that the reduced coupling between the normal fluid
and the vortex lines will not be present in the rectangular
geometry.
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