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A unified approximate theory of the one-phonon phenomena in disordered solids [neutron inelas-
tic scattering (NIS), first-order Raman scattering (FOR), and infrared absorption (IRA)] is formu-
lated, under the assumption that different atoms couple to external probes in the same way. The

spectra are expressed in terms of the function (G&(co) ), the Fourier transform (with respect to time
and atomic position vectors) of the displacement-displacement Green s function (GF). To derive

(Go(co) ) a mean-field approximation is applied to the Dyson equation based on the locator GF. In

the co-Q plane the poles of ( GQ(co) ) occur at two "dispersion curves, " L and T, where fico and ih'Q

are the energy and momentum transfers. These curves can be expressed in terms of the two univer-
sal functions of Q. Disorder can also manifest itself in the appearance of frequency gaps in the
curves. The NIS provides information on the L curve. The IRA spectrum is predicted to consist of
isolated peaks situated at the gap edges. For multiatomic systems, the mass-averaged frequency
spectrum is shown to be a linear combination of the FOR and IRA spectra. Experimental data and
computer-simulation results for vitreous Ge02 and Si02 confirm this prediction. The nearest-
neighbor axial-symmetry model for amorphous Ge and Si is shown to lead to dispersion curves that
are compatible with the corresponding Raman spectra.

This paper is an extension of the local Green's-function
(GF) approach, used previously to study the dynamics of
substitutional crystalline alloys, ' to cover fully disordered
solids. The locator GF, carrying information on the
dynamics of an atom as it moves with respect to its frozen
environment, and the isotropy of a disordered macroscop-
ic system, are the basic notions being considered here.

We consider the interaction of an external probe with a
solid, with an energy transfer irtco and a momentum
transfer ih'Q, which excites or de-excites normal modes of
vibration in the solid. Our aim is to compare the experi-
mental spectra measured with neutron inelastic scattering
(NIS), first-order Raman scattering (FOR), and infrared
absorption (IRA) within a unified, if approximate,
theoretical framework. These spectra depend on the
correlation between displacements uR of atoms from their
mean positions R. Relevant correlation functions may be
expressed by the Green's function

GRR'(t t ) ((uR(t) uR'(t )))

It turns out that expressions describing experimental spec-
tra involve sums over R and R' which have the form of
products of the GF's and the factors describing coupling
of the probe to atoms. In the NIS case, they are scalars,
SRBR, where BR is the neutron scattering length times
the Debye-Wailer factor for the Rth atom. In the IRA~( j. ) ~(1) . ~(1)
case, they are of the form MR MR, where MR is the
coefficient in the expansion of the electric dipole moment
with respect to uR. In both cases, one can safely substi-
tute their averages and put them before the sum.

The Raman case is different. Here one deals with the

electronic polarizability tensor and its expansion with
respect to uR. Taking into account isotropy of the sys-
tem, one ends up with the dyadic PRPR. But the same
isotropy requires that any macroscopic vector vanishes:
gRPR ——0. Obviously, it does not make sense to average
PR over R, as was done for the first two cases.

The PR cancellation condition means that there is a cer-
tain correlation between the vectors PR, which must be
accounted for in our treatment of the FOR cross sections.
We find it reasonable to assume that the cancellation
takes place in some atomic clusters rather than in the
whole solid. Let the average number of atoms in the clus-
ters be n, and their average radius, R, . Using these
values, the following seems to be the simplest nontrivial
averaging procedure:

PRPR — =-P o 5R R — 8(R, —(R—R') ), (I)
nc

(G (~)) g G ( ) iQ (R—R')
Q, ~ RR (2)

where B(x) is the unit step function. One can easily
check that the cancellation property is contained in this
form Moreo. ver, it is convenient to choose n, large
enough so that it is characteristic to all correlations we
may deal here with, including the displacement-
displacement correlations.

When the factors due to the probe-atom coupling are
extracted, it turns out that in all three cases the observable
quantities are given in terms of the imaginary part of the
function (GQ(co+i@)), where
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[this formula also gives one a recipe for determining
quantities of the type (( )&) from the quantities
( . )~, which we use later]. When light is involved,
one has to put Q~O. It should be emphasized that, on
summing over a uniform distribution of the Q points and
extending the volume of summation to infinity, one ob-
tains

Im Tr g(Gq(re+i@)) -Q Im Tr[G~~(co+i@)]
Q R

—Co 1'(co),

where y(ro) is the frequency distribution for the system
with identical (average) masses: M =gott. For
monoatomic systems y(ro) turns into usual frequency
spectrum g(co). Having expressed the experimental spec-
tra in terms of the same GF, we can compare them with
each other. One finds that if the FOR and IRA spectra
are properly reduced, then we may combine them to arrive
at

~FQR( ) +~LIRA( (4)

where %z is the self-force constants matrix, obeying the
translational invariance condition

'pa= —g'@ma .
R'

C&~ is the force constants matrix (of the harmonic theory
of small vibrations) between atoms at R and R', and Mtt
is atomic mass. %'ith the perturbation matrix

where cz is an unknown parameter.
This rule has been applied to the experimental results of

Galeener, Leadbetter, and Stringfellow and the computer
results of Bell and Dean for vitreous Ge02 and Sio2 (see
Fig. 2). Despite some shifts in some peak positions,
which may be due to deficiencies of the model used for
computer simulations, the general similarity and a coin-
cidence of the main features in the mass-averaged fre-
quency spectrum y(ro) set up with formula (4), and in the
computed g(co), is striking. The choice of a=1 assumed
here is rather arbitrary; a reliable estimate for this param-
eter should come from the microscopic theory of polariza-
tion phenomena.

The validity of formula (4) does not depend on which
particular approximation for the (G~(ro)) we may take.
However, to make further predictions on experimental
spectra, and to gain some insight into the nature of the vi-
bration modes in disordered solids, we shall derive this
function using some specific approximations.

We shall adopt here the average local-information
transfer approximation (ALITA), developed earlier to
study NIS in substitutional crystalline alloys. ' As an aux-
iliary system we introduce the system of Einstein oscilla-
tors described by the local GF (see Fig. 1)—the locator

LgR' [MRS I +R] ~RR'

FIG. 1. A two-atom disordered system in two dimensions.
Atomic neighborhoods about the atoms at R and R' have been

distinguished: It is clear that the relevant locators L~, L~' are
different [see Eq. {5)]. ntt is the number of the nearest neigh-
bors of the Rth atom. W& &

is one of the bond vectors for the
Rth atom; u~ marks a displacement of the R' atom.

the Dyson equation (G)=(L)+(L C G) [see Eq. (2)
for the meaning of the brackets] can be solved with the
decoupling'

(r..c.G) =(r. c)(G) .
Such a step is exact for the crystal because of its transla-
tional symmetry. Its use in the present problem probably
imposes certain extra ordering on our final conclusions.
It turns out, however, that in the so-constructed GF there
is still enough information on the consequences of disor-
der to make the present approach valuable.

The momentum transfer triQ distinguishes the direction
Q in our isotropic system. Therefore the second-order
tensor (Gq(co) ) must be of the form

2M'ff(m) —eLg(M) ~2M'ff(m) —egT(~)
'

where Q=Q/Q, Q =
i Q i

. The effective mass function

M' (co)=+M~ Tr L~ g Tr L~
R R

has poles about the eigenvalues of the matrices
Vtt/M~ —the squared Einstein frequencies. One can
show that the functions C&g' (co) are

C~g (ri) ) =+ [Ho ( W)hp( 2 QW) +H 2 ( W)h 2( TiQW) ]

C&g(ro) = —,
' +[[Ho( W) —Ho( W)]ho( —,QW) (7)

Car =(1—&am )@ma . —H2 ( W)h 2 ( —,
'

Q W) J,
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where W stands for a vector joining the two atoms —the
bond vector and W=

~

W ~. The parameters H(8') de-
pend on the locators and are therefore singular versus co.
The Q dependence is entirely given by the two functions
(p =Q~/2)
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One can show that @~~@& for Q ~ oo.
The NIS cross section is proportional to

QQ Im(G~(co+i@) ) -5(co—co&),

where the ~&' are the roots of the equationL, T
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These "dispersion curves" are fully expressible in terms
of the functions ho(p), h2(p). Locator singularities mani-
fest themselves as frequency gaps in the curves. It should
be emphasized that the NIS spectra depend solely on co~,
i.e., they are basically unable to provide all the informa-
tion necessary to determine the frequency spectra, see Eqs.
(3) and (6). The co~ curve can be determined with a
constant-Q scan. A long-wave-vector trans'. .erse external
probe should be invented to look for co~.

We should think of the dispersion curves as only a con-
venient means of interpreting scattering experiments.
However, their connection to the frequency spectra y(co),
displayed in Eq. (3) (we will omit discussion of the con-
vergence of the Q summation and the problem of the NIS
peak broadening), indicates that they have direct relevance
to the normal modes in disordered systems. Let us
remember that the NIS cross section involves correlation
functions, (Q uaQ ua), i.e., that only a projection of
normal modes in the direction of the scattering vector Q
is sensed by neutrons. On the other hand, if in a certain co

range there are no normal modes, they cannot show up in
dispersion curves, so the information on frequency gaps is
reliable at least.

The present theory predicts that one of the gap edges
coincides with a root of M' (co). The IRA spectrum
should consist of isolated 6-function-like peaks, also at the
frequencies corresponding to the above roots. Indeed, as-
suming some broadening, this is the structure of the ex-
perimental IRA spectrum for Ge02 and Si02 (see Fig. 2).
Remarkably, the IRA peaks turn out to be good gap
markers.

For monoatomic systems M' (co)=M and one-phonon
infrared absorption should be absent: y (co) =0. Tak-
ing this result together with formula (4), we get for
monoatomic systems

+FQR( (9)

This approximate result is obtained here under assump-
tions stronger than Eq. (3) and the more complicated and

I I j I I (
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FIG. 2. Optical spectra, FOR and IRA, for vitreous GeO
and SiO, according to Galeener, Leadbetter, and Stringfellow
(Ref. 3). The mass-averaged frequency spectrum y(co) has been
combined from the above spectra, using formula (4), with +=1.
Frequency spectra obtained numerically for large clusters of
atoms by Bell and Dean (Ref. 4) are shown below. su=2m. c8'
where c is the velocity of light.

more exact formula of Shuker and Gammon. For a long
time, relation (9) was expected to be approximately true
on intuitive grounds.

The structure of the dispersion curves is related to the
structure of the frequency spectrum. To see this point
clearly, let us examine an example. We can use axial

g (~) arbitrary units

P

FIG. 3. Experimental Raman spectrum for amorphous Ge,
according to Alben et al {Ref. 7), and calculated dispersion
curves (11), corresponding to the nearest-neighbor axial-force

2model, with t/l = 9. The highest frequency in the L curve has

been matched with the high-frequency kink in the Raman spec-
trum. No locator effects have been allowed.
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forces to describe interatoinic coupling in amorphous Ge:

(Wa ——W-/i W-
[

)

~a ~P (10)

Upon neglecting the locator effects (L=I ), and assuming
a fixed number n of nearest neighbors, we obtain the
dispersion curves

McoL, 2n [th——o(p)+lh2(p)]

Mco z n[——(l +2t)h 0(p) —lh 2(p) ]

The curves are shown in Fig. 3, together with the Raman
spectrum of Alben et al. We have assumed n =4 and,
following Thorpe, t/l = —', . The value of the coupling
parameter I has been fixed by adjusting the maximum fre-
quency in the I. curve to the position of the shoulder kink
in the Raman spectrum at to=360 cm '. One finds

lo, ——164 kg/s, which is -70%%uo longer than the corre-
sponding value for crystalline Ge. Similarly, for amor-
phous Si one finds ls; ——165 kg/s . Remarkably, within
experimental error, lo, ——ls;.

There is a high degree of internal agreement between
the Raman spectra and the dispersion curves. The accu-
mulation of frequencies about 280 cm ', especially in the
T branches, should lead to a peak in g(co) just in the vi-
cinity of this value, and indeed, this is the main feature of
the Raman spectrum. A much weaker structure at about
cm ' is probably due to some locator effects, neglected
here.

A more detailed version of this work, along with a full-
er discussion and reference list, will be published else-
where.
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