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We introduce a ‘‘generalized dual method’’ for generating quasicrystal structures with arbitrary orienta-

tional symmetry in two and three dimensions.

Quasicrystals' are ordered structures with long-range
quasiperiodic translational order and long-range orientation-
al order. Incommensurate crystals are a special case for
which the orientational order corresponds to an allowed
crystal symmetry. For this case, the incommensurate length
scales are unconstrained by the orientational symmetry. In
general, though, quasicrystals can have disallowed crystallo-
graphic orientational symmetries in which case the incom-
mensurate length scales are constrained to special ratios.
These noncrystallographic cases have fundamentally dif-
ferent mathematical and physical properties from crystals or
incommensurate crystals.">** Quasicrystals have a diffrac-
tion pattern composed of pure Bragg peaks that densely fill
reciprocal space forming a pattern with a symmetry corre-
sponding to the orientational order of the quasicrystal.! Re-
cently, Shechtman, Blech, Gratias, and Cahn® have reported
a rapidly quenched alloy of Al-Mn that exhibits a diffraction
pattern of sharp peaks in an icosahedrally symmetric pattern
that corresponds to the computed diffraction pattern for an
icosahedral quasicrystal."¢-® Icosahedral quasicrystals have
therefore been studied in some detail already.

The purpose of this paper is to introduce a ‘“‘generalized
dual method” (GDM) that can generate quasicrystals in two
(2D) or three (3D) dimensions with arbitrary orientational
symmetry. Many orientational symmetries for 3D quasicrys-
tals have already been studied: (i) Quasicrystals with orienta-
tional symmetry corresponding to any regular polygon are
possible in 2D.° The 2D patterns may be trivially extended
to form 3D uniaxial structures with periodic or quasiperiodic
ordering in the third dimension. (i) The only intrinsically
3D quasicrystal (other than incommensurate crystals) that
has been discussed is the icosahedral quasicrystal (and vari-
ous duals, e.g., dodecahedral). All these cases are self-
similar."'® Examples of icosahedral quasicrystals'! have
been generated with use of the matching and “inflation”
methods discussed in Ref. 1, special projections from
higher-dimensional periodic (cubic) lattices,>~%!2 and the
GDM discussed in this paper.'°

The GDM can be used to generate any of the structures
obtained by the other methods. One advantage of the
GDM is that, for any fixed orientational symmetry, it gen-
erates a much wider class of space-filling patterns than any
of the other methods. The key advantage of the GDM so
far as this paper is concerned, though, is that it is a simple
method for generating quasicrystals with any orientational
symmetry. Although quasiperiodic and orientationally or-
dered, the new possibilities generally have lower symmetry
than the cases described above and, as a result, are not
necessarily self-similar. (In this sense, we are broadening
the definition of quasicrystal introduced in Ref. 1.)

The GDM is a generalization of a method developed by
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deBruijn'® to obtain 2D Penrose tilings.!* The method of
generating a 3D quasicrystal, say, consists of the following
five steps: (1) A “‘star’> of N 3D vectors is chosen which
determines the orientational symmetry of the quasicrystal.
For the regular icosahedron, a star of N =6 unit vectors can
be chosen, each of which is parallel to one of the six five-
fold symmetry axes of an icosahedron. (2) An (infinite) set
of periodically or quasiperiodically spaced parallel planes is
introduced normal to each star vector, ¢;. Randomly spaced
planes can produce a structure with long-range orientational
order but not translational order. The unit of spacing
between planes normal to any given e; is proportional to the
length of e;. Each set of parallel planes forms a ‘‘grid.”
Taken together, the grids form an ‘‘N-grid’’> which lies in a
3D space that we will term a ‘‘grid space.”” We note that
there are many degrees of freedom in this prescription for
the N-grid: The translation of each grid normal to its planes
and, for quasiperiodically spaced planes, the incommensu-
rate length scales and the quasiperiodic sequence of spacings
between grid planes. For simplicity, we will assume that the
degrees of freedom have been fixed so that at most three
planes intersect at any given point.!® (3) Each plane normal
to star vector e; is labeled by an integer »; which represents
its ordinal position along the e; direction. (4) The planes
divide grid space into nonintersecting open regions through
which no planes pass (the regions can be arbitrarily small).
Each such region is specified (uniquely) by N integers
(ki,ka . .., ky): if Xo is any point in the region then k; is
the label of the plane normal to e; such that x, lies between
the planes labeled by k; and k; +1. (5) The ‘‘dual” is con-
structed by mapping each open region in grid space into a
point t=3 /L, kie; which lies in a 3D space that we shall
term ‘‘cell space.”” The points ¢ are the vertices of a packing
of quasicrystal unit cells (see Fig. 1). We will refer to a par-
ticular packing of unit cells obtained by a dual transforma-
tion to a given N-grid as a ‘‘packing’’ (a ‘‘tiling’’ will refer
only to 2D).

A further generalization can be obtained by replacing the
grid planes with more general grid surfaces.!® In this case,
there are some subtle topological constraints on the shapes
of the surfaces in order to ensure that the unit cells do not
overlap in the dual packing.!®1

A little practice with the GDM reveals the following prop-
erties: (i) Each intersection of three planes in grid space
divides 3D space locally into eight regionis whose duals cor-
respond to the vertices of a single unit cell in cell space.
Thus, the dual to an intersection in grid space is a unit cell
in cell space. The unit cell is a parallelepiped with its side
lengths and angles determined by the lengths and angles of
intersection of the three e; normal to the intersecting grid-
space planes. The number of different triplets of star vec-
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FIG. 1. Illustration of the GDM in 2D for an arbitrary orienta-
tional symmetry. (a) A 7-grid based on the star of vectors shown.
(b) The dual tiling. The shaded cells in (b) are dual to the intersec-
tions along the thick line in (a). (Note that the cells join along
edges perpendicular to that line.) The open and solid circles mark
the cells associated with the similarly marked intersections of the 7-
grid. The cell shape is determined by the angle between grid lines
at the intersection. There are 21 different cell shapes in (b).

tors (that is, with different angles of intersection) deter-
mines the number of different shapes of unit cells in the
packing, which is at most N(N — 1) (N —2)/3!. (ii) N-grids
with periodic spacings can be obtained via projections from
higher-dimensional periodic lattices and dual packings can
be generated.'>!>16 The same packings have been obtained
by a ‘“direct’’ projection®®!> (no dual) from five and six
dimensions. These methods are all equivalent to the GDM
with periodic N-grids only and the packings they generate
represent a restricted subset of GDM packings for any given
symmetry. (iii) When quasiperiodic rather than periodic
spacing of planes is used for an N grid, the unit-cell shapes
in the packing are unchanged. These depend only on the
star vectors that generate the N grid. However, the config-
urations of cells and, in some cases, the relative numbers of
different unit cells in the packing can differ. (iv) The pack-
ings generated by a given set of star vectors can be divided
into different ‘‘local isomorphism”’ (LI) classes depending
on the choice of N-grid parameters. Two packings are in
the same LI class if any finite configuration of cells that ap-
pears in one packing appears in the other. Two quasicrystals
corresponding to packings which are locally isomorphic have
the same diffraction peak intensities and elastic energy.!”
For example, the icosahedral packings obtained by the
matching rules described in Ref. 1 correspond to one LI
class and the packings obtained by projections from 6D cor-

SOCOLAR, STEINHARDT, AND LEVINE 32

respond to another; a mathematical formalism for determin-
ing the N-grid parameters appropriate to these packings is
given in Ref. 10. Quasicrystal packings of this type may be
of special interest if the matching rules can be realized phys-
ically (by bonding of atoms in special clusters, say). In gen-
eral, though, the physical properties associated with all pos-
sible quasicrystal structures should be considered.

The GDM is a simple and powerful method of generating
quasicrystals from any fundamental star of vectors. Any
quasicrystal generated by the GDM has a long-range orien-
tational symmetry. In particular, each edge of each unit cell
is oriented parallel to a star vector. The packing of unit
cells is analogous to a Bravais lattice and any decoration of
the unit cells with ‘‘atoms’” will have a diffraction pattern
which reflects the orientational symmetry. The construction
guarantees that the packing has a well-defined quasiperiodic
translational order. As a result, the packing has a diffrac-
tion pattern that consists of a dense set of Bragg peaks. The
quasicrystal formed from the unit cells also has a nonzero
lower bound to the separation between neighboring vertices.
Only special cases of high symmetry (e.g., icosahedral) will
have the self-similarity properties and close association with
algebraic number fields discussed in Ref. 1.

Just as there is a Landau theory for a crystal phase, so
there is a Landau description possible for every quasicrystal
generated by the GDM method. A Landau theory for the
regular icosahedral phase has already been derived by
several groups.2*%17.18 A quasicrystal phase and transitions
to and from it are described in terms of a phenomenological
Landau free energy that can be expanded in a power series
in the density, p(r). The expansion is expressed in terms
of the Fourier components of the density pg, where G is a
vector in reciprocal space. For simplicity, attention is re-
stricted to a subset of pg’s which includes the basis vectors,
the maximal subset of star vectors such that no vector in
the subset can be expressed as an integral linear combina-
tion of the others. There is an independent hydrodynamic
mode associated with each basis vector. By cutting off the
Fourier expansion of p(r) to include only a few terms, a
density-wave description for the phase can be obtained. As
a microscopic structural description for solids at tempera-
tures far from the melting point, though, the density wave
description is of limited use.

In Fig. 1 we show a 2D quasicrystal constructed via the
GDM by use of seven arbitrary star vectors. As a 3D ex-
ample, we show in Fig. 2 a slice through a 3D quasicrystal
constucted from N = 6 star vectors which point to six of the
twenty face centers of an icosahedron (see inset of Fig. 2).
This particular example has some residual icosahedral sym-
metry that makes it easy to visualize and compare with the
more familiar icosahedral (vertex) model. Because of the
symmetry, there are only four different rhombohedral unit
cells (whereas for N = 6 there are twenty for arbitrary sym-
metry or two for the vertex model).

In general, the diffraction pattern consists of a dense set of
Bragg peaks that can be indexed by N integers. We do not
know an exact method for computing the peak intensities for
a general GDM packing with arbitrary symmetry, although
there are numerical methods. For the particular case of Fig.
2, each tile vertex is of the form 2q=i,j_k(mq+2nq/'r)eq,
where i,j,k label different N-grids and mg,n, are integers.
As a result, the diffraction pattern has the same peak pattern
and similar intensity hierarchy as the pattern of an N-grid
formed by quasiperiodically spaced planes where the distance
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FIG. 2. A slice of a 3D tiling generated from the distorted
icosahedral star of vectors described in the text. The cells shown
are dual to intersections of grid-space plane normal to es. The six
star vectors are a subset of the ten independent vectors that point to
the face centers of an icosahedron as shown in the insert. The top
surfaces of the four different types of cells are shaded differently.

from the origin of the kth plane normal to the e; direction is
given by x;=k-+2/7[k/27], where the square brackets
represent the greatest integer function.!® The method of
computing the diffraction pattern of such an N-grid is
described in Refs. 1 and 10. The diffraction patterns in a
plane normal to a twofold and broken fivefold axis are
shown in Fig. 3. These resemble the patterns obtained for
the icosahedral (vertex) model with some noticeable systemat-
ic differences due to the broken symmetries.

The fact that the structures are determined by N star vec-
tors and the diffraction patterns are indexed by N integers
suggests that the quasicrystals can be understood in terms of
projections from higher-dimensional spaces. In fact, the
special case of an N-grid with periodic spacings between
planes and arbitrary symmetry can be obtained by such a
projection.!® 1 However, we do not know how to obtain a
general GDM- packing generated from an N-grid with quasi-
periodic spacings as a projection from a higher-dimensional
space.

So far it appears that only a few of the many possible
quasicrystal symmetries are realized in nature. This might
be due to any of several reasons. Perhaps only the symme-
trical cases can be ground states or locally stable states for
atomic structures. Perhaps only those cases where the
structure can be forced by simple local interactions, such as
the icosahedral case, are realizable. A fascinating possibility
is that perhaps many quasicrystal symmetries are realized in
nature, but they have not been detected. In Fig. 1 we show
a 2D example of a quasicrystal generated via the GDM us-
ing seven arbitrary star vectors. Although the structure
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FIG. 3. Diffraction patterns for the distorted icosahedral struc-
ture of Figure 2. The radii of the circles are proportional to the
Bragg peak intensities. (a) A twofold axis. (b) A broken fivefold
axis.

clearly has an orientational symmetry, its translational order
is not at all apparent. A solid composed of many micro-
grains of such a quasicrystal phase might be very hard to
distnguish from a glass. With many star vectors, the bright
diffraction peaks will be very closely spaced (unlike the
icosahedral case, say). This, combined with broadening by
defects and thermal effects, could make it difficult to detect
the translational order without close scrutiny.

Note added. After submission of our manuscript, we re-
ceived a manuscript from F. Gahler and J. Rhyner!S which
discusses a ‘‘generalized grid method’’ and its equivalence
to direct projection methods. The generalized grid method
in their paper corresponds to the GDM for the special case
of periodic N-grids.
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