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Size effects on electron-electron interactions in GaAs-Al„Gal As heterostructures
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Magnetoresistance measurements are made on the two-dimensional (2D) electron gas in GaAs-
Al„oa1 „As heterostructures to study the electron-electron interaction as a function of the sample width w

For w &20 p, m, the data fit the 2D interaction theory. For w & 20 p, m, the magnetoresistance shows a
large enhancement for w = 3 p, m, confirming the 2D-to-10 crossover expected from the interaction theory,
and a drastic decrease for w ~ 2 p, m, due to the increasing importance of boundary scattering.
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where Q is the digamma function and 7 the elastic impurity
scattering time. The interaction parameter g2D is given
by9, 10
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There is a great interest in the quantum corrections, due
to localization and electron-electron interactions, to the clas-
sical Drude conductivity of electronic systems. ' In the case
of the two-dimensional (2D) system realized in semiconduc-
tor inversion layers, 2D-to-1D crossover phenomena are ex-
pected when the width ~ of the conducting channel is close
to the length scales characteristic of the underlying physics.
Several recent publications2 6 have already reported new
features in the transport through narrow channels. Indeed,
localization correction is now sufficiently well understood
that its 2D-to-1D crossover has been demonstrated to occur
when u approaches the electron inelastic scattering length.
The interaction correction, on the other hand, is not so well
understood and the associated 2D-to-1D crossover has yet to
be clearly demonstrated. Recently, Paalanen, Tsui, and
Hwang showed that in the classically strong magnetic field
regime, localization is completely suppressed and the magne-
toresistance directly measures the quantum correction due to
electron-electron interactions. %'e have utilized this experi-
mental fact and investigated the interaction correction as a
function of 1LI of the 2D electron gas in GaAs-Al Cxal „As
heterostructures. Our results agree with predictions from the
2D interaction theory for m) 20 pm. For w (20 pm, while
agreement with the 1D interaction theory is observed for
u &3 pm, clear disagreement is apparent for m &2 pm. In
this Rapid Communication, we present these results and
demonstrate that they manifest the 2D-to-1D crossover in
the interaction effect when w=(AD/kT)', as predicted by
Altshuler, Khmel nitzkii, Larkin, and Lee. The deviation
from the the 1D interaction theory for m & 2 pm is attribut-
ed to the increasing importance of boundary scattering,
which is expected to decrease the orbital magnetoresistance
effect.

From the interaction theory, the correction to the Drude
conductivity of a 2D electron system iss

where I' is the direct-Coulomb-interaction parameter de-
fined in Ref. 11. When'/kTr » 1, Eq. (1) is reduced to
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where a.o is the Drude conductivity. Equation (4) predicts
an orbital magnetoresistance proportional to 8, even
though So- is independent of 8. Indeed, the absence of the
parallel-field magnetoresistance with 8 &( 8, from our
measurements confirms the orbital nature of this magnetic
field effect.

Altshuler et al. ' first pointed out that the interaction ef-,
fect will be 1D when ~ is less than the thermal diffusion
length defined by Lr=n. (tD/kT)' ', where D is the elec-
tron diffusivity. In the 1D case, the theory gives
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where 5a. is expressed in (0/CI) '. The interaction param-
eter is'4
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for 8 « 8, and, as in the 2D case, So-~ =0. This vanish-
ing of Sa.~ follows from the formulation that MP(q) and
M~(q) in Eqs. (59) and (60) of Ref. 12 are odd functions
of q„and q~. When the summation is done on q„ for a fin-
ite set of discrete values of q„, 6o-~=0. Consequently, Eq.
(4) also holds for 1D, with Ba. given by Eq. (5). In other
words, regardless of the dimensionality of the electron sys-

1 eSa.= — —g2D ln (3)2+2 4 kT7.

This correction is insensitive to magnetic field 8, even in
the classical high-field regime cu, r & 1 (Ref. 12) (where
cu, = eB/m' is the cyclotron frequency). The Zeeman effect
is important only when B & B„with B,= kT//g'p, s.'3 '5-
(Here, p,s is the Bohr magneton and g' is the effective elec-
tron g factor. ) For GaAs, B,=43 kG at T=1.5 K. '6 Since
our experiments were performed with 8 &( 8„ the correc-
tion is essentially independent of B. Concurrently, the in-
teraction theory also predicts Bo-~=0. The correction to
the resistivity, obtained by inverting the conductivity tensor,
1s12
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TABLE I. Sample parameters.

Device No. W, (10' m-'} 7 (10 '2 s) Theor. T, (K)

156
34.5
6.2
3.5
3.0
1.1

5.03
5.43
5.02
5.43
4.79
4.84

11.4
9.68

11.3
9.68
7.45

10.3

0.0017
0.031
1.1
3.0
2.9
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where n, is the electron density. Although hp has the same
B dependence in both dimensions, its dependences on w,

F, and T are sufficiently different in the two cases to allow
an unambiguous experimental test of the interaction theory
in both dimensions.

Several devices were fabricated by using photolithographic
techniques for four-terminal measurements. Their specifica-
tions, along with the 2D-to-1D transition temperatures T,
calculated using w = L,T, are shown in Table I, The data are
taken above 1.5 K with 8 & 8 kG. The measurements are
made using a lock-in amplifier operated at 145 Hz and
a constant-current source of 10 A to avoid electron heat-
ing. '7

tern, So- can be obtained directly from measuring the mag-
netoresistance in the B regime. More specifically, Eqs.
(1), (4), and (5) can be combined to yield

Sp(8) =5p(8) —sp(0)

Figure 1 shows the perpendicular-B dependence of the
channel resistance at 4.2 and 1.6 K, taken from four devices
with different w For the samples with w=156 and 34.5
p, m, the parbolic magnetoresistance is observed for B= 200
G up to —4 kG. In this range of B, the quantum correc-
tions due to localization are completely suppressed, ' but the
Zeeman correction has not yet set in. For narrower chan-
nels, this parabolic behavior is observable when 8 Q2 kG,
and a temperature-insensitive magnetoresistance is de-
veloped at lower B. The range of this T-independent mag-
netoresistance increases with decreasing w and it extends to
B= 2.5 kG for w = 1.1 p, m. At present there is no explana-
tion for this phenomenon, and experiments are planned for
further investigations. Here, we focus on the parabolic re-
gime and extract the interaction parameter g directly from
its T and w dependences.

In Fig. 2 we show the experimental data, plotted as

leap(B)/B~l

n,'2''t vs [g(~+t/kTr) —P(~) ],
from four wider devices in the parabolic regime. [In the
case where the Shubnikov-de Haas (SdH) effect is ap-
parent, the midpoints of the oscillations are being taken. ]
Here, ~ is deduced directly from the conductivity at B=O.
For devices with w=156 and 34.5 p, m, respectively, the
data follow two straight lines passing through the origin, as
expected from the 2D theory. From their slopes, we obtain
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FIG. 1. The change of resistance hR/Rc as a function of per-
pendicular 8 at 4.2 and 1.6 K. The irregular structures in the dita
of device No. 6 below 4 kG are reproducible; they are not
Shubnikov-de Haas oscillations.
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K. K. CHOI, D. C. TSUI, AND S. C. PALMATEER

l.4

I
k-

20—
Cs

g 0.7
THEOR. gpo

0
lO

I I I ~ I [

IOO
w (yam)

IOOO

l

0.5
I/~» K-va

~

0.7

FIG. 3. Ihp/82I vs 1/JT for devices No. 3, No. 4, No. 5, and
No. 6.

FIG. 4. Experimental values of the interaction parameter g vs w.

g is extracted either from Eq. (7) or from Eq. (8) as determined by
the characteristic temperature dependence of b o-. Since g is a weak
function of n„ the data show only the general trend. The data
point (5) is from Ref. 7 with n, = 1.17x 10ts m 2, using Eq. (7).

g=0.54+0.02 and 0.51+0.02. These values of g are close
to the theoretical value of 0.7 from Eq. (2), using F= 0.45
for n, —5.5 x 10' m . %ithin experimental uncertainties,
the data show no w dependence, consistent with Eq. (7).
For ~ = 6.2 and 3.5 p, m the data show increasing deviations
from the 2D behavior as T decreases. These deviations are
suggestive of a transition as T approaches T, (Table I), ex-
pected for the crossover from the 2D interaction effect to
the 1D interaction effect.

In Fig. 3, the data from the four narrower devices are
plotted as I/Jp(B)/B I vs I/JT. For a=1.1 pm, the I/JT
dependence, predicted by the 1D interaction theory [Eq.
(8)], is observed in the entire T range. For w = 3.0 and 3.5
p, m, this T dependence is observed for T & T„whereas for
~ = 6.2 p, m, the 1D characteristic is not yet fully developed,
consistent with the predicted T, of 1.1 K. In addition, Ihp I

is observed to increase with decreasing ~ for w & 3 p, m,
consistent with the expected I/w dependence. The g values,
deduced from the slopes of the curves using Eq. (8), are
sho~n in Fig. 4, together with those of devices No. 1 and
No. 2 obtained from the 2D theory using Eq. (7). The larg-
est value of g, obtained from ~=3.5 p, m, is 1.11+0.05,
close to the theoretical value gqo= 1.33, calculated from Eq.
(6) using F=0.45. For a=6.2 p, m, g deduced from the
data at 1.5 K is 0.89, indicating that the device is in 2D-to-
1D transisition in this temperature range. For ~ & 3.5 p, m,
the g value begins to drop. It can be argued that when
w ~ l, ( —3 p, m), where l, is the elastic impurity scattering

length, the broadening of the Landau levels due to boun-
dary scattering becomes important. The scattering decreases
the lifetime of an electron in a Landau orbit and hence de-
creases the orbital effect. This is reflected in a reduction of
g extracted from Eq. (4). Further evidence that boundary
scattering is increasingly important in narrower devices is
seen in Fig. 1, where the onset of the SdH oscillations occur
in higher 8 for narrower channels. In fact, it may already
be significant for a=3.5 p, m and leads to the observed
reduction of g from its theoretical value.

In summary, we showed that the correction to the cori-
ductivity due to the interaction effect can be deduced from
magnetoresistance measurements, regardless of the dimen-
sionality of the electron gas. The result confirms the 1D as
well as the 2D interaction theories and shows the presence
of the dimensional crossover. The magnitude of the mag-
netoresistance first increases with decreasing w, indicating a
2D-to-1D transition, and then decreases for ~ & 3 p, m.
This decrease is believed to be the precursor of the ex-
tremely 1D case, in which electrons are localized along both
the width and the depth of the channel. The orbitaI effect is
expected to be absent.
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