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Emission spectra of n-type modulation-doped semiconductor quantum wells are calculated in a multivalley
effective-mass model which includes the valence-band mixing. The many-body effect is taken into account
by consideration of the single electron-hole pair excitations and the shakeup process. The resulting emis-
sion spectra for both parallel and perpendicular polarizations are found in reasonable agreement with the re-

ported experimental data.

Recent experimental studies of the optical emission from
electrons confined in GaAs-Al,Ga;_,As quantum wells
have shown that the photoluminescence has an unexpected-
ly strong component with polarization normal to the planes.!
Effective-mass theories that include excitonic interactions
and conventional symmetry-breaking mechanisms do not
account for this phenomenon. Although it was conjectured!
that the many-body effect analogous to the shakeup in x-ray
emission®3 may explain such a phenomenon, no calcula-
tions have been reported to verify the assumption.

In this Rapid Communication, we report a calculation of
the emission spectra of modulation-doped GaAs-
Al,Ga;_yAs quantum wells, including the effect of
valence-band mixing and the shakeup process. The results
are found in reasonable agreement with the experimental
data. The unexpectedly strong normal component in the
emission spectrum is attributed to the combined effect of
valence-band mixing at nonzero wave vectors*® and the
shakeup process. In the shakeup process, the electron-hole
recombination is accompanied with all possible excitations
of the final many-electron system.?3

The initial state of the system of interest consists of a
two-dimensional electron gas of N particles and a single
hole, all confined in a semiconductor quantum well. The
Hamiltonian for this many-body system is given by®
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where €.(k) and €,(p) are the first conduction-subband and
valence-subband dispersion relations, respectively, for .the
quantum well. Here we use k, p, and q to denote two-
dimensional wave vectors for the electron, hole, and wave-
vector transfer, respectively. a, (a,) and b] (b,) create
(annihilate) an electron and hole, respectively. v.(q) and
v (q) denote the electron-electron and electron-hole
Coulomb interactions, respectively. The function e.(k) is
given in the effective-mass approximation by a simple para-
bolic expression. The function €,(p) is obtained by a multi-
band effective-mass method as described in Ref. 5. The
electron-electron interaction is given by’
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where ¢, is the static dielectric constant and f,(z) is the
lowest-energy solution to the effective-mass equation for an
electron in a one-dimensional potential V,(z)= V,(z)
+ V4(z). Here, V,(2) is the square-well potential for the
electron and ¥, is a smooth-varying potential, describing the
band-bending due to doping. The forms for V,(z) and
V4(z) are described in Ref. 5. The electron-hole interaction
is similarly given by
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where g,(z) is lowest-energy solution to the multiband
effective-mass equation for a spin-% hole in a one-
dimensional potential V,(z) = V,(z) — V,(z). Here, V,(z) is
the square-well potential for the hole (see Ref. 5).

We donate the N-electron ground state in the absence of
the hole as @y, and consider the fundamental excitation of
@y due to the presence of the hole. At low temperature we
assume that the N electrons fill a Fermi sphere up to iz, the
Fermi wave vector. We define ®y = a,’:ﬂakbz &y as the
single electron-hole pair excitation, in which an electron in
the lowest conduction subband with wave vector k
(k| < k) is excited outside the Fermi surface (|k+ql|) kz)
(it is not possible to excite the electron into a different sub-
band within our approximation) and a hole with wave vector
q is created. Note that all such excitations have zero total
momentum and can be coupled together via the electron-
hole interaction. We express the N-electron plus one-hole
state ¥, as a linear combination of the single electron-hole
pair excitations, viz.,

V=3 F(k, Q)P , 4)
k,q

where F;(k,q) shall be called the envelope function. Here
we have ignored the possible many-particle excitations in
the state ¥;. The envelope function F,(k,q) can be found
by solving the Schrédinger equation (H — E;)¥,=0, which
can be cast into the equation

[Agg+ e (@) — EF(k,q) — S va(ad) Fi(k,q+q")
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with the constraint Fi(k,q)=0 if €.(k) >er or €.(k
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+q) <er (ep is the Fermi energy). In (5) Ay=¢.(k
+q)—¢&.(k), where ¢€.(k) is the ‘‘renormalized”
conduction-band dispersion relation. In the Hartree-Fock
approximation, it is given by®

€ (k) =€.(k)— + 3 ve(k—k)0(er—€, (k"))
kl

and in the parabolic approximation, we found

N . A
E (k)= 2m;+ p= 2k 1

The parabolic approximation is fairly good for k < 2kr. For
k > 2kr, we found that the band renormalization effect is
very small and we neglected it completely in our calculation.
The second term in (5) describes the Coulomb scattering
process in which an electron is scattered from (k+q) to
(k+q+q’) and a hole is scattered from q to (q+q’). The
third term in (5) describes the Coulomb scattering process
in which a hole left in the Fermi sea is scattered from k to
(k—q’) and a hole in the valence band is scattered from q
to (q+q’). Note that in the limit N=1(eF=0), the third
term in (5) vanishes and (5) reduces to the effective-mass
equation for the exciton problem.

To simplify the problem, we shall ignore the third term in
(5) completely. This term makes a very small contribution,
because the envelope function for the ground state is sharp-
ly peaked at |k|=kr. Equation (5) is now decoupled for

each k, and the initial states can be donoted as ¥;(k). To .

find the solution F;(k,q), we expand it in terms of many
Gaussian functions of the form exp(— aAy,), viz.,

Fi(k,q) =3 Cla)exp(—aly) . ©)

The expansion (6) is desirable for several reasons: (1) it
gives an accurate exciton binding energy and wave function
in the limit N =1, (2) it is the most general form for the
ground state if the hole kinetic energy vanishes; thus it is a

very good approximation, as long as the hole effective mass
|
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is much larger than the electron effective mass, and (3) all
matrix elements for these Gaussian functions are fairly easy
to calculate. The expansion coefficients in (6) are nearly in-
dependent of k. Thus for any k within the Fermi sphere,
the envelope function takes the form F(Ay,) with the
ground-state energy

E{Y (k) == E§D (k) + [, (kp) —&. (k)] ,

where E{? (kp) is the lowest-energy solution to (5) with
k| = kF.

The energy E{” (kr) and the expansion coefficient Cy(a)
can be obtained numerically by solving a generalized eigen-
value problem in the nonorthogonal Gaussian basis. To
simplify the calculation, a parabolic approximation has been
used for the first valence subband. The hole effective mass
is chosen to.be 0.35mq such that the kinetic-energy contri-
bution is approximately the same as that obtained by using
the exact expression. We find E}}at the system has bound
states for kr less than 0.019 A °. The binding energy of
the system reduces to that of the exciton as kr— 0. We
also note that the shape of the envelope function F(’(A,,)
does not change appreciably with the binding energy, even
when the system becomes unbound. This is reasonable, be-
cause the reduction in binding energy arises from the more
stringent constraint of the Fermi surface for increasing kg,
while the strength of the potential which determines the po-
larization remains the same.

Knowing the polarization in the initial state due to the
electron-hole interaction, we are now ready to examine the
emission spectrum of the system in the shakeup process.
The possible final states of the system after the recombina-
tion of one electron-hole pair can be described by

v f(k ,q) =aqa :1

+CIak/aqd);v s @)

in which an electron at q is annihilated (due to the recom-
bination with a hole at q in ¥,) and another electron at k' is
simultaneously scattered off the Fermi sphere to a state with
wave vector (k'+q) (|k’+q|> k). The emission spec-
trum at low temperatures is then given by

I(hw) ~ 3 expl— EP(k)/ kg T1 3, (¥ (k)& -p|¥,(k',q@)) |26 (hw+ EL (K’,q) — E?(k)) , (®)
k
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where £ (k’,q) EAk,q- €.(q) denotes the final-state energy and € denotes the polarization of the luminescence. A
Boltzmann factor has been introduced because the system was initially kept at constant temperature 7. Substituting (4) and

(7) into (8) yields

I(rw) ~ 3, |6 - P(Q? 3 FP(Ag)expl — EP(k)/ kg T18 (hw + EV (k,q) — EP (k) , )
q k

where P(q) is the momentum matrix element between the
conduction subband and the valence subband at q. Note
that P(q) varies strongly with q due to the valence-band
mixing.*#> The squared momentum matrix elements for the
transitions from the first heavy-hole (HH1) and first light-
hole (LH1) subband to the first conduction subband (CB1)
for two polarizations €ll X (§) and €2 for a 221-A GaAs-
Al 23Gag77As quantum well are shown in Fig. 1.

il

I

In order to demonstrate the importance of the many-body
effect, we have also calculated the emission spectra without
considering the shakeup process. In this case the initial
state is given by ¥{’= b: @, (the N-electron ground state
plus a hole at q) and the final state is given by ¥’ = a, @y
(a missing electron at g in the N-electron ground state). At
a low temperature 7, the emission spectrum can be derived
according to the Fermi golden rule. We obtain

I(fw) ~ 3 expl—€,(q)/ kg T1|& -P(q) % (hw —€,(q) —&.(q))0 (e —E.(q)) , (10)
q

where we have ignored the small temperature fluctuation in the N-electron complex.
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FIG. 1. Squared momentum matrix elements for the transitions
from the first heavy-hole (HH1) and first light-hole (LH1) subband
to the first conduction subband (CB1) for two polarizationg &l X(§)
(solid curves) and &llz (dashed curves) for a 221-A GaAs-
Alp 23Gag 77As quantum well.

The emission spectra obtained from (9) (solid curves)
and from (10) (dashed curves) for the same quantum well
with ex=18.0 meV at T=S5 K are shown in Fig. 2. The ex-
perimental data of Sooryakumar et al., are also shown in the
lower panel for comparison. Note that at ex=18.0 meV,
the second conduction subband is also partially filled. The
emission intensity from this subband, however, is negligi-
ble, since the HH1-CB2 transition matrix element is weak.
The z-component emission spectra are multiplied by 10 in
Fig. 2. As seen in Fig. 2, the results obtained from (10)
which ignored the many-body effect are in strong disagree-
ment with the data. The x-component emission spectrum
obtained from (9) which includes the many-body effect is
found in very good agreement with the experimental spec-
trum of Sooryakumar etal! The z-component emission
spectrum obtained from (9) is also in reasonable agreement
with the data considering the approximations used.

The apparent large ‘‘mixing’’ for the z component in the
initial state at #w = Eg;, which is unexplainable by (10), can
be accounted for by the combination of valence-band mix-
ing at ¢#0 and the shakeup process. The large =z
component emission intensity at Aw=E; comes from
recombinations at q=0 where |z-P(q)|? is appreciable (see
Fig. 1), accompanying an excitation in the (N — 1)-electron
final state. The sharp cutoff at #w — Eg = E for the z com-
ponent is also in qualitative agreement with the data.

The remaining discrepancy between the theory and exper-
iment may be attributed to the omission of many-electron
excitations of the initial state and other approximations used
in our treatment.

In conclusion, we have studied the emission spectra of
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FIG. 2. The emission spectrum of a 21-A GaAs-Aly 53Gag 77As
modulation-doped quantum well. The Fermi level is about 18.0
meV. I, and I, denote the x and z polarization components, respec-
tively. Eg is defined as €.(k) +¢,(k) at k=0. Solid curve is with
many-body effect; dashed curve is without many-body effect. The
experimental data shown below are taken from Ref. 1.

modulation-doped semiconductor quantum wells based on a
multiband effective-mass model, including the valence-band
mixing. The shakeup process is taken into account within
the single electron-hole pair excitation approximation. The
theoretical results compare very favorably with the experi-
mental data. In particular, the anomalously large z-
component emission intensity at fw == E; is at least qualita-
tively accounted for. We find that the polarization of the
initial many-body system due to electron-hole Coulomb in-
teraction, in which a hole at the top of the heavy hole sub-
band is scattered into other states in the same subband,
plays a key role in determining the emission spectra.
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