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Band-mixing effect on the emission spectrum of modulation-doped
semiconductor quantum wells
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Emission spectra of n-type modulation-doped semiconductor quantum wells are calculated in a multivalley
effective-mass model which includes the valence-band mixing. The many-body effect is taken into account

by consideration of the single electron-hole pair excitations and the shakeup process. The resulting emis-
sion spectra for both parallel and perpendicular polarizations are found in reasonable agreement with the re-
ported experimental data.

Recent experimental studies of the optical emission from
electrons confined in GaAs-Al„Ga~ „As quantum wells
have shown that the photoluminescence has an unexpected-
ly strong component with polarization normal to the planes. '
Effective-mass theories that include excitonic interactions
and conventional symmetry-breaking mechanisms do not
account for this phenomenon. Although it was conjectured'
that the many-body effect analogous to the shakeup in x-ray
emission may explain such a phenomenon, no calcula-
tions have been reported to verify the assumption.

In this Rapid Communication, we report a calculation of
the emission spectra of modulation-doped GaAs-
Al„Ga~ „As quantum wells, including the effect of
valence-band mixing and the shakeup process. The results
are found in reasonable agreement with the experimental
data. The unexpectedly strong normal component in the
emission spectrum is attributed to the combined effect of
valence-band mixing at nonzero wave vectors~ and the
shakeup process. In the shakeup process, the electron-hole
recombination is accompanied with all possible excitations
of the final many-electron system. 2'

The initial state of the system of interest consists of a
two-dimensional electron gas of A' particles and a single
hole, all confined in a semiconductor quantum well. The
Hamiltonian for this many-body system is given by

8= Xe, (k)akaq+ 2 g ~ (q)aq+„a a ak
k kk q

+ g e„(p) bp'bp QU I, (q) a—kt+, bp+qbpak
p kpq

where e, (k) and e„(p) are the first conduction-subband and
valence-subband dispersion relations, respectively, for . the
quantum well. Here we use k, p, and q to denote two-
dimensional wave vectors for the electron, hole, and wave-
vector transfer, respectively. ak (ak) and b» (b„) create
(annihilate) an electron and hole, respectively. u„(q) and
u,q (q) denote the electron-electron and electron-hole
Coulomb interactions, respectively. The function e, (k) is
given in the effective-mass approximation by a simple para-
bolic expression. The function e„(p) is obtained by a multi-
band effective-mass method as described in Ref. 5. The
electron-electron interaction is given by

(q) = Jl dzt J dz2lf, (zq) I If (z2) I

e2
x exp( —qlz, —z, l), (2)

~o9'

where eo is the static dielectric constant and f, (z) is the
lowest-energy solution to the effective-mass equation for an
electron in a one-dimensional potential V, (z) = V, (z)
+ Vd(z). Here, V, (z) is the square-well potential for the
electron and Vd is a smooth-varying potential, describing the
band-bending due to doping. The forms for V, (z) and
Vd(z) are described in Ref. 5. The electron-hole interaction
is similarly given by

~.~(q) = J dz. „dzalf. (z.) I'l~. (za) I'

e2
x exp( —q I z, —zq I), (3)

~oq

where g„(z) is lowest-energy solution to the multiband
effective-mass equation for a spin-T hole in a one-
dimensional potential Vq(z) = V, (z) —Vz(z). Here, V, (z) is
the square-well potential for the hole (see Ref. 5).

%e donate the X-electron ground state in the absence of
the hole as C~, and consider the fundamental excitation of
4~ due to the presence of the hole. At low temperature we
assume that the N electrons fill a Fermi sphere up to kF, the
Fermi wave vector. %e define 4kq=—ak+~akb~4& as the
single electron-hole pair excitation, in which an electron in
the lowest conduction subband with wave vector k
( lkl ( k~) is excited outside the Fermi surface (Ik+ ql) kF)
(it is not possible to excite the electron into a different sub-
band within our approximation) and a hole with wave vector
q is created. Note that all such excitations have zero total
momentum and can be coupled together via the electron-
hole interaction. %e express the W-electron plus one-hole
state +I as a linear combination of the single electron-hole
pair excitations, viz. ,

q, =gF, (k, q)a„, , (4)

where F,(k, q) shall be called the envelope function. Here
we have ignored the possible many-particle excitations in
the state W&. The envelope function F&(k, q) can be found
by solving the Schrodinger equation (H E&)'P, =O, which-
can be cast into the equation

[b g, + e„(q) —El]FI(k, q) —Xv,p(q') F (k, q+ q')

+X~,„(q')F,(k —q', q+q') =0, (5)

with the constraint FI(k, q) =0 if R, (k) ) e~ or ~, (k
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+q) (qp (6p is the Fermi energy). In (5) Akq=R, (k
+q) —e, (k), where ~, (k) is the "renormalized"
conduction-band dispersion relation. In the Hartree-Fock
approximation, it is given by6

~, (k) =&g(k) —~x~„(k k—')&(~p ~„(k'))
k

and in the parabolic approximation, we found

r

- (k) t2k2+ e 4' k
2~, ep l 2kF

The parabolic approximation is fairly good for k & 2kF. For
k ) 2k+, we found that the band renormalization effect is
very small and we neglected it completely in our calculation.
The second term in (5) describes the Coulomb scattering
process in which an electron is scattered from (k+q) to
(k+ q+ q') and a hole is scattered from q to (q+ q'). The
third term in (5) describes the Coulomb scattering process
in which a ho1e left in the Fermi sea is scattered from k to
(k —q') and a hole in the valence band is scattered from q
to (q+q'). Note that in the limit N= 1(~+=0), the third
term in (5) vanishes and (5) reduces to the effective-mass
equation for the exciton problem.

To simplify the problem, we shall ignore the third term in
(5) completely. This term makes a very small contribution,
because the envelope function for the ground state is sharp-
ly peaked at ~k~ = k~. Equation (5) is now decoupled for
each k, and the initial states can be donoted as W~(k). To
find the solution F&(k, q), we expand it in terms of many
Gaussian functions of the form exp( —uAkq), viz. ,

F,(k, q) = X C„(u) exp( —uA„) . (6)

The expansion (6) is desirable for several reasons: (1) it
gives an accurate exciton binding energy and wave function
in the limit N= I, (2) it is the most general form for the
ground state if the hole kinetic energy vanishes; thus it is a
very good approximation, as long as the hole effective mass

I

is much larger than the electron effective mass, and (3) all
matrix elements for these Gaussian functions are fairly easy
to calculate. The expansion coefficients in (6) are nearly in-
dependent of k. Thus for any k within the Fermi sphere,
the envelope function takes the form Ft'~(Aqq) with the
ground-state energy

Eo" (k) = Eo (kp)+ [e,(kp) —~,(k)],
where Eot'~ (kz) is the lowest-energy solution to (5) with

The energy Eo' (kp) and the expansion coefficient Ck(u)
can be obtained numerically by solving a generalized eigen-
value problem in the nonorthogonal Gaussian basis. To
simplify the calculation, a parabolic approximation has been
used for the first valence subband. The hole effective mass
is chosen to be 0.35mp such that the kinetic-energy contri-
bution is approximately the same as that obtained by using
the exact expression. We find that the system has bound0
states for k~ less than 0.019 A . The binding energy of
the system reduces to that of the exciton as k~ 0. We
also note that the shape of the envelope function Ft'~(Akq)
does not change appreciably with the binding energy, even
when the system becomes unbound. This is reasonable, be-
cause the reduction in binding energy arises from the more
stringent constraint of the Fermi surface for increasing k~,
while the strength of the potential which determines the po-
larization remains the same.

Knowing the polarization in the initial state due to the
electron-hole interaction, we are now ready to examine the
emission spectrum of the system in the shakeup process.
The possible final states of the system after the recombina-
tion of one electron-hole pair can be described by

'Pf(k'q) = a„a„.aqua~,X+q (7)

in which an electron at q is annihilated (due to the recom-
bination with a hole at q in W&) and another electron at k' is
simultaneously scattered off the Fermi sphere to a state with
wave vector (k'+q) (~k'+q~ ) kj;). The emission spec-
trum at low temperatures is then given by

I,(bc') —Xexp[ —E '(k)/ksT] g )(+~(k)~e p~Vf(k', q)) (25(tcu+E f'(k', q) —E "(k)),
kq

where E~&(k', q) —= 6 —e, (q) denotes the final-state energy and i denotes the polarization of the luminescence. A

Boltzmann factor has been introduced because the system was initially kept at constant temperature T. Substituting (4) and
(7) into (8) yields

I (ted) g ~E ' P(q) ~' g F ' (Akq)exp[ —E ' (k)/ks T]5(tee + E ~(k, q) —E ' (k) )

where P(q) is the momentum matrix element between the
conduction subband and the valence subband at q. Note
that P(q) varies strongly with q due to the valence-band
mixing. The squared momentum matrix elements for the
transitions from the first heavy-hole (HH1) and first light-
hole (LH1) subband to the first conduction subband (CB1)
for two polarizations ell x (y) and e llz for a 221-A GaAs-
Alp 23Gap 77As quantum we11 are shown in Fig. 1.

I

In order to demonstrate the importance of the many-body
effect, we have also calculated the emission spectra without
considering the shakeup process. In this case the initial
state is given by Wqt'~= bq 4z (the ¹lectron ground state
plus a hole at q) and the final state is given by 'PP =

aqua&~
(a missing electron at q in the N-electron ground state) At.
a low temperature T, the emission spectrum can be derived
according to the Fermi golden role. We obtain

I, (tee) —/exp[ —e„(q)/k&T] ~e P(q) ~'5(tee —e„(q) —c, (q'))8(ey &(q)), — (10)

where we have ignored the small temperature fluctuation in the N-electron complex.



32

l I J

GaAs-Al
. LHl

O.2$ to 77As

,~O--

Vj )(jth =

0.5--HHl/
/

G«s.—Pl Gg p

BAND MIXING EFFECT ON THE EMISSION SPECTR 5523

~, (x lot

CD

C3

C3R r

/
y/

/
0.2--

LHl

O. l

/

/

0.020 0 Ol5 0
&- 0 HHl

O.OIO 0.005 0
J

~ [ilO] W

0.005 O.olo 0.0l5 0.020

ave Vector k

c ion subband (CB1) for two

p 77 s quantum w 11.e
curves for a 221cur -A GaAs-

(D

CD
(3
(A
CD

E
O
O

CL

-20

E

Soor

-
l 0 IO 20

The em'mission spectra obi
' ()

ashed curves) for the

perimental dat
meV at T=S

aa o Soor
K h

' F
e same quantu

lower pan 1 f

F' . . ThwninFi . 2

ne or corn
a., are also sh

the second
Not th at at e

o p
m th' s"bb "d h

e H1-CB2 ' '
ttr nstion m t

ponent em
atrix clem

ssion spe
the results b

ment with th e
btained from (9) w

mission spectrum

agreement withvery good
y- ody effect is

mar eI: a/. ' Thoor k
perimental spec-

rum obtained fro
t o id i th

initial
g for the

= E, which is une 1
'

p
e comb ton f

h kd ocess. Th
intensity atI co=E c

Fig. 1) a
q 0 where ~i P(Q isa

y g an excitat o
h h

-elect on

qualitativ
h

'' d' p

z com-
a e

to the omie attributed
n t e theory anand exper-

s ate and otheo t e initial st
ission of man-

ment.
s er approxim

In conclusion, we hav

mations used

nc usion, we have studied the emie emission spectra of

-20 -lo IO 20

G) (me@)(Au& -E
he emission sP

d "'nt" "'ll The Fermi level is
d 1

e ined as e, k)+a„(k) t k= .a 0 Sol

a ata show n below are tak
i out man-y-body effect. Th

a en from Ref. 1.
e

Th orse authors

ission spectra.

ors acknowled
P' k R S

wor was su
orlock aand Sham

al Research

hL bo tois, aterials Re
0 and the

oundation Contr t N .
a ioi1

R-83-16981.

modulation-doped sem'iconductor
d effective-rnas

quantum wells
dl '

l d'

pro ess s
g

a en into accoun

1 compare ver f
'

n approxim
y avorably with t

p

i the experi-

n i io it
r. %e find th t th ol

y- o y sys e due t
c ion, in whic

o electron-ho
e polarization of th

h
n is scattered into

e top of the heav
-hole Coulomb '-in-

1'dt 'i th



5524 YIA-CHUNG CHANG AND G. D. SANDERS 32

~R. Sooryakumar, D. S. Chemla, A. Pinzuk, A. Gossard, W. Wieg-
mann, and L. T. Sham, J. Vac. Sci. Technoj B 2, 349 (1984);
Solid State Commun. (to be published).

2B. Roulet, T. Gavoret, and P. Nozieres, Phys. Rev. 178, 1072
(1969};P. Nozieres; T. Gavoret, and B. Roulet, ibid. 178, 1084
(1969}.

3C. Swarts, J. D. Dow, and C. P. Flynn, Phys. Rev. Lett. 43, 158
(1979).

4Y. C. Chang and J. N. Schulman, Appl. Phys. Lett. 43, 536 (1983);
Phys. Rev. B 31, 2069 (1985).

5G. D. Sanders and Y. C. Chang, Phys. Rev. B 31, 6892 (1985).
6See, for example, A. L. Fetter and J. D. Walecka, Quantum Theory

ofMany-Particle Systems (Mcoraw-Hill, New York, 1971).


