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We report measurements of the Hall potential distribution in the interior of the two-dimensional
electron gas in GaAs-Al,As heterostructures. In the quantized Hall regime, our data provide direct
evidence for the existence of extended states in the bulk of a two-dimensional system. Bunching of
the potential distribution is observed as a function of the quantizing magnetic field and is attributed
to the presence of density gradients as the dominant macroscopic inhomogeneities.

In the quantized Hall effect, the distribution of the Hall
potential in the interior of the sample remains an important
but unresolved problem. Two physical pictures are present-
ly available. One is based on the existence of extended
states at the edges of the sample.! The Hall current is be-
lieved to be primarily the net difference between two oppo-
sitely directed currents carried by these edge states. In the
absence of electron-electron interactions, all the current
would flow along the edges? and no potential drop would be
expected in the interior of the sample. The other is a semi-
classical, percolation picture, wherein the Hall current is
described as the flow of an incompressible fluid of charge
carriers around potential barriers.’>-® Kazarinov and Luryi®
pictured the current-carrying states as electronic waves pro-
pagating along the equipotential lines, like light waves in op-
tical fibers, extending through the entire length of the sam-
ple. These extended states exist in the bulk of the two-
dimensional (2D) electron system and the Hall potential is
distributed throughout the sample.

Fang and Stiles’ have recently carried out an extensive
study of the potentials in the quantized Hall regime, at the
periphery of the sample. They find that the sample edges
form equipotential lines; one of which is at the quantized
Hall voltage, the other at the ground potential. In order to
obtain information on the potential distribution in the interi-
or of the sample, we have studied in detail the potential dis-
tribution inside several samples, in the well-quantized re-
gimes. Our data indicate that the Hall potential is distribut-
ed throughout the interior of the sample, consistent with the
semiclassical percolation picture. They provide, for the first
time, direct evidence that current-carrying extended states
indeed exist in the bulk of the 2D electron system. The Hall
current is able to flow around the Ohmic metal contacts
placed in the sample interor, while maintaining a quantized
Hall voltage across the sample. In the well-quantized re-
gime, the interior Ohmic contacts show extremely high
source impedance. This experimental fact suggests that near
each contact, the 2D electrons flow almost completely along
closed, constant potential lines surrounding the contact. Ex-
citation of current flow across them to charge or discharge
the contact becomes increasingly more difficult as tempera-
ture T decreases and is impossible at T =0. In all our sam-
ples, the crystal-growth processes invariably give rise to den-
sity variations, usually in the form of a gradient along a
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well-defined direction. It is found that this type of macro-
scopic inhomogeneity, though dominant in determining the

" flow pattern of the Hall current in the sample, does not dis-

turb the quantization of the Hall resistance.

Both conventional Hall bridge and Corbino-type
geometries are used in our measurements. The samples are
typical modulation-doped GaAs-Aly3Gag;As heterostruc-
tures® grown by molecular-beam epitaxy (MBE). They are
single-interface structures with a 2D electron density
n=3.9x10" cm~? and a mobility u =5.9x 10* cm?/V sec at
4.2 K.

In order to measure the potential distribution in the inte-
rior of a sample, several indium dots, each ~— 50 um in di-
ameter, are evenly placed inside the sample, along a line
perpendicular to the direction of the Hall current. The de-
tailed configuration for a Hall bridge is shown in the inset of
Fig. 1. Ohmic contacts to the 2D electrons are formed by
alloying the In dots at 400°C in a hydrogen atmosphere.
Subsequently, the electrical contacts are carefully tested to
ensure Ohmic behavior. In view of the high source im-
pedance, mentioned above for contacts in the interior of the
sample in the quantized regime, great care was taken to as-
sure that there were no spurious contributions in our mea-
surements. One consequence of this high source impedance
is the long-time constant in the measurement. We opti-
mized it by choosing samples with densities to have the
i=2 quantized Hall plateau (i.e., the plateau at Py = h/2e?
=12.90 kQ) close to B=8 T. In such samples, the diago-
nal conductivity o, is. sufficiently small to warrant quanti-
zation of the Hall resistance to better than one part in 10°,
but not so small as to give rise to a time constant in excess
of 5 min and to make the influence of stray capacitance ap-
preciable. We use an electrometer (Keithley 642) with an
input impedance of 10 Q) to avoid loading down the
source voltage. During measurement, the total Hall voltage
across a Hall bridge is always monitored with a digital
voltmeter to make sure it retains the quantized value.
Furthermore, the potential at an interior contact is mea-
sured from both edges of the Hall bridge, at separate times,
to check for consistency.

In Fig. 1, we show the variation of the internal potentials
as a function of magnetic field B, measured at different in-
terior contacts with respect to one edge of the sample. In
contrast to a smooth change over a plateau region, which
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FIG. 1. The potentials as a function of B measured at different interior contacts with respect to contact No. 1 on one edge of the sample.
The quantized plateau corresponding to p,, = h/2e* =12.90 kQ is labeled by i=2 and the dashed line indicates the expected Hall voltage in
the classical limit. The sample configuration and the contact arrangement are shown in the inset.

one might expect, the internal potentials vary tremendously
with magnetic field. This kind of change is more pro-
nounced in the i=2 plateau, within which the total Hall
voltage across the sample remains constant to better than
one part in 10°. The complementary potential drop between
different interior contacts and the opposite edge is separate-
ly measured, and shown in Fig. 2. Within our experimental
error of 1%, any two complementary potentials add up to
the total quantized Hall voltage. Therefore, we are confi-

dent that our results show minimal influence from im-
pedance problems. Our results for B <5 T are very similar
to the results obtained by Sichel, Sample, and Salerno.’ At
these low magnetic fields, the quantized Hall plateaus are
not sufficiently well developed to allow unambiguous con-
clusions. The normalized potential distribution across the
sample is plotted in Fig. 3 for several magnetic fields. Out-
side the quantized regions, for B=3, 5, and 6 T, a fairly
uniform distribution is obtained. Within the /=2 plateau,
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FIG. 2. The potentials measured at different interior contacts with respect to contact No. 8 on the opposite edge of the sample.
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FIG. 3. Potentials measured an x with respect to contact No. 8
on one edge of the sample at several values of B. W is the width of
the sample and Vy is the total Hall voltage. The arrows indicate the
position of the labeled contacts at which the data are taken.
at B=8.2 T, the Hall potential drops almost its total value
within one tenth of the width of the Hall bridge, near one

edge of the sample. This field of 8.2 T is higher than the
field at the plateau center, B,=7.8 T, when the lowest two
Landau levels are completely filled. Below B, most of the
potential drop occurs at the opposite edge. At the central
field, 7.8 T, the Hall potential is distributed almost uniform-
ly throughout the bulk of the sample. We have verified that
the observed bunching effect in the distribution always oc-
curs at a given edge at a given field, regardless of the polari-
ty of the current or the polarity of the applied magnetic
field. Similar results have been obtained in samples made
from different crystals.

Our present understanding of this dramatic bunching ef-
fect is based on the presence of a gradient in the 2D elec-
tron density of the sample in the direction of the Hall field.
Such density gradients have already been found in similarly
grown crystals.!® Within the quantized region, the diagonal
resistivity p, is known to increase exponentially, over
several orders of magnitude,!! as the magnetic field deviates
from the central field of the plateau. In other words, when
the local 2D electron density and the magnetic field are well
matched so as to satisfy the filling condition n=ieB/h
(where i is the Landau level index, e the electron charge,
and # the Planck constant), p, is minimal. The Hall
current, always seeking the path of minimal resistance, will
bunch in this region of the sample. This observation ex-
plains qualitatively the bunching, as well as the switching of
the potential drop from one edge of the sample to the other,
as the magnetic field is increased. In order to substantiate
this explanation, we have carried out an experiment
measuring the potential distribution in a Corbino-type
geometry (Fig. 4). In the direction the density gradient is
expected, the bunching effect is reproduced. In the perpen-
dicular direction, in which the gradient across the sample is
expected to be absent or minimal, no bunching is observed
at any magnetic field and the potential is always distributed
throughout the interior of the sample.
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FIG. 4. The potentials as a function of B measured at different
interior contacts with respect to the center contact No. 14, of a
Corbino-type sample. The inset shows the contact arrangement.

In summary, our results demonstrate that the Hall poten-
tial is distributed into the bulk of the sample, whether inside
or outside of the quantized plateau region. This conclusion
is clearly supported by the data in Fig. 3 (B=7.8 T) and the
additional measurements made on a Corbino-type sample.
Our experiments indicate that in the quantized regions ex-
tended electrons can manage to go around any dissipative
region where p,, is large, in a manner reminiscent of super-
currents in type-II superconductors.

Because of the presence of density gradients on our sam-
ples, the effective width, over which the Hall potential
drops, is much narrower than the geometrical width of the
samples. However, the Hall voltage does not depend on
this effective width. The existence of density inhomo-
geneities may give rise to significant changes in the internal
potential distribution, but it does not perturb the quantiza-
tion of the Hall resistance. The physical picture emerging
from our experiments is similar to that of Kazarinov and
Luryi,> wherein the extended states carrying the Hall
current are visualized as electron waves propagating along
the equipotential lines extending through the entire length
of the sample. The Hall potential distribution is dominated
by various macroscopic inhomogeneities, and will never be
like the distribution calculated in their absence.

Note added in proof. We learned after the submission of
this paper that similar results have been obtained by
G. Ebert, K. v. Klitzing, and G. Weimann [J. Phys. C (to be
published)].
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