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Within the structure of a-Si the addition of hydrogen can be thought to produce a decrease in the connec-
tivity of the lattice, compared with the ideal fourfold-coordinated amorphous lattice. We simulate this ef-
fect with a Hamiltonian of the Weaire and Thorpe type, within which a proportion c of adjacent sp orbitals
are eliminated. In this model the width of the gap is determined by the upper edge of the bonding p band
and the lower edge of the sp antibonding band. We found that, as c¢ increases the sp bands decrease in
width while the pure p bands (the deltas in the Weaire and Thorpe model) do not modify their position.
This causes an increase in the size of the gap which is in accordance with experimental observations for hy-
drogenated amorphous silicon. The results suggest that the effective dimension of the space where the car-
riers are constrained to move plays an important role in amorphous semiconductors.

I. INTRODUCTION

Intrinsic a-Si has a concentration of approximately 10'°
spin/cm?. These paramagnetic centers correspond to local-
ized states near the Fermi level and can be identified with
dangling bonds that is, singly occupied sp® orbitals which
cannot satisfy the covalent bonding because of steric hin-
drances. In order to remove these defects from the gap re-

gion, it is usual to incorporate hydrogen, which saturates the .

dangling bonds. However, the concentration of hydrogen in
a-Si; - H, required to obtain a gap useful for technological
applications is about two orders of magnitude larger than
the concentration of dangling bonds. The natural question
is, then,! what is all this extra hydrogen doing?

Our hypothesis is that the extra hydrogen breaks some
Si-Si bonds and creates an additional number of Si—-H
bonds. This process should relax the lattice strains. That is
because the mean number (Z) of Si nearest neighbors of
each silicon atom decreases toward the ideal value
(Z) =< /6 predicted by Phillips? for the unconstrained net-
work in three dimensions. Simultaneously, the electronic
properties will be determined by the topology of thé remain-
ing Si-Si lattice. This has a lower connectivity and hence
causes an increase of the gap.

There are very important papers=3 in the literature which
discuss the nature of the isolated Si—H bonds by considering
a single defect in a Bethe lattice* or a diamond crystal.>>
In general they are consistent with the idea that hydrogen is
responsible for an expansion in the band gap of local density
of states with a larger effect on the valence band. However,
this work cannot account for the effects of the change in the
connectivity of the lattice and this justifies the present
model.

II. THE MODEL

We consider 64 Si atoms placed on a diamond lattice
represented by the tight-binding Hamiltonian,
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with the Thorpe-Weaire® parameters:
V= —6.75¢eV.

As shown in Fig. 1, index i/ labels the Si atoms and index
w labels each of its Z; sp® orbitals which are bound to a
nearest-neighbor Si atom. The pure case with all Z;=4 is
exactly that which was considered by Thorpe and Weaire.®

Each cluster surface is connected to the opposite one by
periodic boundary conditions. This is equivalent to the
molecular unit cell approach’ calculated at the I' point
(k=0), and this guarantees that the calculated band edges
are exactly the same as those of the infinite crystal. In this
case the width B of both the valence and the conduction
band (see Fig. 2) is given by

B=ZVi=(d+1)V, . 2

Vi=—2.5 eV and

Here d is the dimensionality of the lattice. This result is
valid for the lattice formed by considering only the sp? hy-
brids; these are the diamond lattice (Z=4, d=3), the
honeycomb lattice (Z=3, d=2), and the linear chain
(Z=2,d=1). .

In order to simulate a a-Si; -, H, lattice, we randomly re-
move a proportion ¢=x/(4—4x) of Si-Si bonds; these are
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FIG. 1. This figure shows the structure of the amorphous lattice
with the parameters of the Hamiltonian.
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FIG. 2. This figure shows the density of states for the diamond
lattice according to the work of Thorpe and Weaire (Ref. 6).

the missing bonds of Fig. 1. Since the wave function com-
ing from states in the band edges do not mix with the Si-H
bond states, the whole structure of these sp® hydrogen-
saturated orbital should be topologically equivalent to con-
sidering only the backbone structure.

III. RESULTS

We diagonalized the Hamiltonian (1) and studied the
dependence of the band edges on ¢ by averaging the values

of the band edges over an ensemble of six clusters. We ob-'

tained the following results: (i) The upper edges of the con-
duction band and valence band (deltas in Fig. 2) do not
depend on x, although their weight decreases as x increases.
(ii) The lower edges of both bands are pushed toward
higher energies as x increases. (iii) The calculations of the
inverse participation ratio of the eigenvectors shows that the
states at the lower edges of both bands are more localized
than those at the center of the bands.

The result (i) is easy to understand. It was already point-
ed out’ that the delta functions, and hence the broadened
peak which is found in more realistic calculations, are a
consequence of the short-range order. In a perfectly coordi-
nated structure with Z =4, 3, 2, without dangling bonds,
each delta function contains® (z—2)/2 states per atom.
This effect is the origin of the observed decrease of the de-
generacy of the delta functions with (Z), while their posi-
tion is fixed at E=V; £ V,.

On the other hand, the pure s states at the bottom of the
valence and conduction band are a Brillouin-zone effect’
and hence depend on the long-range order. When (Z) is
decreased, 'this situation can only be obtained inside of a
large enough island of perfectly coordinated atoms. This
domain has a very low probability of occurrence for the size
of cluster that we considered. The edge states obtained
from our model are representative of the bulk states, and it
seems natural that their position depends strongly on (Z).
This is consistent with the result of (i).

Recently, it has been shown® !0 that the quantum eigen-
functions of a disordered system could be characterized by
means of a fractal dimension defined in the same spirit of
that used!>1? to measure the connectivity of self-similar lat-
tices in the classical percolation problem. Here we use a
fractal dimensionality analogous to that of Ref. 9, in which
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the fractal dimension des of wave functions at the band
edges can be evaluated from the bandwidth B as a generali-
zation of Eq. (2), that is,

deff=B/ Vl—l . (3)

From (i) and (ii) we see that (3) characterizes the frag-
mentation of wave functions at the lower band edges of
each band. Definition (3) might not be quantitatively
equivalent to that of Ref. 10. However, their qualitative
behavior is the same and (3) is far more simple for our pur-
pose. As the present model is a quantum problem, the
fragmentation of eigenfunctions arises not only from the to-
pology of the Si-Si lattice to which the electrons are con-
strained to move, but also by the additional effect of quan-
tum interference!>!* which is most significant at the band
edges, in accordance with (iii). The codimension d— de is
then an index of the extent to which the eigenfunctions in
the band edges fail to fill the embedding space. As x in-
creases, d — d.gr also increases.

In Fig. 3 the circles show the fractal dimensionalities for
some ordered lattices (diamond, honeycomb, and linear
chain). The squares show the fractal dimensionality for the
conduction band as a function of (Z). The triangles corre-
spond to the valence band. Although the behavior of con-
duction and valence bands is slightly different, it can be
stated that the random fluctuations of Z above the mean
value (Z) of the disordered system allows ramification to
occur. This fact produces a deg larger than that of a periodic
system with the same (Z). The slope of der vs (Z)
evaluated for the conduction band (squares in Fig. 3) is
greater than that of the valence band (triangles in Fig. 3).
This shows that the quantum interference caused by the
connectivity disorder is also stronger in the conduction
band.

Although our model could be considered an oversimpli-
fied one, it contains much fundamental physics, which sug-
gest that the main effect of the disorder of the lattice con-
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FIG. 3. This figure shows the dependence of the fractal dimen-
sion with the mean number of coordination for various crystalline
structures (represented by circles) and amorphous structures
(represented by triangles for the valence band and squares for the
conduction band).
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FIG. 4. Here the experimental data (from Refs. 16 and 17) for
the evolution of the band gap in a-Si;_ H, are compared with the
theoretical calculations.

nectivity is to push the conduction band toward higher ener-
gies. The top of the valence band comes from states which
are linear combinations of p orbitals. Since these have a lo-
cal character, the center of this band is not affected by the
lack of long-range order. Of course, we do not discard the
erosion of the top of the valence band with the concentra-
tion of H found from ultraviolet photoemission (UPS) ex-
periments.’> In our model this fact is represented by the
loss of the weight of the p band. However, from the point
of view of the definition of the band gap, this effect should
be smaller than the erosion of the conduction band. Anoth-
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er point to be commented on is that the solution of our
model on an infinite cluster would include Lifshitz tails!®
originated in large islands of perfectly coordinated silicon;
however, their contribution to the density of states is ex-
ponentially small and does not affect the optical gap E, de-
fined by the bulk of the bands.

In Fig. 4 we compare the experimental dependence of the
optical gap with x in a-Si;_-H, from Refs. 17 and 18 with
that obtained from the present model. Observe that the op-
tical gap at x=0, E,, is the adjusted parameter. In the
Weaire and Thorpe model the magnitude of the gap has lit-
tle meaning because of the infinitesimal width of the P
band. In turn, an adjustable E; allows the inclusion!® of ef-
fects which do not depend much on the hydrogen concen-
tration, such as the erosion of bands caused by presence of
odd rings.

The agreement among the slopes of the theoretical and
experimental optical gap gives strong support to the initial
hypothesis, and must contain some -of the physics which
governs the phenomena.

IV. CONCLUSION

The present model shows the importance of the effective
dimensionality of the lattice through which the electrons are
moving. This allows an interpretation of the effect of nitro-
gen? in a-Si;_,N,H. Since most of N atoms have only
three neighbors, as in Si3N4 crystals, the connectivity of the
lattice is lowered. dgy and (Z) are then lowered as x in-
creases and this translates into an increase of the gap.
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