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Surface plasmon of a semiconductor superlattice
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A simple explicit dispersion relation is given for the surface plasmon of a semi-infinite layered electron
gas. Two limiting cases are discussed. Effects of the optical phonons and magnetic field are discussed.

I. INTRODUCTION

Intermediate between two- and three-dimensional electron
gas is layered electron gas (LEG), '~ which consists of a reg-
ular array of planes of two-dimensional electron gas (2D
EG). The LEG model was first employed' to approximate
graphite and intercalated transition-metal dichalcogenides,
and now finds a good physical realization in semiconductor
superlattices. For the discussion of intrasubband electronic
collective modes of a LEG, in the simplest model one as-
sumes that the electrons are free to move w'ithin the planes,
do not tunnel to other planes, and remain in the lowest sub-
band.

If one takes the planes of 2DEG situated at z = ld,
I =0, + 1, . . . , + ~, then a (bulk) plasmon is obtained,
whose dispersion relation is conveniently expressed as (fol-
lowing the notation of Ref. 3)

b = cos(q, d )

Eqs. (1), (2), and (3) an explicit dispersion relation follows
1 1/2

2mne sinh(qd )
COp

=
em cosh(qd ) —cos(q, d )

/

which is valid for ~p )) qvp.

II. SURFACE PLASMON

Now let us consider a semi-infinite LEG with planes at
z =Id, 1=0, 1, . . . , ~. If the dielectric constant of the
medium is e for z ) 0 and ep for z ( 0, i.e., if there is a
dielectric mismatch at the surface at z = 0, then there exists
a surface plasmon whose dispersion relation has been ob-
tained in Refs. 2 and 3 by two different methods. In both
these works the dispersion relation is implicit and is solved
numerically. However, by working on the formula given in
Ref. 3, it is possible to ~rite the dispersion relation for the
surface plasmon as

b = cosh(qd ) —D V sinh(qd ) (2)
b= —,'(x+x '), )x)~1,

where

(6)

where q and q, are the components of the plasmon wave
vector parallel and perpendicular to the planes, respectively.
D is the polarizability of the 2DEG given by, in standard
notation,

Dp( ) 2 t d'p f(p+q) f(p)—
(2m)' E (p + q ) —E (p ) —o)

tgd + end 6pX~ = cosh(qd ) ——sinh(qd )1+a E'

a= (e ep)/(E+ep)

and b is given as before, by Eq. (2). With the help of Eq.
(3) an explicit solution can be obtained,

and for qvF « cu (v+ is the Fermi velocity) it can be ap-
proximated by'

2n ne sinh(qd)
Gasp

= q-
cosh(qd) —T(x+x ')

t 1/2

D' —nq'/mm', (3)

V=2me /eq (4)

where ~ is the dielectric constant of the background medi-
um. In the above formulas, as well as in the rest of the pa-

per, a notation is used in which often only the dependence
of variables on q, is explicitly shown and q and co depen-
dence is suppressed. From the dispersion relation (1) it is
clear that for fixed q the bulk plasmon lies within the band
—1 ~ b ~ 1, which is called the bulk-plasmon band. Using

where n is the density of the electrons per unit area and rn

is the effective mass. We shall assume Eq. (3) in rest of
the paper. V is the qth component of the two-dimensional
Fourier transform of the Coulomb interaction

The properties of the surface plasmon of the semi-infinite
LEG now follow immediately. (i) For a=0 Eq. (6) be-
comes b =cosh(qd) which does not have any nontrivial
solutions as is obvious from the definition of b. Thus no
surface plasmon exists for e=ep. (ii) Solutions of Eq. (6)
exist only for b ~ —1 and ~1, i.e., the surface plasmon
lies outside the bulk-plasmon band ~b~ « l. (iii) At the
boundaries of the bulk-plasmon band b = + 1=x. From the
definition of x, this implies e = +n. As the condition
~x (

~ 1 in Eq. (6) is satisfied only for q ~ q, there are no
surface plasmons with wave vectors less than q". (iv) Out-
side the bulk-plasmon band, which is the relevant region for
surface plasmons, all o., x, and b have the same sign. Thus
for positive a(e & ep) the surface plasmon lies above the
bulk-plasmon band, and negative a(e & ep) below it. (v)
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Because the surface plasmon lies outside the bulk-plasmon
band, it cannot decay into bulk plasmons to the lowest ap-
proximation, and is therefore free from Landau damping.
(With co„& qwF, it cannot decay into electron-hole pairs ei-
ther. )

The formal similarity between the surface and bulk-
plasmon dispersion relations is striking: the former can be
obtained from the latter by merely replacing cos(q, d) by
~(x+x '). In fact, this replacement is equivalent to sub-

stituting for q, an imaginary quantity i/g for x «1 and
i/(+m for x ~ —1, where

((x) «1) .
In[x[

' (10)

The length g is interpreted as the penetration depth of the
surface plasmon. 2

a=e ~ ~sgnu (sgnn=a/~n)), and Eq. (7) we get

e0'+me ~'
x = sgn~1+n

which becomes, in the limit Qd 0,
f

6px = 1+—Qd sgnu

Thus we find that right above the critical wave vector q the
surface plasmon follows the dispersion relation

b = 1+——(Qd) sgnn
6p

2

or

III. ASYMPTOTIC S

2m ne
Cusp =

Em

sinh(qd )
cosh(qd) + [I+ 2 (eo/e)'(Qd)'] sgnu

Now we discuss some limiting cases for the dispersion re-
lation and the penetration depth of the surface plasmon.

(i) Weak coupling limit In thi.s limit the planes of 2DEG
are so far from each other that they are only weakly cou-
pled. This happens for qd ~ so that x ne'~/(I+n)
and the dispersion relation becomes

which is coincident to first order in Qd with the bulk-
plasmon boundaries, b = 1 sgna. The surface plasmon
merges smooth1y into the bulk-plasmon band with no
discontinuity of slope.

The penetration depth is given by

b = cosh(qd ) —D V sinh(qd ) = —,
1 e

I+A
d

in[1+ (eo /6) Qd ] eoQ
(14)

Using sinh(qd) =cosh(qd) = —,e' for qd ~, we get and diverges linearly as Q 0 or q q'.

&
—Dpv=

1 + 0!

which yields
f ' 1/2

a)p(qd ~)=, q
2''ne

~(e+ eo)m

Notice that this equation is exactly the dispersion relation of
the two-dimensional plasmon of the surface layer z =0, be-
cause on this layer the electrons interact with each other as
if they were in a medium of effective dielectric constant

2 (e+eo). This is what one would intuitively expect be-

cause in the limit under consideration the planes are decou-
pled from each other.

In this limit the bulk-plasmon dispersion relation given by
Eq. (5) is nothing but the dispersion relation of the two-
dimensional plasmon of a 2DEG layer far from the surface

& 1/2

(12)
em

Thus with Eqs. (11) and (12) it is intuitively clear in the
weak coupling limit that for &p ) e, the surface plasmon lies
below the bulk plasmon, whereas for ep( e it lies above.
Also, for op= ~ there is no surface plasmon because the 20
plasmon of the surface layer is the same as the bulk
plasmon.

The penetration depth g is found with the help of Eq.
(10) to be q

' which is much smaller than d, and therefore
the surface plasmon is confined to the surface 2DEG plane
only.

(ii) Limit q q . In this case it is convenient to define
Q = q —q' and study the limit Qd 0. Using

IV. REMARKS

(i) It is easy to incorporate the coupling to optical pho-
nons. One only has to replace the frequency-independent
background dielectric constant e by a frequency-dependent
&(co) = e(~)(co' —cuL)/(co' —f0 j), where e(~) is the high-
frequency dielectric constant, aoL, and co~ are the longitudinal
and transverse optical-phonon frequencies. As x would now
depend on frequency co through e(co), an explicit formula
for m, p would be much more complicated.

(ii) In the presence of the magnetic field, in the long
wavelength limit one has

D' —nq'/m (t0' —co,') (15)

where &,ff is a wave-vector-dependent dielectric constant
given by

e,ft(qd) =
2[e coth(qd) —eo]

where co, is the cyclotron frequency. This leads to a
magneto-surface plasmon ~hose frequency co „is given by
(in the long-wavelength limit)

2 2 ~ 2
ClO ~sp Cl) sp + OJ g

with co,~ given in Eq. (9).
(iii) One can rewrite Eq. (9) in a form that mimics the 2D

plasmon dispersion relation as follows:
t 1/2

' 2mne
Cusp = '

EcfffPl
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For large qd, e,rr(~) =
2 (e+ep) as pointed out earlier. On

the other hand, at the critical wave vector q', given by
q "d = —ln l u l, we have

e.rr(q d) =eo,
which means that at q'd the surface plasmon has the same
energy as the two-dimensional plasmon of a 2DEG layer
embedded in a dielectric eo!

(iv) All the previous formulas are correct when the sur-
face (characterized by a dielectric mismatch) and the outer-
most 2DEG layer both occur at z=0. The theory can be
generalized to the case in which the dielectric mismatch is at
z= —d' and 2DEG planes are at z=0, d, 2d, . . . , by re-

I

placing n in Eq. (7) by ae 2~d and using Eq. (6) or (9) as
the new surface-plasmon dispersion relation. One result
that follows immediately from the new condition for critical
wave vector (i.e., the wave vector below which there is no
surface plasmon),

I
q'd = —in Inc

is that the surface plasmon ceases to exist if d' ) 2 d.

Thus in this paper a simple explicit formula [Eq. (9) or
(17)] is given for the dispersion relation of the surface
plasmon of a semi-infinite LEG. Modifications due to opti-
cal phonons or magnetic field are indicated. In the weak
coupling limit qd ~ the surface plasmon lends itself to an
intuitive understanding: it is nothing but the two-
dimensional plasmon on the surface layer. As qd decreases,
more and more planes participate in the collective charge-
density oscillations and the penetration depth of the surface
plasmon increases until finally it diverges, i.e., the system
becomes so correlated that it can no longer support any de-
caying surface modes but only bulk modes. This happens at
q'd= —lnlul. For smaller values of qd there are no sur-
face plasmons.
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