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Computer simulation of a quantum particle in a quenched disordered system:
Direct observation of Lifshitz traps
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A new sampling technique is introduced for the Monte Carlo evaluation of path integrals. The method is

used to study a single quantum particle in a rigid bcc lattice, a fluid, and a quenched disordered array of
classical hard spheres, ln the latter case, the quantum particle is shown to localize at preferred sites
(Lifshitz traps).

By applying a novel quantum-mechanical sampling
method, we have succeeded in obtaining exact numerical
results on the nature of electronic states in systems with
strong (gaslike) topological disorder. A typical physical ex-
ample is that of heavily doped semiconductors. For such
systems, spatial fluctuations in the Hamiltonian are able to
sustain extended as well as localized states for noninteract-
ing electrons. ' The presence of extended states in disor-
dered systems can be accounted for with the use of a
multiple-scattering formalism. However, Lifshitz argued
that there should be exponential tails associated with the en-
ergy bands of extended states which are produced by bound
states, localized in regions of excess concentrations of at-
tractive impurity centers or in regions deficient in repulsive
scatterers. 4 Such fluctuations in the distribution of impuri-
ties are called Lifshitz traps.

The localized states of an electron in a disordered array of
hard-core scatterers were studied by Friedberg and Luttinger
with the use of path integrals. The same model has also
been the focus of recent approximate analytical work con-
cerning the behavior of an excess electron in a fluid. '

Friedberg and Luttinger derived an explicit expression for
the low-energy density of states and the free energy, and
confirmed the intuitive idea of Lifshitz that localization oc-
curs despite the fact that there are no constraints, such as
potential-energy barriers, to confine the electron.

The path-integral representation of quantum mechanics"
is not only useful for the purpose of analytic calculations.
It also yields algorithms for the numerical simulation of
quantum systems. '2 ' In this Rapid Communication, we
report the first path-integral Monte Carlo (PIMC) study of a
quantum particle in a rigid disordered array of hard spheres.
Our results, obtained using a direct-sampling technique, '

yield evidence for the existence of Lifshitz traps. %e also
introduce an importance-sampling technique to study a
quantum particle solvated in a fluid of hard spheres. Since
the configurational distribution of hard spheres is indepen-
dent of temperature, it can be argued thaf the equilibrium
properties 'of a quantum particle in an infinitely large disor-
dered array of nonoverlapping fixed scatterers are identical
to those in a fluid system. Therefore, comparison between
the results of these independent calculations provides a
powerful test of our algorithm.

The PIMC method is based on the isomorphism between
the discretized path integral and a classical system composed
of a set of particles arranged in a chain. ' Classical averages
over the chain configurations give accurate estimates of the
equilibrium properties of the quantum particle, provided
that P, the number of particles in the chain, is sufficiently
large or, equivalently, when an elementary link in the chain
corresponds to propagation for an infinitesimally short time.
Since the short-time expansion for steep hard-core poten-
tials is very slowly convergent, chains with large P, typically
10 —104, are needed. ' ' The coupling between the chain
particles, which becomes increasingly strong with P, will al-
low only small particle displacements. Hence, large-scale
fluctuations of the chain configuration are greatly inhibited,
and there is a serious danger that the chain will be locked
into a locally stable configuration by the excluded volume
interaction with the hard spheres. This phenomenon, which
is due to nonergodic motion of the isomorphic classical sys-
tem, is not to be confused with the Lifshitz trap.

To overcome this difficulty we propose a new sampling al-
gorithm, which builds up the chain configuration in stages. '

First, the gross features of a configuration are established
using a chain with the correct thermal wavelength,
& =h'(P/m)'i2, but composed of only a few particles. Then,
with the configuration of this primary chain held fixed,
secondary chains are inserted between adjacent vertices of
the primary chain. This basic idea can be applied in a two-
stage direct sampling procedure, and it can also be modified
to provide an efficient importance-sampling scheme for the
primary chain. In the direct method, both primary- (a-)
chain and secondary- (b-) chain configurations are sampled
from distributions of free chain configurations with the ap-
propriate force constants and boundary conditions for the
end points. ' The insertion of secondary chains is repeated
many times, in order to determine an effective weight for
each fixed primary-chain configuration. In the importance-
sampling scheme, this weight is used as an acceptance cri-
terion for trial moves of primary-chain vertices. This two-
stage sampling procedure, the second stage determining a
weight for the first, is an application of the superposition
principle. '6

Let us define a density matrix p(r, r';P) as the ratio
K/K of the propagator K (r, r';P) and its free value
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Ko(r, r';P); K gives the probability for propagation from an
initial point r' to a final point r in a time interval ir =Pt. If
(re is the set of coordinates from the P, primary-chain par-
ticles and (rg;) gives the positions of the P, (Pq —I )
secondary-chain particles, then

p(r, r';P) = X.-' g g P, (r, , r, ,;P/P. ),
p(r f, rP ),PIP. ) = &y, g g p(r,;;, rg t,;,l3IP.&~)

J

The first summation is over the total number of a-chain
configurations generated, N, . Similarly, the second summa-
tion is over the Nb; b-chain configurations, generated for
each link i in the a chain. The quantity p can be considered
as a weight, which renormalizes the propagator between a-
chain vertices. In the most primitive algorithm p, the
short-time approximation to p is zero when one of the end
points is located inside the excluded volume of a hard
sphere, and unity otherwise. However, we employ a more
efficient algorithm, known as the image approximation. '2'

An advantage of the two-stage method over the straight-
forward (one-stage) approach is that the average displace-
ment of neighboring a-chain vertices can be made compar-
able to the average separation between the hard spheres.
Furthermore, in the direct-sampling scheme the high attri-
tion rate for chain configurations is greatly reduced, since
the probability of overlap with a hard sphere, for a chain
with P, (or Pb) vertices, is much smaller than for a chain
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FIG. 1. Square root of the second moment of the response func-
tion 8 for a quantum particle in various hard-sphere systems at
per =0.2. Direct sampling was used for the disordered array (cir-
cles) and the bcc lattice (triangles), while importance sampling was
used for the fluid (squares). The solid line is the theoretical result
from Ref. 10, and the dashed line is the free particle limit. The
dash-dot line is the theoretical result at po- =0.39 (the density at
which the theoretical excess chemical potential reproduces the
PIMC value).

FIG. 2. Distribution f of the quantum particle as determined by
direct sampling in a cube of 14X 14& 14 bins at the center of the rig-
id hard-sphere systems for A. =6' and per =0.2. Bin occupation is

normalized to fm, „and 5 levels of shading are used. The t 200l
plane of a bcc lattice is shown in (a) and (b). In (a) the values of f'
from 27 unit cells have been averaged and unfolded again, while in
(b) lnf is shown unaveraged; (c) and (d) show lnf' for low- and
high-density regions in the disordered system.
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with P, &Pb vertices. The direct-sampling procedure also
yields an estimate of the free energy (or excess chemical po-
tential)

P(F F&&—) = —ln„' dr p(r, r;P)/ V

where Fo is the chemical potential of an unperturbed ther-
mally equilibrated particle.

The behavior of the second moment of the response func-
tion'6

8'(t —t') = (Ir(t) —r(t') I')

was examined for a quantum particle with X=6o- in a bcc
lattice, a rigid disordered array, and a fluid, at the same
density po =0.2. The distance of closest approach of the
quantum particle to a hard sphere is the radius of the hard
sphere a/2. In the disordered array of 2197 hard spheres,
R was obtained from an average of 105 independent accept-
ed a-chain configurations (N, = 5 & 10'), using a chain with
P, x Pb=16&16 vertices and Xq;=100. This amounts, ef-
fectively, to a sampling of 10 chain configurations! For
the fluid system, importance sampling was applied to a pri-
mary chain of P, = 32 vertices, which interacted with 1458
hard spheres through the weight p, taking Pb = 8 and
Ãb, =100. Averages were collected over about 104 moves
per hard sphere, the latter each being moved three times for
every attempted move of an a-chain vertex.

Figure 1 demonstrates that in both the disordered system
and the fluid, the thermal wave function is considerably
smaller than in the lattice. Moreover, R exhibits the
ground-state dominance characteristic of a bound state. '
Further evidence for localization is provided in Fig. 2,
where the (quantum) particle density in the disordered array
is compared with that found in the lattice. In the latter, the
quantum particle is uniformly distributed, whereas in the
former it favors regions with relatively few hard spheres. In
fact, Fig. 2(c) suggests that at pa'=0. 2, a Lifshitz trap is
simply a cavity surrounded by hard spheres. Actually, in
the direct-sampling scheme, many chain configurations are
inserted into regions with high local density [such as shown
in Fig. 2(d)] but are found to be of negligible weight.

The PIMC free energy in the bcc lattice (Fig. 3) is in ex-
cellent agreement with the Wigner-Seitz estimate of the
band-edge energy. ' This result, taken together with Fig.
2(a), suggests that the PIMC method provides a reliable
representation of extended states. Moreover, the agreement
between the values for R for the fluid and the disordered
array (Fig. 1) confirms our algorithm for localized states.
The comparison between our PIMC results and those of ap-
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FIG. 3. Free energy difference with respect to the free particle
limit for a quantum particle in a bcc lattice of hard spheres (circles)
and in a quenched disordered system (squares) as a function of
density. The solid curve is the Wigner-Seitz approximation to the
band-edge energy of extended states, the dashed curve is the result
for the localized states in a disordered system taken from Ref. 9,
and the dash-dot curve is the excess chemical potential from Ref.
10.

The sampling of 10 configurations was made possible, in
part, by generous grants of computer time from the Nation-
al Science Foundation and Los Alamos National Laboratory.

proximate theory ' shows that at a given density of scatter-
ers, Ref. 10 underestimates the tendency for localization,
whereas Ref. 9 overestimates it. Moreover, the free energy
of the quantum particle (Fig. 3) is lower than found in Ref.
9 but higher than calculated in Ref. 10.

In conclusion, with the aid of a new sampling algorithm,
we have demonstrated that numerical PIMC methods pro-
vide a useful compliment to existing methods for studying
localization phenomena in disordered systems, and our nu-
merical results should serve as a benchmark for necessary
improvements on the existing approximate theories.
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