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With the self-consistent solution of the linearized Boltzmann equation in the relaxation-time approxima-

tion for a spatially inhomogeneous electron system, the admittance of n+

-n-nt semiconductor structures is

studied as a function of the length L of the moderately doped nregion. It is shown that a one-dimensional
treatment of the velocity space leads to the exact, analytical solution of the problem. In addition to the
conventional admittance and the geometric capacitance of the n region, the equivalent circuit of the struc-
ture also includes the contact resistance and, as a new feature, the contact capacitance. For the strongly
screened cases (L >> Lp) the contact capacitance is approximately the permittivity e of the n region divid-
ed by the Debye length Lp and, further, becomes exactly equal to eL/6Lj in the weak-screening regime

(Lp>>L).

With the progress in the semiconductor technology the
problem of electrical transport in small-scale n*-n-n* struc-
tures has become a topic of intense research in recent years.
Theoretically, if quantum effects are neglected, correct
treatment of the problem evidently requires the self-
consistent solution of the Boltzmann transport equation for
a spatially inhomogeneous case. For dc electric potentials
this solution was numerically analyzed by Baranger and Wil-
kins,! who clearly indicated the inadequacy of the conven-
tional drift-diffusion transport calculations in submicron de-
vices. In this article we study current transport in n*-n-n*
semiconductor structures with a variable-length n region and
for ac applied voltages. The distribution function of the
charge carriers is taken to be dependent on the velocity
component across the n*-n-n* structure only, and the cal-

culation is limited to linear order in the applied potentials.
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where f; denotes the uniform equilibrium distribution
(Fermi-Dirac or Maxwell-Boltzmann), ¢ the electrical po-
tential, and 3Er the local change of the quasi-Fermi level.
Also, 1/7*=1/r +iw. Using now the assumption that f
depends on the velocity component across the n*-n-n*
structure (v,) only, we may directly calculate the
conduction-electron current j and the local change of the
electron density 8z induced by the external voltage. Thus,
writing
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The one-dimensional treatment of the velocity distribution
function results in an exact, analytical solution of the prob-
lem, which permits an easy interpretation of the physics in-
volved and gives expressions for the elements of the
equivalent circuit of the n*-n-n" structure.

We start with the path-integral expression of the solution
of the Boltzmann transport equation in the relaxation-time
approximation®3
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Here 7 is the relaxation time and f(® stands for the local
equilibrium distribution.""* In the linearized case and for a
constant temperature and external potentials with e/“’ time
dependence, Eq. (1) may further be written as
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Here the moderately doped central n region extends from
z=0 to z=L. Further, for the relaxation time == 1Io/|vl,
*°s are taken as constants under the velocity integrations,
and thus I=10/(1 +iwry) and *=1o/(1 +iwry), where
70o=Ilp/vo. In addition, our basic set of equations includes
the Poisson equation
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and the requirement of the constancy of the total current
I=j+iweE =const . 8)

Yet, in order to satisfy Eq. (8), which is equivalent to the
continuity equation, we must have 8n; =0, which is just the
requirement of number conservation in the relaxation-time
approximation.

For the solution of the equations we expand the unknown
function ®(z) in a Fourier series over the n-region length:
®(z) =3 ®(g)e®” (gL =2mn). Now it is a straightforward
task to express Egs. (4) and (7) in terms of the Fourier
coefficients ®(q), and then for ¢ =0 and g >0, Eq. (8)
gives
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where \2=e?no/ekgT and
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Egs. (9b) and (10) are now used to eliminate F, and since
®(0) =eV/L, where V is the total voltage across the sam-
ple, we obtain the exact expression for the linear admittance
of the n*-n-n" structures

F= (10)
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Immediately it is clear that in the dc limit (w — 0) Eq.
(11) gives the correct result for the linear conductance in
the n*-n-n* structures,’’ and furthermore, the exact ad-
mittance can always be presented with an equivalent circuit
shown in Fig. 1, where Y,=e’novol/kgTL, Cg=¢€/L,
Go=(L/1)Y., and Yo=iw7*GoQ (). Evidently, Y, and C,
are the conventional bulk admittance (conductance and in-
ductance) and geometric capacitance of the central n region,
and G,, whose value is twice the conductance given by the
thermionic emission theory, can be interpreted as the con-
tact conductance. However, in order to obtain a transparent
view of the admittance Y,, a more detailed study is re-
quired. It is easily seen that a« may be written as
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FIG. 1. The equivalent circuit of the n*-n-n* semiconductor

structure.

a=L(1+iwr})V?/2Lp, where Lp=1/\ is the Debye
length and 77 is a complex time constant, which is equal to
the dielectric relaxation time of the n region multiplied by
1 +iw7o. Thus, for the major part of the practical frequency
spectrum the magnitude of « is entirely determined by the
ratio L/Lp. Normally, L/Lp >>1, whence cotha—1/
a=1, and then Y, becomes Y,=iwe/Lp(l+iwri)'?
which, at low frequencies, simply represents the contact
capacitance Co=¢€/Lp. However, for higher o we also get a
frequency-dependent conductance in parallel with Gy On
the other hand, for highly resistive and extremely short cen-
tral n regions we may have L/Lp <<1, which implies
cotha—1/a=a/3 and then Yy=iwCoL/6Lp. Consequent-
ly, in this case Y, gives a small and purely capacitive contact
contribution to the total admittance Y.

Roughly speaking, the effect of the contacts on the sam-
ple conductance is to add an extra length of one mean free
path at both ends of the » region, which physically reflects
the fact that at least one mean free path of spatial dimen-
sion is required to establish a change in the distribution
function of the charge carriers. Similarly, the charge accu-
mulation and depletion near the n*-n contacts needs a dis-
tance of one Debye length at both ends of the » region.
This effect is accounted for by the contact capacitance.
However, in the weakly screened case (L << Lp) the car-
rier density is spatially only slightly modulated, which
results in a small value of the contact capacitance, and, con-
sequently, in practically constant electric field throughout
the nregion.

The equivalent circuit obtained in this article is close to
the result calculated by Lee and Shur,®> who treated the con-
tact effects in the spatially homogeneous Boltzmann equa-
tion as surface scattering, which results in a length-
dependent, effective relaxation time. However, as a new
feature, our self-consistent treatment of the inhomogeneous
case brings in the contact capacitances, which must be
present in the equivalent circuit. In fact, our result is com-
pletely in accord with the heuristic model of submicron
semiconductor devices proposed by Barker, Ferry, and Gru-
bin.?
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