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Exact linear admittance of n+ n--n+ semiconductor structures
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With the self-consistent solution of the linearized Boltzmann equation in the relaxation-time approxima-

tion for a spatially inhomogeneous electron system, the admittance of n+-n-n+ semiconductor structures is

studied as a function of the length L of the moderately doped n region. It is shown that a one-dimensional

treatment of the velocity space leads to the exact, analytical solution of the problem. In addition to the
conventional admittance and the geometric capacitance of the n region, the equivalent circuit of the struc-

ture also includes the contact resistance and, as a new feature, the contact capacitance. For the strongly

screened cases (L » LD) the contact capacitance is approximately the permittivity e of the n region divid-

ed by the Debye length LD and, further, becomes exactly equal to aL/6LDz in the weak-screening regime

(LD» L).

With the progress in the semiconductor technology the
problem of electrical transport in small-scale n+-n-n+ struc-
tures has become a topic of intense research in recent years.
Theoretically, if quantum effects are neglected, correct
treatment of the problem evidently requires the self-
consistent solution of the Boltzmann transport equation for
a spatially inhomogeneous case. For dc electric potentials
this solution was numerically analyzed by Baranger and %'il-

kins, ' who clearly indicated the inadequacy of the conven-
tional drift-diffusion transport calculations in submicron de-
vices. In this article we study current transport in n+-n-n+
semiconductor structures with a variable-length n region and
for ac applied voltages. The distribution function of the
charge carriers is taken to be dependent on the velocity
component across the n+-n-n+ structure only, and the cal-
culation is limited to linear order in the applied potentials.

I

The one-dimensional treatment of the velocity distribution
function results in an exact, analytical solution of the prob-
lem, which permits an easy interpretation of the physics in-
volved and gives expressions for the elements of the
equivalent circuit of the n+-n-n+ structure.

We start with the path-integral expression of the solution
of the Boltzmann transport equation in the relaxation-time
approximation '
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Here r is the relaxation time and f'p' stands for the local
equilibrium distribution. '4 In the linearized case and for a
constant temperature and external potentials with e'"' time
dependence, Eq. (1) may further be written as
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where fp denotes the uniform equilibrium distribution
(Fermi-Dirac or Maxwell-Boltzmann), $ the electrical po-
tential, and 5EJ; the local change of the quasi-Fermi level.
Also, I/ '=rI/ ri+rp Using now the assumption that f
depends on the velocity component across the n+-n-n+
structure (v, ) only, we may directly calculate the
conduction-electron current j and the local change of the
electron density Sn induced by the external voltage. Thus,
writing
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and Sn = Sno+Sn~, where

Sno = (SE/;+ eP) e'"',
B

Sn) = ' —irpr'(SE/;+eQ) —~ dz'e ' ')/'4(z')
kBT t aJ 0

t L
dz'e —(z —z)//@(z') eicatY j

Here the moderately doped central n region extends from
z =0 to z=L Further, for the relaxation time v =lp/~u(,
v 's are taken as constants under the velocity integrations,
and thus l = lo/(1 +i pprp) and r' = ro/(I +irprp), where
rp=lp/up. In addition, our basic set of equations includes
the Poisson equation
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where X' = e'np/eke T and
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Eqs. (9b) and (10) are now used to eliminate I', and since
4(0) =eV/L, where Vis the total voltage across the sam-
ple, we obtain the exact expression for the linear admittance
of the n+-n -n+ structures

e npupl 1 +i pug Q(a) i~r
ksTL 1+2l/L+ico7 Q(a) A. l

where Q(a) = L (a cotha —10)/2la' and a = L [(Xl)
—icos ]' /2l.

immediately it is clear that in the dc limit (~ 0) Eq.
(11) gives the correct result for the linear conductance in

the n+-n-n+ structures, and furthermore, the exact ad-
mittance can always be presented with an equivalent circuit
shown in Fig. 1, where Y, = e'npvpl/ks TL Cg = e/L,
Gp= (L/l) Y„and Yp=icur'GpQ(a). Evidently, Y, and Cg

are the conventional bulk admittance (conductance and in-
ductance) and geometric capacitance of the central n region,
and Go, whose value is twice the conductance given by the
thermionic emission theory, can be interpreted as the con-
tact conductance. However, in order to obtain a transparent
view of the admittance Yo, a more detailed study is re-
quired. It is easily seen that o. may be written as

and the requirement of the constancy of the total current

I =j +i cueE =const

Yet, in order to satisfy Eq. (8), which is equivalent to the
continuity equation, we must have Sn& =0, which is just the
requirement of number conservation in the relaxation-time
approximation.

For the solution of the equations we expand the unknown
function 4(z) in a Fourier series over the n-region length:
4(z) = XC'(q)e"' (qL =2mn). Now it is a straightforward
task to express Eqs. (4) and (7) in terms of the Fourier
coefficients C&(q), and then for q =0 and q &0, Eq. (8)
gives

G, Yc G,

FIG. 1. The equivalent circuit of the n + -n -n + semiconductor
structure.

a = L (1+iGJTy)"'l2Lo, where LD = 1/A. is the Debye
length and rq is a complex time constant, which is equal to
the dielectric relaxation time of the n region multiplied by
1+ice~0. Thus, for the major part of the practical frequency
spectrum the magnitude of o, is entirely determined by the
ratio L/LD. Normally, L/LD » 1, whence cotha —1/
a =1, and then Yp becomes 1'p =i cue/LD(l +i purd)' ',
which, at low frequencies, simply represents the contact
capacitance Cp = e/LD. However, for higher cu we also get a
frequency-dependent conductance in parallel with Go. On
the other hand, for highly resistive and extremely short cen-
tral n regions we may have L/LD ((1, which implies
cotha —1/a = a/3 and then Yp = i cuCpL/6LD Consequ. ent-
ly, in this case Yo gives a small and purely capacitive contact
contribution to the total admittance Y.

Roughly speaking, the effect of the contacts on the sam-
ple conductance is to add an extra length of one mean free
path at both ends of the n region, which physically reflects
the fact that at least one mean free path of spatial dimen-
sion is required to establish a change in the distribution
function of the charge carriers. Similarly, the charge accu-
mulation and depletion near the n+-n contacts needs a dis-
tance of one Debye length at both ends of the n region.
This effect is accounted for by the contact capacitance.
However, in the weakly screened case (L ((LD) the car-
rier density is spatially only slightly modulated, which
results in a small value of the contact capacitance, and, con-
sequently, in practically constant electric field throughout
the n region.

The equivalent circuit obtained in this article is close to
the result calculated by Lee and Shur, ' who treated the con-
tact effects in the spatially homogeneous Boltzmann equa-
tion as surface scattering, which results in a length-
dependent, effective relaxation time. However, as a new
feature, our self-consistent treatment of the inhomogeneous
case brings in the contact capacitances, which must be
present in the equivalent circuit. In fact, our result is com-
pletely in accord with the heuristic model of submicron
semiconductor devices proposed by Barker, Ferry, and Gru-
bin. '
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