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Thermal conductance and giant fluctuations in one-dimensional disordered systems
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The thermal conductance for the energy transport through a disordered harmonic chain is calculated by a
tunneling expression of the energy current. The dominant contribution comes from quasiballistic phonons
for which the localization length is comparable to the size of the chain. A universal regime of conductance
in ksT/g is obtained at low temperature; while giant fluctuations are predicted at higher temperature.
Analogies with electrical conductance are established and conditions for measurements are discussed.

It is well known that one-dimensional disordered systems
can support only localized states. This has been established
both for electrons and phonons, but the transport property
of these disordered chains is a much more intricate prob-
lem. The difficulties arise from interference effects of the
scattered ~aves which prevent the use of a quasiclassical ap-
proximation. of the Boltzmann type. For electrons, an im-
portant theoretical effort' has led to a new formulation of
the electrical conductance in terms of the transmission coef-
ficient first proposed by Landauer. ' In this way, a new tem-
perature dependence of the electrical conductance has been
recently proposed by Azbel. 4 The present paper is devoted
to the calculation of the temperature T and size L depen-
dence of the thermal conductance G(L, r) of a disordered
chain. It constitutes a counterpart of the phonon problem
of the electrical conductance. The main difference between .

electrons and phonons is the existence of the thershold of
localization at zero frequency. As a consequence, the locali-
zation length diverges strongly at low frequency, as co

for a weakly disordered medium. The main results are the
following: There is a characteristic frequency tp' (and corre-
sponding temperature r') related to the disorder and the
finite size of the chain which separates the phonon into two
classes: ballistic and resonant. At low temperature the
thermal conductance varies linearly in temperature in a
universal non-Ohmic regime independent of disorder, sound
velocity, and size. Above T', thermal conductance be-
comes independent of temperature on average, but for a
given sample it has a nonmonotonic variation. The distribu-
tion of random conductances obeys a central limit theorem
but with giant fluctuations decaying in size as I. '~ . These
results have been established in the elastic scattering ap-
proximation. Effects of anharmonicity'0 are expected at
higher temperature and mill be neglected.

Consider a chain of length I. where the masses of the
atoms are independent random variables with average M
and variance o-~2. At both ends of this disordered chain an
elastic continuum is matched which supports elastic waves
of the same acoustic impedances as the average chain. A
wave of frequency co incident from the left is partially
transmitted through the random isotopic chain. The
transmission coefficient W(co, L) is defined as the ratio of
the transmitted energy flow to the incident energy flow.
O' Connor" has established that the random function
in'(cp, L) obeys the central limit theorem with mean value
—2L/gp(cu) and variance proportional to L. At low fre-

WBa„——exp[ —(L + 2A„)/gp j

where A„ is the distance between the maximum of this lo-
calized mode v and the center of the sample. A„are as-
sumed independent random variables uniformly distributed
between 0 and L/2, an hypothesis supported by the recent
work of Gor'kov et al. '4 This gives rise to very large fluc-
tuations of the transmission coefficient which will provide
sharp structure of thermal conductance. Such fluctuations
cannot be smoothed by thermal broadening. We propose to
use Azbel's approximation for the transmission coefficient
W and to assume, in addition, a uniform separation of the
modes: Sco„=2n u/L, where u is the sound velocity:

277'UMS'„= exp— (2)

Since the contribution of the high frequencies is exponen-
tially small —an exact result first established by
O' Connor" —we will use the expression (1) of gp(tp„) in
(2). The random character of this transmission coefficient
is now contained in the uniformly distributed random vari-

quency the localization length gp(cd) has been found5 9

equal to

8'
g( )=

0 7T QJM

where co~ is the Debye frequency.
This result is obtained by a perturbation expansion to

lowest order in the fluctuation of masses and is of the order
of the elastic mean free path. The relation g(tp') =L de-
fines a cutoff frequency eo' for a low-pass band filter by
t0 = (242cuD)/(m(r~ JL ).

For low-frequency phonons co~~" the transparency is
nearly perfect. They propagate ballistically through the
chain as through a periodic chain. At higher frequency no
analytical expression of W(tp, L) is available. By numerical
simulations of this model, Azbel' has observed resonance
tunneling modes at discrete values of frequency eo„emerg-
ing from a background of exponentially damped transmis-
sion coefficients. Moreover, these resonant eigenstates are
not perfectly sharp, but their widths are exponentially small.
For electrons, Azbel" has quantified these numerical results
by a very simple expression of the product of the resonant
transmission coefficient W by the width
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able A„. This does not violate the central limit theorem, "
since the probability of occurrence of these resonant tunnel-
ing modes is vanishingly small for L large. Moreover, at
low frequency the extrapolated W from (2) has the correct
functional dependence on L and co.

The problem of heat transfer can be simply formulated in
terms of the transmission coefficient in a way similar to that
for conduction through a tunnel junction.

Let us consider the left-hand side of the random chain a
blackbody source of phonons at temperature T+ dT, while
the right-hand side of the chain is in contact with a black-
body source at temperature T. The contribution to the ther-
mal current for the phonons eo carrying energy from the left
to the right is given by

where E(x) =x2e"(e"—1) 2 is the Einstein specific-heat
function. The expression (3) can be analyzed at two levels
of approximation. At the simplest level we suppose that
only the ballistic phonons (co & eo') can carry heat (M= 1)
and neglect the other contributions (M=0). Then,

c

Gc0i(T, L) = ks E (4)
2m k3T

which provides two asymptotic regimes:

m-2 AT
3

k8Ta, T)T

where T'=geo'/k8, n= l.
It is remarkable that the low-temperature contribution (5)

is a universal function of T which depends neither on disor-
der nor on the elastic constant of the chain. This can also
be understood from the classical kinetic formula. At one
dimension 6=E/L, where E is the thermal conductivity
given by E = Civl, where Ci is the specific heat per unit
length and I the elastic mean free path. Since Ci = v ' and
I=L for ballistic phonons, the thermal conductance be-
comes a universal function of T. It is also surprising that at
low temperature 6 is size independent, while at the plateau
it depends on L ' 2 through T'. In neither regime does it
obey Ohm's law.

Beyond this crude approximation of ballistic phonons, one
can retain, following Azbel, ' the contribution of the
resonant tunneling modes to the thermal conductance. The
discrete version of (3) can be written as

I' c

gl ~v, e
L+2A„( )
g(co„)

where the random transmission coefficient P„ from (2) has
been used. Now 6 is a random function defined by a sum

I= +a)vg)(a)) n(cu, T+ dT)W(o), L)

where gt(co)=(nv) ' is the one-dimensional density of
states per unit length, and n(cu, T) the Planck distribution.
By subtracting the thermal current from the right, one ob-
tains the expression for thermal conductance:

t

G(T,L) = „des E 9"(0),L) (3)
2m' "o 8

of random variables independent but nonidentically distri-
buted. The number of terms in the sum (6) is limited by
the temperature through the Einstein function. More quan-
titatively, since the average separation of the modes is
2nv/L=mcoM/L, this number is LT/2OD. Therefore, for
T » OD/L we are justified in applying the central limit
theorem for the thermal conductance. This is a fundamen-
tal property for the conductance at finite temperature. By
direct application of the Lindeberg version'5 of the central
limit theorem, we established that 6 obeys a normal law
centered at'the average conductance G and with a variance
cr$ given by the sum of the variances of each term. The
average conductance is straightforwardly obtained from (6):

c

G(TL) = d0)E e
0

„(1,—Lit(~) )

which produces again the two regimes- of conductance of the
ballistic approximation with a minor correction for the nu-
merical prefactor: n = (Jn/3) (v 2 —1). The variance of the
transmission coefficient for the resonant mode v is

2Lo-2 = "
eXp — 1 —eXp—

2L f (ccrc„)

tanh [L/2g (a)„)]
L/2g(~. )

and the variance of the thermal conductance o.G is obtained
by an integral over the continuous variable eo, one obtains

'2 c

d~ [Lgt(co)] 'E' a'(~)
2m' B

From (8), a.2 has a maximum around cu'. Below cu' it in-
creases as (co/c0'), but above co' it decreases as
co 2exp[ —2(ao/co')2]. The Einstein function determines
the relevant range of variation of the frequencies up to
keT/g in (9). Then o o is given by the integrated variance
o 2 from 0 to ke T/t. At low temperature T & T', it is easy
to obtain the relative fluctuations of the thermal conduc-
tance o.o/G, proportional to O~i'l'2T t2L 't (T') (O~D is
the Debye temperature). When T increases to be of the or-
der of or greater than T', the relative fluctuations become
temperature-independent and proportional to (8D / T ') t
x L '~ . Since T =ODcr~'L '~, the relative fluctuations
of the thermal conductance are proportional to o-'~ L
These are giant fluctuations, because they decay as L
rather than as L '~ for standard fluctuations. The origin of
this unusual result must be sought in the exponentiation of
the uniformly distributed variables A„. This provides
cro=O~g. (G/L), and G varies as L in this plateau
regime. It must be noticed that it is the quasiballistic
modes, co ao', which give the dominant contribution to 6
or o $. This justifies the approximation of the low-
frequency localization length in Eq. (1) in the general ex-
pressions given by Eqs. (6) and (9).

The previous analysis applies to the electrical conductance
problem with only a few modifications. Following Azbel
and Di Vincenzo, '6 the energies of the resonant tunneling
states e„replace co„, the derivative of the Fermi function
( —Bf/Be), =, replaces the Einstein function, while the lo-
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calization length gp is assumed to be energy independent
and shorter than L. Instead of Eq. (6), the electrical con-
ductance G, (T,L) can be written

r

L+2A„exp-
Co

(10)

where pi(e) is the density of states per unit length. As for
the phonons, if T is sufficiently high (T» TF/L, where
TF is the Fermi temperature), the random electrical conduc-
tance 6, obeys the central limit theorem with mean value
6, and variance o-62 .

The mean value G, is obtained directly from (10) by
averaging the transmission coefficient, which gives, for
go«L,

e' 4o -«ep6,= — —e
2mb L

It must be emphasized that the T independence of 6,
comes both from the double averaging procedure (sampling
and thermal) and the non-energy dependence of the locali-
zation length while the non-sampling averaged 6, is found
to be temperature dependent in Refs. (13) and (16). The
variance o.G2 is simply obtained from the same variance o-2

e
of the transmission coefficient as given by (8), but with o.„
independent of v.

r

(j f'
o. z = oz de [Lpi(e)]

2mb QE'

Since the integral over e in (ll) gives a term proportional to
TF /( TL) and o.~ = (go/2L ) exp( —2L/(p), we obtain final-
ly for the relative fluctuations of the electrical conductance
~o, /G, = (&r/T(o)"'

These giant fluctuations do not depend on the size L,
while for standard fluctuations one would expect an L
attenuation. The main difference with phonons is that no
states of electrons are ballistic: They are assumed to be re-
stricted to the vicinity of the Fermi energy. These fluctua-

tions established for sample averaging can be measured by
varying the chemical potential p, of the electron gas. Sim-
ply, changing p, shifts the derivative of the Fermi distribu-
tion ( —Bf/BE) along the spectrum of the resonant tunnel-
ing modes. %e can then calculate the reduced correlation
function of the conductance:

(SG(p, +Ap, )SG(p, )),„3
(8G'( )) sinh'x

(12)

where x = b p/2 T. C(hp, ) decreases for high Ap, as
(/Jp/T) exp( —b p/T), and then T appears as the correla-
tion energy for these fluctuations when Ap, varies. %e ad-
vance this as a possible explanation of the nonmonotonicity
in electrical conductance with changing the chemical poten-
tial as observed recently in inversion layers. ' '

There are several conditions for experimental observation
that must be discussed. First, for realistic values of L =1
cm, 08=300 K and o-~=10 one finds T'=5 K. More-
over, the value of the mean thermal conductance 6 at the
plateau is equal to 10 ' %K '. This value is small but
measurable: It is equivalent to a thermal conductivity
K = 10 % m ' K ' of a thin wire of cross section 1 p, m
and of 1 cm length.

The condition of one dimensionality for a thin fiber must
be formulated in the following way. First, the reflection of
phonons on boundaries must be specular and not diffuse.
This is usually the case at low temperatures T~ 1 K, where
the wavelength of the dominant phonons (typically 1 p, m) is
longer than the scale of the roughness of the surface.
Secondly, for a section of diameter d of a fiber one expects
dimensional crossover of the density of states over a range
of temperature of OD/d. For observing the universal re-
gime this implies very thin fibers d 0«/DT', which, for
the typical material considered previously, limits d to 10
atomic distances. Another aspect of the one-dimensional
nature is the localization length g(cp) longer than d. Actual-
ly, this condition is fulfilled since the quasiballistic phonons
which provide all the present features have a localization
length comparable to L.
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