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Stability and instability in crystal growth: Symmetric solutions of the Stefan problem
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The stability is studied of the previously known solutions of the equations for the growth of a
sphere, cylinder, or plate from the melt. These solutions are shown to be particular cases of a more
general formulation, and to be stable against perturbations that retain the initial symmetry. The
case of one-dimensional growth of a plate is shown to exhibit neutral stability only at the critical un-

dercooling for which the latent heat of freezing is precisely equal to the amount required to raise the
bulk material to the melting point. In conditions of large undercooling kinetic considerations deter-
mine the form of the asymptotically stable solutions.

I. INTRODUCTION

The problem of the stability of the growing surface of a
crystal solidifying from the melt has been the subject of
much recent study. Significant advances have been made
in understanding such problems as dendritic growth and
pattern formation, ' and the effects of crystal anisotropy.
In an attempt to classify and understand the types of in-
stability that may arise in a condensing system we have
performed a number of analytical studies of the solutions
of the thermodiffusion problem both in the presence and
absence of hydrodynamic effects.

In the present paper we return to the case of symmetric
growth of solids from the melt, and reconsider the forma-
tion of a sphere, cylinder, or plate. In the simplest ther-
modiffusion model, in which all hydrodynamic phenome-
na are ignored, we show that a single expression may be
derived that is valid in all three geometries. This general
solution is then shown to be stable against perturbations
that do not break the symmetry of the initial solidifying
shape. The previously formulated solutions 5 for these
geometries are thus shown to be particular examples of a
more general formulation, and, in appropriate coordinate
systems, to be asymptotic solutions of a self-similar type.
In the final sections of this paper, the problems associated
with large undercooling are explored.

II. METHOD

aT2 dR (t)
k2 —k) ——pA,Br, ~«~ Br „~«~ dt

(2)

Here Tq and 12 are the temperatures of the liquid. and
solid, respectively, t is the time, and k; and D; are the

We consider an infinite d-dimensional system in which
a symmetrical solid is growing from a liquid initially at a
temperature T that is less than the equilibrium freezing
temperature T~. For an isotropic crystal growing slowly
from the melt the governing equations for the flow of
heat may be approximated by those of the Stefan problem,
namely

e)Tt/dt=D(V Tt, i =1,2

8T2 =0 (4)

and

Tt(r= oo)=T

We now make a transformation to a spatial coordinate
that depends on time. This allows us to write the solution
to the thermodiffusion equations as functions that are in-
dependent of time in the new coordinates. That is, we de-
fine

D(
, dr=, dt.

R (t) [R(t)]'
It is also convenient to discuss the dimensionless tempera-
ture differences

and

where C„; (i =1,2) is the specific heat, equal to k~p/D;,
of a phase at constant volume. The velocity v of the
freezing surface is related to the dimensionless quantity

coefficients of thermal conductivity and diffusivity,
respectively. The latent heat per unit mass is I,, and p is
the density of the solid. In order to be able to neglect hy-
drodynamic phenomena we make the approximation that
the liquid density is also equal to p. The quantity r mea-
sures the distance from the center of the crystal, and takes
on the value R (t) at the crystal surface: In three dimen-
sions R is thus the radius of a spherical crystal, in two di-
mensions the radius of a cylinder, and in one dimension of
half-thickness of a plate.

In the absence of appreciable surface tension, the boun-
dary condition at the surface is

Tp(R) =T) (R ) = TM,

while
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1 d(R )(t)-=4D d
(9)

v = [PDi /(t —to)]'~ (19)

au au; D; i d a i
au.

a,'-'pwca~ =D', ~' 'ag O' 'a~

The surface condition, Eq. (2), is transformed into

k2 Bu2 au } =2P(~)
k, ag » , ag

and the boundary conditions are

(10)

which is akin to the Peclet number of fluid dynamics.
With these definitions Eq. (1) becomes

r

with to a constant having the dimensions of time.
It is, incidentally, amusing to note that if we put the

dimensionality parameter d equal to zero, then a solution
exists only for b, =1, and p is undetermined in the expres-
sion

ui(g)= —1+exp[p(1 —g )] .

While there is no obvious physical significance to this ex-
pression, its similarity to the degenerate solution of the
one-dimensional problem at critical undercooling studied
in Sec. V is suggestive.

u2
~ » i=ui

~ » i
——0, (12)

BQ2 =0,
»=o

u, ~» „=-a.
III. SOLUTIONS

(14)

IV. STABILITY

For a given value b. of the undercooling parameter, Eq.
(16) provides the unique asymptotic form of the tempera-
ture distribution. To verify that this is a stable solution
we study the time development of a small perturbation of
the ~-independent solution. We write

The valuable property of the equations written in this
form lies in the fact that a solution may be found that is
independent of the transformed timelike variable r The.
temperature distribution in the solid may immediately by
identified as the trivial solution of Eq. (10), namely

up(g') =0,
as this satisfies the boundary condition at /=0. The tem-
perature distribution in the liquid is then the
independent solution of Eq. (10) that satisfies the remain-

ing boundary conditions. It is found to be

ui(g) = —&+P 0'( —,d, —,'d;Pg )exp[P(1 —g2)] . (16)

Here 4 is the confluent hypergeometric function and p is
the constant value of the variable defined in Eq. (9). This
constant is given by the boundary conditions stated in Eq.
(12), and thus satisfies the relation

P""0(—,'d, —,'d;P)=h . (17)

The solution of this relation for p as a function of b has
been plotted by Horvay and Cahn. In Fig. 4 of that
reference, their 0 is equal to our p, and their Uf is pro-
portional to our h. Equation (17) defines p for 0&6, &1;
as might be expected, p, which is related to the velocity of
the interface, is a monotonically increasing function of the
undercooling 5 in this range. For b, close to unity
P=d/2(1 —5). The behavior for small 6 depends quali-
tatively on the dimensionality, and is of the form
P=b, /m for d =1, and P 6/2 for d=3. For d =2 we
find p in this regime to be given as the solution of the
equation b,=—p(lap+ y ) with y the Euler constant,
0.577. . ..

The constancy of p tells us, from its definition in Eq.
(9), that the square of the distance, R, of the interface
from the origin is increasing uniformly with time. We
thus have

ui(v, g) =uo(g)+uz(v, g),
P(~) =Po+Pi(~) .

(21)

(22)

(The solution uz is obviously stable and does not need to
be considered. )

Substitution of (21) and (22) into (10) and (11) yields

a.up aup auo i d a i aup
'P'

ag
=' "ag " '

ag

and

BQp =2Pi(r)
»=1

(24)

where

p d
P K

4po 4

(28)

with u~ =0 at /=1 and at g= ao. It is convenient to use
the Laplace transforms

co(p, g) =I up(r, g)e i"d~, (2&)

A (p) =I Pi(~)e ~'d~, (26)

and to define a new space coordinate

x =Pot'

and the functions

Z(x,p)=x'~z "e"~ co(p, g),
F(x p)=x ' "e"

X u~(0, $)
&& 3 (p) exp(po —x)—

po 4Po

R =[4pD, (t to)]'i'— (18) The function F contains the initial temperature distribu-
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tion through the quantity u~(0, $'). In terms of these, Eq.
(23) becomes c i —— —g f W(x)F (x)dx

M(x)
W(x)

a'Z 1 ~ (-'-t")
Bx 4 & x'+ ——+—+ Z=F(x,p) . (29) +g f M(x)F(x)dx (31)

This has a formal solution in terms of the Whittaker
functions, M(x) and 8'(x), defined in Ref. 6. We find

Z(x)= c& W(x) —gR'(x) f M(x)F(x)dx

+gM(x) f 8'(x)F(x)dx, (30)

where

r(a)
r(c) (32)

with a =1+p/4Po and c =2—d/2.
The motion of the phase boundary is governed by the

solution

Po '"exp( —Po) f u, (0,g)O(a, c,x) dp
A(p)=

4 f exp( —x)x' '%(a, c,x)dx —exp( Po—)Pp '0'(a, c,Po)
0

(33)

with 4 again the confluent hypergeometric function. We
see from this that A (p) has singularities whenever the
denominator vanishes in Eq. (33). Now it is shown in
Ref. 6 that it is a property of %' that

[x' '%(a, c,x)]= —(a —c + 1)%'(a —c +2,3 —c,x)

=e 'Po %(a,c,Po) . (35)

The denominator in Eq. (33) can consequently never van-
ish when p is positive. This absence of poles implies from
the definition of 2 (p) in Eq. (26) that P~(r) must always
decay exponentially with time. The same holds true for
the temperature distribution uz(r, g) The decay r. ate of f3&

and u& are determined by the smallest negative value of p
at which a pole of 2 (p) occurs.

In passing we can again note the unusual behavior of
the problem when d =0. Then c =2 and when p =0 then
a =1; the fact that %(1,2,x)=x ' shows a pole to exist
at p =0 and the degenerate solution to have neutral stabil-
ity.

V. THE DECsENERATE SGLUTIGN

(34)

and the right-hand side of this equation is clearly nega-
tive if a —c + 1 & 0 because %(a,c,x ) & 0 if a & 0 and
c &3. It follows that 4 is a monotonically decreasing
function whenever a —c+1&0, or, equivalently, whenev-
er p & —2Pod. Thus, if that is the case,

e "x' '%(a, c,x) dx & Po '%'(a, c,Po) f e "dx
0 0

u)(g) = —1+exp( —2Pog) (36)

with Po now an arbitrary constant related to the velocity
of the phase front by

Po ——, vRo/D—i .

We also have

R(t) =R, +vt,
7.=Dit/Ro,
g=(x vt)/Ro . —

We now show the uncertainty in velocity to be intimately
related to the initial temperature distribution.

We use the same definitions as in Eqs. (21) and (22) to
define the perturbations in temperature and front velocity,
and their respective Laplace transforms as in Eqs. (25)
and (26). The differential equations governing the time
development are then

8 co Bco

gg2
+2' —pm =H(g, p)exp( —Pop) (37)

where

Bco ] =23(p),
/=0

in one dimension that occurs when b, = l. Then uz(g) is
again zero, but in terms of newly defined variables

Having established the stability of the general solution
for which b, & 1, we now turn to the degenerate solution'

H(gp) =4PoA(p)exp( —Pop) —u~(0, (')exp(Pop) .

The solution for Eqs. (37) and (38) is

(39)

to(p, g) =exp( —Pop) c2 Y(g) —[2(p+Po)' 'Y(gl

X f Y(g)H(g, p)dg+ —,
' (p+Po) ' Y(g) f [Y(g)] 'H(g, p)dg (40)
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where

c2= ,'(p—+po) ' 'f, ~(p, g)[I'(g) —1/I'(g)]dg

where co+(x) is defined as co(p, g) evaluated at

p= —p,'+i —'xe'-',

7'(g) =exp[ —(p+ po)' g] .

We then also have

[(p+po)'"+po]'A(p)=-
2+

and A+(x) is A(p) evaluated similarly. In the limit of
large times r»po, and these contributions from the
branch cut vanish. We are then left with the asymptotic
result arising only from the residue at the origin, giving

pi(r)= —2po f u~(0, $) dg

uz 0, exp —p+

(41)
(T g) 4'' exp( —2Ppg) f u&(0 g)dg

= —2P,gexp( —2Pog) .
The determination of the asymptotic behavior of the

temperature distribution at large times is a little more
complicated than in the previous case because of the
branch cut in the expressions for cv and A. We take the
inverse Laplace transforms,

u~(~, g) =(2n.i) ' f co(~,g)e~'dp

Pi(~) =(2n.i) ' f A (p)e~'dp

by integration along the contour PBiBiQ in Fig. 1 and
adding the residue from the pole at p =0, rather than in-

tegrating directly along the straight line PQ. The contri-
butions from the curved regions vanish, leaving only the
residue at the origin and the terms involving lines B2 and
Bi. We find

The total temperature distribution in the liquid is then

u i(r, g)=—1+(1—2Pig')exp( —2Pof ),
which, because of the assumed smallness of uz(0, $) and
hence of pi, can be written as

u i ( ~, g)=—1+exp[ —2(PO+ Pi )g] .

The initial perturbation of ui is thus incorporated into
the asymptotic solution, which now represents an alterna-
tive self-similar solution of the Stefan problem, but with
Po rePlaced by Po+Pi. In terms of the original coordi-
nates

T, (x, t) = TM+ ( —1+e ' '),

where now the perturbed velocity v of the phase front is
changed from its original value vo to be

v =vo —(voRo/D, )f u~(0, $)dg .

u&(r g) = 4pgexp( —2pog) f u~(0, $)dg

+ (2mi r) 'exp( pox ) e "—(co+ co )dx—
0

Pi('7) = —2Po f up(0, ()dg (2iri r)—
Xexp( pzr) f —e "(A+ —A )dx,

0

In one dimension the moving phase front at critical un-
dercooling thus represents a situation of neutral stability.

VI. EXTREME UNDERCOOLING

FIG. 1. Contour for integration of the inverse Laplace
transform of u~ and P~.

We have now explored the general symmetric solutions
for the cases where the undercooling parameter 6 is less
than unity, and for the special case where b, = l. What,
we now ask, will be the behavior in the situation of ex-
treme undercooling where 6 & 1?

The first point to note here is that the temperature of
the phase boundary between liquid and solid will no
longer be the equilibrium melting temperature T~. Be-
cause there is not sufficient energy in the system for the
bulk solid to be raised to TM, the phase boundary will in
general be at some lower temperature. This fact poses the
difficulty that we lose one of the boundary conditions for
the solution of the differential equations.

We illustrate this by considering the one-dimensional
case shown in Fig. 2, in which a nucleating thermal reser-
voir at temperature T0 ~ TM is plunged intg a supercooled
liquid at temperature T & T~ —A, /C„ i. Equations (10)
and (11) continue to apply in the version in which d =1,
but the boundary conditions are altered. If we redefine u;
as
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To
Tg

Y~

T
SOLID LIQUID

FIG. 2. This figure illustrates an example of large undercool-

lng.

(T;—T„)

and define

C„1
(Tp —T ) bz =— ' (To —Tb )

uz (g i=ui ~g

uz ~g 0——5i,

ui ig „=0.
The solutions are

exp( —Pg )%'( —,', —,',Pg )
ui(g) =(5i—b,z)

exP( —P)%'( —,', —,', I33)

with Tb the temperature of the phase boundary then Eqs.
(12), (13), and (14) are changed to

that of dissolution, and the phase boundary moves at a
rate proportional to TM —T. The analysis of the preced-
ing sections is thus not entirely correct, as the motion of
the phase boundary corresponding to a finite P must im-

ply a temperature different from TM. However, this ef-
fect may reasonably be assumed negligibly small when
b, & 1, as in this case the speed of the interface is limited
by thermal conduction.

When 6 ~ 1, on the other hand, there is no such lirnita-
tion, and we must expect the speed of the phase boundary
to be determined by these kinetic considerations. We thus
require a solution in which the velocity U of the phase
front is constant, and does not decrease with time in the
manner given by Eq. (19). This fact obliges us to turn to a
variant of the degenerate solutions discussed in the
preceding section, since they have the desired property.
The requirement of the preceding section that 6 be equal
to unity translates in the present context to the condition
62——1. The asymptotically stable solutions are then

uz ——1 (x »Di/U),
u i ——exp[ —v(x Ut)/Di ],—

with u determined by kinetic considerations arising from
the condition

Tb ——T +A/C, i .

(For small x, the quantity uz must rise to 6i to satisfy the
boundary conditions. )

Because v is much larger in this case than when 6 & 1,
the temperature gradients are correspondingly severe, and
we must also expect nonlocal effects to modify the equa-
tions for thermal conduction. These effects, however, lie
outside the scope of the present paper.

VII. CONCLUSIONS

1 (-,' )—exp( —@' /a)4(-,', —,',Pg /a)
uz(g) =b i

—Az
I ( —,

'
) —exp( —P/a)%( —,', —,',P/a)

where a=Dz/Di, the ratio of thermal diffusivities in
solid and 11qu1d.

The difference between this solution and that obtained
for modest undercooling lies in the fact that hz is an un-
known quantity. With two second-order differential
equations and only three boundary conditions, the quanti-
ties P and Tb remain undetermined. The resolution of
this problem requires a reexamination of the microscopic
freezing process.

The rate at which atoms or molecules from the liquid
are entrapped at the solid surface and the rate at which
molecules from the sohd escape into the liquid are both
functions of temperature, and are equal at TM. At tem-
peratures slightly below TM the rate of deposition exceeds

We have shown that it is possible to express symmetric
solutions of the Stefan problem in the absence of hydro-
dynamic effects in terms of confluent hypergeometric
functions. These solutions are stable against perturbations
that retain the symmetry of the phase front. The particu-
lar case of a solidifying plate exhibits degenerate solutions
for a certain critical undercooling, and these are of neutral
stability.

At larger undercooling kinetic considerations determine
the temperature of the interface, and the speed with which
it moves. In succeeding papers in this series we shall ex-
plore the nature of the instabilities that arise when the re-
strictions to symmetric solutions and to the absence of hy-
drodynamic effects are lifted.
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