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We report the first study of directed percolation in the continuum. The percolation threshold is found to
be at B,=5.0 £0.1, where B, is the average number of intersections per diode at the threshold. This is to
be compared with B,=3.2 £0.1 in the corresponding nondirected problem. It is found that the critical ex-
ponents of this system are v =0.74 £0.05, v | =0.46 £0.08, 8=0.33 £0.07, and B8’=(2.00 £0.05)8. The
good agreement with values found for directed lattices appears to be a confirmation of universality for these
systems as well as a demonstration that geometrical and physical properties of directed systems in the con-

tinuum can be computed.

The multitude of interesting phase transitions and the
variety of applications for mathematical, physical, chemical,
and biological sciences has made directed percolation a very
active field.!'2 In directed percolation, unlike the nondirect-
ed case,? bonds on a lattice are randomly occupied by diodes
rather than by resistors. The diodes are aligned in orienta-
tions which provide a preferred (or a ‘‘time”’) direction in
the system. Two diodes are said to be connected if there is
at least one continuous path between them such that in
every step along the path one traverses only along the direc-
tion permitted by the diode. This implies that in directed
percolation the clusters will be smaller than the ensemble of
diodes touching each other and that (unlike nondirected
percolation), the backbone probability is equal to the square
of the percolating cluster probability.*>

The study of directed percolation has been extended thus
far to various lattices®” and to lattices which contain diodes
and resistors."# The percolation thresholds and the critical
behavior of the percolating cluster have been studied for
different dimensions,>!® while the.critical behavior of the
electrical conductance was limited to two dimensions.®> !
As far as we know, no attempt was made to study directed
percolation in the continuum, i.e., where the diodes are not
put on a lattice but are randomly distributed in space. In
such a case the diodes intersect each other anywhere along
their extent (rather than touch at their ends) and the
“flow”” is allowed only along the part of the diode which is
consistent with the diode direction. In addition to the un-
known critical behavior of such a system, it appears that the
continuum systems describe more closely some of the sys-
tems modeled previously by directed percolation on lattices.
This applies to systems where the steps traversed are not
equal in their length and to systems where the number of
nearest neighbors is not fixed as in lattices. Examples in-
clude an epidemic spread in a wild forest rather than in a
cultivated orchard,!? a drainage area of river networks!® and
electrical, communication, and transport networks, which do
not have the relatively simple ‘“‘Manhattan’’ geometry.!

In this Rapid Communication we present the first attempt
to study continuum-directed percolation. For this purpose
we have carried out a Monte Carlo study of the simplest
possible system of equal-length diodes implanted in a two-
dimensional sector of unity radius. We have found the per-
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colation threshold dependence on the length of the diodes
and the critical behavior of the directed path (which starts at
the origin), both below and above the critical diode concen-
tration N,. For diode concentration N for which N < N, we
studied the characteristic lengths of directed animals,!® &
and ¢, while for N > N, we have studied the percolating
path and backbone probabilities. A study of other geometri-
cal and physical properties will be reported later.

The kind of sample used in the present work is shown in
Fig. 1. For the sake of clarity we deliberately show a very
small (N =13) ensemble of diodes. The first and second
diodes are intentionally put at the origin (the ‘‘source”),
while the centers of all subsequent diodes are randomly
selected in the sector. The orientations of the diodes are al-
ternately vertical (‘‘up’’) and horizontal (‘‘right”). All
diodes are of the same length L (in sector’s radius units)
and each diode is given a number according to the implanta-
tion sequence. The intersection of two diodes is very dif-
ferent than in lattices, not only because of the correlations

FIG. 1. A small ensemble illustration of the samples used in this
study. Here N=13, N,=9, and N,=3.
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(if one views the continuum as a highly correlated lattice
problem), but also because a diode here has components on
both sides of an intersecting diode so that part of it may
‘“‘conduct’® while part of it may not.

Since the present problem has not been dealt with previ-
ously and since both the system and the algorithm used are
quite different from the lattice ones, we sketch here the
principle of the algorithm. A more detailed and graphical
description will be presented later.

The first two diodes implanted in the origin are assumed
to start the path. Let us assume that after many diodes are
present in the system a new horizontal diode j is added.
The intersection of this diode with each of the already
present vertical diodes is checked (as in the nondirected
case!?). The diodes which intersect j, i;(}), , i, (J), are
recorded according to their left-to-right intersecting se-
quence. If all these diodes do not belong to the path, j is
not added to the path (and another diode is thrown into the
sample). If some of the above diodes belong to the path,
we check which one of them makes j join the path (ie.,
conducts into j). From all diodes which can make j join the
path, we register the leftmost diode i,(;) and call it the
““parent’’ of j. Now, jcan make all the / diodes which it in-
tersects, and which lie to the right of i,,( /), belong to the
path. For those which did not belong to the path previous-
ly, j becomes the parent, while for those which did belong,
it is checked whether j replaces (i.e., lies below) their old
parent. The updating process continues for each diode
which gets a parent or has its parent changed until no more
changes are recorded. A similar procedure is applied to
vertical diodes. While the algorithm indicates a chainlike
process, the computing time is not as long as it may seem.
The reason is that in our largest samples the average
number of intersections per diode at N=2N, is about 10
(the maximum per diode is less than 30) and the largest
path size contained about 7000 diodes.

Once the diodes belonging to the path are known, one can
“measure’’ the desired geometrical and physical quantities.
For the check of the percolation threshold, we find for each
diode joining the path whether, as a result of this, there is a
diode which belongs to the path and crosses the boundary
opposite to the origin (a segment of the arc in our case). If
intersection occurs after N, diodes have been thrown into
the sector, we say that percolation is obtained and that N, is
the critical diode concentration. (The program continues,
however, until the path is fully updated for the N, diodes.)
In the present work we considered the portion of the arc,
which lies within +1° of the (1,1) direction, as the other
end (or the ‘“‘drain’’) of the percolating path. We have re-
gistered, then, N, as well as B,, the average number of in-
tersections per diode!> at the threshold. The longitudinal
correlation length &, was considered to be the distance
between the farthest diode in the path and the origin, while
the transverse correlation length ¢, was the average of the
distances of the two diodes which are farthest from and on
opposite sides of the (1,1) direction. We should remark
that with the larger ensembles studied (N > 5000), the &,
diode was essentially on the (1,1) direction and the £
diodes were symmetrically located about it. For finding the
backbone we have considered the diodes which belong both
to the path from the origin to the arc and from the arc to
the origin when the preferred direction was reversed. Then,
dangling diodes were eliminated by comparing the positions

of each diode’s parents in the two paths.

For illustration let us go back to Fig. 1 and examine the
ensemble of N =13 diodes. While 12 diodes belong to the
nondirected cluster, only N,=9 belong to the directed path,
or directed animal. Here, the backbone consists of N,=3
diodes, and the percolation is achieved by the 13th diode
(N,=13), which in this case is the only diode which inter-
sects the arc and belongs to the percolating-directed path.

Turning to the results, we have checked first the depen-
dence of N, on the diode length L and found that N, L =2
as is to be expected from an exluded-area argument,!’
which was confirmed!#?® for the nondirected problem. If
this argument is correct, B, should be a constant. Indeed
(apart from finite scaling effects to be discussed elsewhere),
we found that B,=5.0 £0.1 (for samples from N, = 5000 to
the largest samples studied of N,==9000). This value of B,
is higher than the B,=3.2 value obtained for the corre-
sponding nondirected case,' as is to be expected from the
lower connectivity of the directed system.

The other property checked in the present study is the
critical behavior of directed animals, i.e., the dependence of
&y and £, on N,. This dependence is expected to yield, for
N < N,, the critical exponents v, and v, derived from the
fit of the data'® to the power laws,

Ene N, ", £l NJL 1)
In order to obtain better statistics over the range of N, stu-
died, we have used three samples to derive the above ex-
ponent. The data shown in Fig. 2 were fitted to Eq. (1).
The results found were

v; =074 £0.05
and
v, =046 £0.08 .

These results are in good agreement with the results ob-
tained on two-dimensional directed lattices!’-?! yielding the
first indication that continuum-directed percolation and
lattice-directed percolation belong to the same universality
class.

In fact, the above values of v and v; deserve some dis-
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FIG. 2. The dependence of the directed animal length ¢, and
width £) on the number of diodes in the animal cluster, N,.
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cussion, since for directed lattices exact'¥2 (v}A= 7 and
vIA=1) and highly accurate?®?! values (e.g., v}*=0.818,
v[A=0.498) have been obtained. It may seem then that
our v, differs from v§A. In this context one has to realize
that our error bars are associated only with the statistical er-
rors of the data points and they do not account for the sys-
tematic errors associated with finite-size scaling.’?! The
study of continuum systems requires much more computing
time than the study of lattices and thus, in this preliminary
study, we have used samples of rather limited size, and we
did not follow the values of v, and v, as a function of.sam-
ple size. However, such a study has been carried out for lat-
tices.2? For the lattice model which is the most similar to
our model (the directed bonds model-*‘model C”’ in Ref.
20), it was found that the value of v}j* increases asymptoti-
cally with sample size (strip width) from 0.79 towards the
above-quoted v}* value. In view of this there should be
very little doubt that, within the accuracy of finite-size scal-
ing, the v, value and the v} value are the same.

The above suggestion of the lattice and the continuum
belonging to the same class is strengthened when one con-
siders the percolating path-size dependence on the departure
from N, above the directed percolation threshold. The ex-
pected dependence is

(N,/N)e (N/N,—1)8 . @)

Here, a fit of the data obtained for the two samples (seeds),
shown in Fig. 3, yielded the exponent

B8=0.33 £0.07

in good agreement with the accepted lattice value® of
B=0.28.

As pointed out above, in directed percolation the back-
bone is made of diodes which belong to the origin-arc per-
colating path as well as to the arc-origin percolating path
when the preferred direction is reversed. In our case the
probability that a diode belongs to the path is N, /N and the
probability that it belongs to the backbone is N, /N. Hence,
one should expect that

(Ny/N)=(N,/N)?* . ?3)
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FIG. 3. The dependence of the percolating-path probability N, /N
on the departure from threshold, N/N,—1.

We have indeed confirmed this relationship for the wide
range of N,0.013<<N/N,—1=0.75, to a very high accura-
cy. The exponent in Eq. (3) is found to be 2.00 £0.05 for
samples of N, > 4000. This confirmation means that the
backbone exponent 8’ is just 28 as in the directed-lattice
problem. One notes that the general property of directed
percolation [Eq. (3)] is confirmed to a much higher accuracy
than the value of 8. This is not surprising, since for Eq. (3)
the small relative fluctuations in N, and N, (over the above
N/N,—1 range) determine the uncertainty limits, while for
Eq. (2) the very wide error bars on the log(/N/N,— 1) scale
(due to fluctuations in N,, see, e.g., Fig. 2 and Ref. 16)
cause the relatively large errors in the value of 8. Our
result shows then that the B'/8 ratio is determined to a
much higher accuracy than either 8 or B’. This kind of
behavior is well known, and, for example, in nondirected
percolation the determination?*2 of y/v or t/v is much
more accurate than the determination® of y or «.

In summary, we have studied a directed percolation prob-
lem in the continuum, defined its percolation threshold,
computed its geometrical properties, and found that it be-
longs to the same universality class as the lattice-directed
percolation.
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