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Spatially varying band structures
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Advances in technology have made possible the fabrication of rapidly varying heterostructures
which hold the promise of important applications. We develop a set of approximate treatments of
electron states in a variety of layered heterostructures. The approximations are all based on the con-
cept of one-band generalized Wannier functions. Following a discussion of the validity of this rep-
resentation, we apply it to an evaluation of the bound states in a narrow quantum well in GaAs,
which clearly demonstrates the mixing of main and satellite valley states as well as the contribution
of evanescent states, and of the states of a superlattice in a model structure of up to 20 quantum
wells. As a final example we discuss the application of generalized Wannier functions to the match-
ing of electronic states at a heterojunction between two model band structures with different effec-
tive masses, and compare the formalisxn with alternative approaches to this problem.

With the development of special growth techniques
such as molecular beam epitaxy (MBE) and metal organic
chemical vapor deposition (MOCVD), tailor-made sub-
micron semiconductor heterostructures can now be
designed. An entirely new variety of structures, including
quantum wells, superlattices, and modulation-doped
structures, can be conceived and some have already led to
successful device applications. Quantum wells are being
investigated in semiconductor lasers' .and resonant tunnel-
ing for submillimeter radiation. Potential applications
for superlattices include nonlinear optics in relation to op-
tical switching (bistability), the Bloch oscillator, and the
Zener oscillator for submillimeter radiation. An impor-
tant application of modulation doping is the high elec-
tron mobility transistor, a low-noise microwave amplif-
ier, and a candidate for high-speed logic.

These semiconductor heterostructures are made of suc-
cessive semiconductor crystal layers grown on top of each
other. Provided the lattice parameters are closely
matched, the lattices of the semiconductors essentially
cohere with a minimal perturbation. Due to the special
growth techniques used, the spatial variation of the semi-
conductor materials and/or of the doping can be con-
trolled so as to occur in a few lattice parameters.

The physical properties of the structures of these semi-
conductors are the object of extensive theoretical and ex-
perimental effort with respect to important potential de-
vice applications, some of which were mentioned above,
but most of which, however, remain unrealized.

A fundamental property on which all these heterostruc-
tures rely is the spatial variation of the band gap and the
conduction and valence band structures. In this paper, we
shall be concerned with the development of a consistent
and simplified picture of spatially varying band struc-
tures.

Band structures derive from the periodic nature of the
crystal potential and are therefore mathematically well de-

fined only for an infinite crystal. However, in practice,
the concept of bands holds on a microscopic scale. This is
exemplified by the use of band diagrams in classical de-
vice theory. The total classical Hamiltonian H can be
written as

H(k, r) =E(k)—eV(r),

where E(k) is the conduction or valence band structure, e
the electron charge, and V(r) the electrostatic potential.
The symbol r denotes the spatial location and k the Bloch
wave vector or quasimomentum. In a band diagram, usu-
ally only the bottom of the conduction band and the top
of the valence band are represented, which is equivalent to
specifying k.

Equation (1), together with the acceleration theorem,
constitute the semiclassical picture on the basis of which
one can describe the ballistic motion of an electron or
derive (using the Boltzmann transport equation) the stan-
dard device equations. ' In the heterostructures discussed
above, the spatial dimensions are made sufficiently small
for-the quantization of the electron states to be signifi-
cant. One needs then to revert to the quantum-
mechanical form of Eq. (1) where the quasimomentum is
replaced by the operator

(2)

and to solve the Schrodinger equation,

Equation (1), together with (2), is often referred to as
the Wannier theorem, the derivation of which can be
found in textbooks on semiconductor theory. " The Wan-
nier theorem relies on two basic assumptions. The first is
the one-band approximation which holds if the perturba-
tion potential V(r) is not strong enough for band mixing
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to occur or interband transition such as tunneling to take
place. Secondly, the perturbation potential should vary
slowly or smoothly with position so as to constrain the
potential overlap matrix to a diagonal representation.

These assumptions are adequate for the classical repre-
sentation in which the electrons are essentially free and
can be represented by a wave packet %(r). For the sub-
micron heterostructures of interest here, these assump-
tions do not hold, as the potential variations in
modulation-doped or in spatially varying band-gap struc-
tures are both large and can occur in a few lattice parame-
ters. In this paper we shall propose a concept of general-
ized band structures for which the Wannier theorem can
be generalized and applied to submicron heterostructures.

First, we shall rederive the Wannier theorem in Sec. I,
specializing it to one-dimensional structures. Since the
submicron heterostructures grown by MBE or MOCVD
are layered structures, a one-dimensional picture can be
implemented, provided some assumptions are made. Such
one-dimensional models are of heuristic interest as their
simplicity promotes a better insight, and they are some-
times used in semiquantitative studies.

In Sec. II we discuss the extension of the Wannier
theorem, using the generalized Wannier functions, and
study in Sec. III two examples of heterostructures. These
examples constitute both a test and a demonstration of ap-
plications of the generalized Wannier picture. Finally, we
present in Sec. IV the application of the generalized Wan-
nier picture to "true" heterostructures and discuss the
generalization of the concept of bands to spatially varying
band structures.

I. THE ONE-DIMENSIONAL %'ANNIER PICTURE

In this section we consider the problem of a crystal
electron in an external one-dimensional potential U. The
total Hamiltonian of the electron is given by

H =Ho+ U(d. r),
where Ho is the unperturbed crystal Hamiltonian and
U(x) is the one-dimensional energy potential varying
along an axis (the device axis) represented by the unit vec-
tor d.

We assume the device axis to be parallel to the lattice
vector. We only consider face-centered-cubic semicon-
ductor lattices for which a lattice vector R(n) can be writ-
ten using the orthonormal basis of the Bravais lattice as
R(n) =An, with n a set of integers (ni, nz, n3), a* the lat-
tice parameter of the cubic lattice, and A the matrix

0 1 1

A= I 0 1
2

1 1 0

We shall denote as a the modulus of the smallest lattice
vector a parallel to d; a is therefore the effective lattice
parameter along the direction d, and any lattice vector
parallel to d is written R=na, with n an integer.

A reciprocal-lattice vector K is written in the same
basis as K(1)=Bl, with l a set of integers (li, lz, l3) and B
the matrix

1 —1

so that AB =2m. It is easy to prove that for cubic lattices
there always exists a reciprocal-lattice vector parallel to a
given direct-lattice vector. This is equivalent to finding
the constant c such that K=cR. A possible solution is
c =8rrla*, which leads to

2 1 1

1= 1 2 1 n.
1 1 2

We shall denote q as the modulus of the smallest
reciprocal-lattice vector q parallel to d so that any re-
ciprocal vector parallel to d can be written K=lq, with I
an integer. Since the lattice vector and the reciprocal-
lattice vector satisfy the relation

R(n) K(l) =2m. l,
we have that q and a satisfy

a q=aq =2'
with p an integer. For the ( 100) direction
[R=a(1,0,0)], we have n=( —1, 1, 1), and the smallest
reciprocal vector is given by /=(0, 1,1), so that a =a*
and p =2.

In the extended zone scheme the Bloch-function solu-
tion (((k,r) of

Hog(k) =&(k)P(k)

is a periodic function of k along the device direction d.
We can introduce a one-dimensional quasimomentum k
along the device direction d defined by

k(k) =ki+kd,
with kz the transverse momentum perpendicular to the
direction d. It follows that a Bloch function along the
direction d can be written as P(kd+ki, r) =P(k), which is
a periodic function of k with period q: P(k+nq) =P(k)
for n, an integer.

We can now define, along the direction d, a one-
dimensional Wannier function w(m, r, ki) as the spatial
Fourier coefficient of the Bloch function P(k),

q/2
w(m, r, ki)=(1/~q) f P(kd+ki, r)

&& exp( —ikm 2m. /q)dk,

and reciprocally we have

P(kd+ki, r)=(1/Vq ) g w(m, r, k)iexp(i mk2m/q) .

From the orthogonality property of the Bloch functions
and from Eq. (3), one easily verifies that these Wannier
functions (WF's) form an orthogonal set

( (nw)
~

w(m)) = f w(n, r, ki)'w(m, r, ki)dx'=5„
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with x'=d-r, and satisfy the useful property

IIow (m, r, kr) = Q E(n —m)w (n, r, ki),

with
q/2

E(n)=(l/q) f E(kr+kd)exp( ik—n 2n/q)d. k .

The E(n) are recognized as the Fourier coefficients of the
band structure along the line k(k) parallel to the device
axis.

For a sufficiently smooth and weak one-dimensional

potential U(d r), no band mixing is expected and the
transverse momentum is conserved. One can then expand
the electron state in Wannier functions of the band con-
sidered with an envelope f ( n, t ), .

4= g f(n, t)w(n, r,ki) .

The weight function
~ f (n, t)

~

is the probability of find-
ing the electron at the lattice site n at time t. Replacing
4' in the Schrodinger equation

(10)
which using the translation property of the Bloch func-
tion, can be written

%(k, r —R) =(I/V q ) g exp( —ik R)exp(ikma/p)

For R=na, we have

)& w (m, r, kr ) .

k R=(kd+ki) R=kd R=k. na,
and changing the index of summation we obtain

4(k, r —R)=(1/Vq ) +exp(ikma/p)w(m+np, r, ki) .

Finally, an important property of the one-dimensional
WF's which we did not address so far is their invariance
under translation from one lattice site to another. Follow-
ing the approach of Wannier, ' we first write

%(k,r —R)=(1/V q ) g exp(ikma/p)w(m, r —R,k r),

by the expansion of Eq. (5), multiplying Eq. (6) by w(n)*,
and integrating over x', one obtains the Wannier re-
currence equation

g [E(n —m)+ U(n, m)]f (m, t) =i%' f(n, t),a

m

where U(n, m) is the matrix element given by

U(n, m)=(w(n)
~

U
~
w(m))

00

w (n, r,ki)'U(d r)w (m, r, ki )dx' .

The one-band Wannier recurrence equation derived holds
for sufficiently small perturbation potentials U. For Eq.
(7) to be solved, both the band-structure Fourier coeffi-
cients and the matrix elements U(n, m) are required.

As expressed by Eq. (8), the matrix elements are
evaluated from the Wannier functions. Techniques for
the evaluation of the Wannier functions have been
developed by Kohn. ' The evaluation of the WF for sil-
icon has been recently reported by Kane and Kane; how-
ever, the WF derived is a linear superposition of the WF's
of the four valence bands. The evaluation of realistic
WF's is a complicated matter, which we would like to
avoid in the simple picture we intend to develop.

Some direct approximations can be derived from the
properties of the WF's. In the case of simple bands, it is
possible to select the phase of the Bloch functions so that
the WF's are exponentially localized. ' From both the
orthogonality and the tight localization of the WF's, it
follows that the matrix element of a smooth potential is
accurately represented by the sampling of the potential at
the lattice sites:

U(n, m) = U(x'=na/p)5„~ .

We shall discuss in Sec. III the extent to which these ap-
proximations can be used for sharply varying potentials.

Identifying the coefficients in the series (10) and (11), we
finally get

w(m, r na, kr—) =w(m +np, r, kr) .

Considering the (100) direction for which p =2, it fol-
lows that there exist two sets of WF's, each of which can
be generated from two generic WF's by a lattice transla-
tion

w(2n, r)=w(0, r —na), w(I+2n, r)=w(l, r —na) .
The number of WF's for a given direction is therefore
given by p for the face-centered-cubic lattice considered.
For our purpose it is convenient to picture these WF's as
located at p sites along the lattice vector a associated with
the direction d. We can then write these WF's as

w (n, r,ki) =w(x' na/p, ri, ki) =w (x—' na/p) =—w(n),

where a is the effective lattice parameter for the direction
d. The one-dimensional WF we have introduced is in fact
a hybrid entity, since it corresponds to the Bloch state kz
for the transverse coordinates rr. The properties of the
WF's of one-dimensional lattices cannot be assumed to
apply directly to the one-dimensional WF we have de-
fined. Therefore, problems concerning the reality of the
WF and the simultaneous convergence of the WF's
remain to be addressed. These studies are not trivial
matters for three-dimensional crystals, ' in particular for
lattices without a center of inversion.

In our simplified treatment we shall assume the picture
developed to be truly one-dimensional. The reality and
exponential localization of the WF s in one-dimensional
structures are discussed by Kohn. ' More recent work by
Zak' raises the one-dimensional Wannier picture to the
status of a well-defined representation in quantum
mechanics and introduces the canonical Wannier function
with minimal position uncertainty and located in the zero
cell of the Bravais lattice.

Zak also demonstrates that the position operator has a
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discrete spectrum. This implies that the applied poten-
tials are transformed by the one-band approximation into
steplike potentials. This is due to the inability of the one-
band approximation to deal with the perturbation of the
inner crystal potential. However, as we shall see in the
next section, most of the band mixing can be formally ac-
counted for w'ith the use of the generalized Wannier func-
tion. For stronger potentials it is further necessary to ac-
count for the polarization of the semiconductor. '

II. THE GENERALIZED WANNIER PICTURE

In this section we shall be concerned only with abrupt
modulation-doped heterostructures or models of abrupt

heterostructures for which the band gap is spatially vary-
ing while the band structure is assumed to be conserved.

The one-dimensional Wannier picture developed in the
previous section is capable of handling fast spatial varia-
tion of the potential since the nondiagonal term of the
matrix potential V(n, m) can be accounted for. However,
the formalism developed relies on the one-band approxi-
mation which strictly holds only for small potential per-
turbations. Its use for submicron heterostructures seems
unjustifiable. Indeed, the band-edge variation in these
structures is large and band mixing is expected.

One should then resort to a multiband expansion, and
the envelope equation (7) now reads

iR f(n, b)= g E(n —m, b)f(m, b)+ g (w(n, b)
~

U(x)
~
w(m, b'))f(m, b')

Bt b

where b is the band index.
It is, however, possible to avoid a multiband expansion

if one introduces the concept of generalized bands. As
was remarked by Zak, ' "a band is a surprisingly stable
entity under external perturbations. " This might seem to
be a paradoxical statement coming from Zak, who has
been very critical of the use of the one-band approxima-
tion in general, ' and in particular for the Stark effect.
In fact, the existence of bands under external p'erturba-
tions does not rely on the one-band approximatiogs. A
band of energy is essentially a quasicontinuum of energy
states. Such an entity seems to survive numerous mis-
treatments such as high impurity concentrations, alloying
with random distribution of two atoms on a given sublat-
tice in III-V compounds, even for abrupt heterojunctions.
However, surface states or band tailing or even alloy and
roughness scattering effects occur, and it might be more
accurate to refer to these bands as generalized bands.
Such bands in most cases can only be represented
mathematically as resulting from the mixing of the bands
of the unperturbed crystals. This is similar to the expan-
sion of the pseudo-wave-function in terms of plane waves
in the calculation of band structures using the pseudopo-
tential method; the bands evaluated result from the mix-
ing of the bands of the empty lattice.

A one-band formalism can then be developed if one
uses the exact Wannier functions instead of the Wannier
functions of the unperturbed lattice. It remains to be
demonstrated that such Wannier functions exist. The
Wannier functions as we introduced them [see Eq. (4)] are
defin'ed as Fourier coefficients of the Bloch functions
which are periodic in k space. The quasimomentum is
defined by the translation operator' only for periodical
potentials. At a heterojunction, the periodicity is broken
and no quasimomentum, Bloch functions, or Wannier
functions can be defined, but one can attempt to general-
ize the entities, as the periodicity is essentially broken only
at the junction. The most obvious approach is to general-
ize the Wannier functions which are strongly localized on
each lattice site and therefore will be strongly perturbed
only at the junction itself.

with f ( n, E) the solution of

Ef(n, E)= QH(n, m)f(m, E), (12)

where H(n, m) is the Hamiltonian matrix element given
by

H(n, m)=( (na) ~H
~
a(m)) .

Here H is the total Hamiltonian of the heterojunction
given by

H =H p+ U(x),
with Hp the unperturbed crystal potential and U(x) the
heterojunction effective potential.

Equation (12) is similar to Eq. (7), except that we use
the GWF instead of the unperturbed Wannier functions.
The knowledge of the GWF weight f(n, E) is sufficient in

The existence of generalized Wannier functions
(GWF's) has been theoretically established by Kohn and
Onffroy ' for one-dimensional structures. These Wannier
functions can be labeled by their generalized band index;
they account, however, for the presence of interface states
in the forbidden band gap. 2 We shall denote these gen-
eralized Wannier functions as a(n, x). They span the
same function space as the eigenfunctions of the per-
turbed lattice for the same generalized band.

The index n will be taken here as the site index, al-
though depending on the potential well there may be more
than one or even no GWF's associated with the interface
sites. The GWF's are localized about the lattice site (or
the periodic potential minima). Rehr and Kohn have
shown that they can be exponentially localized. An
essential property of the GWF's is that they form an
orthonormal set

& a (n)
~

a (m) & = f a (n, x)a (m, x)dx =5„
The eigenfunctions are linear combinations of a (n,x),

%(x,E)= g f (n, E)a (n,x),
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is an artifact of the spectrum truncation. Since the band
structure is slightly distorted, we do not expect these roots
to contribute much. There are finally 12 remaining roots
with a very high damping rate. These roots contribute
only within the matching area. One observes in Fig. 3 the
evanescent Bloch waves being transformed into propa-
gating Bloch waves at I (0 eV) and X (0.3 eV).

The Wannier picture calls for the matrix element of the
quantum well potential. For trial purposes we evaluated
numerically (with the Gauss-Legendre integration tech-
nique) its matrix element using the WF's, the weakly lo-
calized WF's of the empty lattice

1/2
sin[(px/a —m)m ]wx —map=

, a [(px/a —m)m]

0.5

1

C9 1 I

o- 0.4", ',

0.2

O. I

It is most enlightening to consider the diagonal terms
plotted in Fig. 4 (with an arbitrary energy scale). One ob-
serves that these diagonal terms approximately follow the
assumed square potential, even for such a narrow well.
The energy difference (a few percent) is distributed in the
nondiagonal terms and contributes somewhat to the
matching. Using the complete matrix element, we found
that sufficiently accurate results could be generated by
directly reducing the matrix element to diagonal- terms
corresponding to the sampling of the assumed potential at
the lattice site [see Eq. (9)].

We have developed an algorithm to solve the eigenvalue
problem and have evaluated the locus of the resonant en-
ergy level of the square quantum well of depth 0.5 eV, as
a function of the well width L. The result is plotted in
Fig. 5 (open circles) and compared with the energy-level
locus (solid curve) of the effective-mass approximation. It
should be pointed out that in our picture the well width
can only be varied by increments of a half-lattice parame-
ter for the 100 direction.

We label the first, resonant state 1. For a wide poten-
tial well, both the WF and the continuum methods yield
the same results, since the resonant level lies at low energy
where the effective mass is quite accurate For a na.rrower
well, one observes a divergence of the two energy plots as
the effective-mass approximation becomes inadequate at
higher energy.

For a well smaller than five lattice parameters, the first
resonant state occurs above 0.3 eV. This resonant state re-
sults, then, from a superposition of the central-valley
Bloch wave and the upper-valley Bloch wave. Indeed, one
observes the interference of the energy locus (labeled a) of

I L

10 l5

WEI I WIDTH (a r2)
20

FIG. 5. Energy levels of a GaAs quantum well, as a function
of the well width. The well depth is 0.5 eV.

the first resonant level of the upper valley with the energy
locus 1 of the central valley. This destroys the smooth
variation of these energy loci as they interact. The same
phenomenon occurs also as the second and third
resonant-level loci (denoted, respectively, 2 and 3) cross
the X relative minimum (0.3 eV). A more thorough dis-
cussion of this interference effect has been recently report-
ed by Chang and Ting.

The phenomenon just described constitutes an example
of what may be called a full band-structure effect which
can be handled by the generalized Wannier picture. The
algorithm developed can be used to study any type of
variation of the band gap. As a second example, we con-
sider the simple case of a superlattice made of square
wells such as in the Kronig-Penney problem. We as-
sume a simple tight-binding band structure
E(k)=A (1—coska) with the effective mass at k =0
selected to be 0.12mo. The well depth is 0.2 eV, the width
and separation of the wells is chosen to be 10a so that the
superlattice parameter is 20a. This leads to two resonant
levels in an individual well. In Fig. 6 we present the result
for, successively, 1, 2, and 20 wells. The discrete band
structure of the 20-well superlattice is plotted in Fig. 7
(open circles). This is to be compared to the band struc-
ture (solid curve) of the Kronig-Penney model in the
effective-mass approximation.
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FIG. 4.' Diagonal matrix element of a quantum we11 U(x),
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FICx. 7. Superlattice band structure (open circles: tight-
binding superlattice of 20 quantum wells; solid curve: Kronig-
Penney model).

IV. SPATIALLY VARYING BAND STRUCTURES

The Wannier picture developed above and its generali-
zation so far do not apply to band structures varying with
space. Let us point out right away that the idea of spa-
tially varying band structures is an ill-defined concept,
which can be made more rigorous within the framework
of the generalized Wannier picture.

A one-dimensional approach will break down for the
proper description of a spatially varying band structure,
since the variation in the band structure occurs in the
three-dimensional k space and therefore requires a three-
dimensional matching of the Wannier envelope.

We shall, however, for simplicity partially retain the
one-dimensional picture by assuming the spatially varying
band structure to be given by

The low-lying bands (band 1) have a similar shape but
are separated by a shift of 1 meV. This small shift
originates from the use of the approximate diagonal ma-
trix element for the superlattice potential.

The upper bands (band 2), however, differ appreciably.
Part of the difference is due to the deviation from para-
bolicity of the cosine band and results in a much higher
conduction-band maximum for the effective-mass approx-
imation. The remaining difference is essentially due to
the finite character of the superlattice composed of only
20 wells.

More sophisticated structures can be studied with the
algorithm developed, but this was not our purpose, as we
intended to test the generalized Wannier picture using
simple examples for which closed-form solutions are
available.

Ak
E(k,x)=E(k,x)+

2ppl

where m* is a transverse effective mass which is not
varying in space. Such a band structure does not corre-
spond to any realizable interface but constitutes a con-
venient model. In this model we use the one-dimensional
GWF formalism to solve for the eigenstates of this struc-
ture. A set of orthogonal GWF's noted a (n,x) can be de-
fined as in Sec. II. These 6%'F's can be exponentially lo-
calized at each lattice site n F.or the case of an abrupt
heterojunction, the GWF's a (n, x) approach exponentially
with n the WF's of semiconductors 1 and 2, for lattice
sites far from the interface (at n =0). A few lattice sites
away from the interface, inside semiconductor 1, a GWF
closely resembles the WF of the unperturbed semicon-
ductor 1; the orthogonality with the GWF's of semicon-
ductor 2 across the interface essentially affects only the
exponentially decaying tail of this GWF. Finally, one is
again led to the generalized one-band formalism of Sec. II,
with the GWF envelope given by the one-dimensional
Wannier recurrence equation (7).

The derivation of the Hamiltonian matrix elements
H(n, m) is again critical to the analysis We. favor a
direct evaluation of these elements, which remains to be
devised. In its absence, alternative approaches can be con-
ceived, and we shall demonstrate such an approach for a
simple system.

First consider the trial Hamiltonian

H(n, m) =E(n —m, n)+ U(n, m),

where E(n —m, n) is the band-structure Fourier coeffi-
cient which is assumed to vary in space with the lattice
site n. Such a Hamiltonian, which might be proposed for
a smoothly spatially-varying band structure, is not correct
as the Hamiltonian is no longer Hermitian:

H(n, m)&H'(m, n) .

This arises as a consequence of using the intrinsically ill-
defined concept of. spatially dependent band structures.
The GWF formalism is capable of accounting for the
breakdown of the band structure. The Hermiticity is
indeed compatible with

E(m n, n)&E(n——m, n);

it follows that the related band structure at the lattice site
n~

E(k, n) = g E(l,n)e'"",
l

is now imaginary and therefore, as expected, has lost its
usual physical meaning.

For an abrupt heterojunction, the use of GWF formal-
ism is reduced to the derivation of matching rules.
Indeed, away from the interface the Wannier picture of
Sec. I holds and the only unknown terms are the interface
Hamiltonian element H (n, m).

Consider the tight-binding band structures given by

Ei(k,x)=2 —2 cos(ka), Ez(k, x) =8 Bcos(ka), —



32 SPATIALLY VARYING BAND STRUCTURES 5229

—n' nn'

-A/2 A -A/2 0 0 0

0 —A/2 A -A/2 0 0

o A/2 A C/2 o

C/2 B Vo B/2

0 0 0 -B/2 B-V -B/2 00

0 0 0 0 0 -B/2 B Vo -B/2

FIG. 8. Tight-binding Hamiltonian.

where the amplitudes A and 8 are, respectively, related to
their effective mass by

fi
2 and 8=

Pl jQ Pl pQ

For simplicity we evaluate the matrix element H(n, m)
using the unperturbed WF's on both sides of the junction.
In the tight-binding approximation, the only remaining
unknown is then the matrix element H(i, i +1)=—C/2,
assuming the interface is located somewhere between the
lattice site i and i +1. The resulting Hamiltonian is
shown around the interface in Fig. 8 for U(n, m) =0

The evaluation of C depends now on the particular
matching theory upon which we choose to rely. There has
been much published recently on the matching of wave
functions across a heterojunction. The GWF picture pro-
poses a general method which enables us to evaluate the
wave function in heterostructures but calls for the
knowledge of H(n, m). In its absence we intend first to
relate this method to other matching theories.

Popular techniques are the effective-mass matching (see
Ref. 26 and the discussion by Kroemer and Qi-Gao
Zhu, ' matching developed from the (k p) Kane model
by Bastard, and White, Margues, and Sham, ' ' and
from tight-binding arguments by White, Margues, and
Sham and Ando and Mori. A review of the different
methods is briefly given in White, Margues, and Sham.
We intend to give a more complete discussion of the
matching problem in a forthcoming paper.

It follows from the work of Zhu and Kroemer that
the effective-mass matching is related for small energies
to the geometrical average for the "ideal" heterostructure
(type I, Ref. 28) considered here,

C =(Wa)'/2 .

From Bastard's work, we have C given by the average

C=(2+8)/2.
Both expressions actually lead to the same results when
the variation of effective mass is small across the hetero-
junction. In Fig. 9 we compare the effective-mass match-
ing with the geometrical average matching for a quantum
well. This quantum well is made of a layer of
Gao 47Ino 53As sandwiched between Alo 48Ino 52As. The
effective masses are, respectively, taken as 0.041 and
0.075mc for GaInAs and A1InAs. These effective masses
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FIG. 9. Energy locus as a function of well width for
Gao 47Ino 53As/Ala 481no qAs quantum well (open circles: results
using %'annier algorithm with the geometrical average match-
ing; solid curve: results using the effective mass matching). The
well depth is 0.5 eV.

should be corrected for narrow wells, as the nonparaboli-
city is no longer negligible (see Welch, Wicks, and East-
man ). The discrete-energy locus is seen to agree with
the continuous-energy locus based on the effective-mass
formalism.

This result was established within the tight-binding ap-
proximation. A more refined scheme will extend the con-
nection rules to include higher-order overlaps.

V. PERSPECTIVE

We have introduced a generalized one-dimensional
Wannier picture. This formalism enables us to handle
sharp variations in potential as long as the potential
strength is sufficiently moderate for the concept of a gen-
eralized band to hold. The associated band-mixing effects
are then lumped into a generalized one-band Hamiltonian
matrix. In the absence of a knowledge of the GWF, one
can often rely in practice on the direct sampling of the po-
tential at each lattice site.

The generalized one-band picture applies directly to
modulation-doped structures and can be used as a model
of heterostructures by treating the band-gap variation as
an effective potential. Another application not covered
here and for which this model was in fact developed, con-
cerned the study of devices such as the Zener superlattice
oscillator, for which the periodicity in k space of the sub-
band together with its spatial variation are fundamental to
the device operation. Finally, practical derivation of the
energy levels and eigenfunctions can be performed for ar-
bitrary potentials or heterostructure configurations using
the same algorithm.

The one-dimensional generalized Wannier formalism
can be used to model true heterostructures, although a
rigorous treatment requires a three-dimensional GWF
analysis. In the one-dimensional picture, the matching of
the wave function across the interface is determined by
the interface Hamiltonian matrix elements.
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The derivation of Wannier functions is in general a
complex problem due to their orthogonality and the fact
that they are not eigenfunctions of the Hamiltonian. The
best procedure would be to evaluate the generalized,
Fourier coefficients of the generalized band structure
directly, just as the band structure is evaluated directly in
pseudopotential calculations using variational techniques.

An alternative approach is to derive the interface Ham-
iltonian matrix directly from the enforcement of physical
constraints. Such an approach was undertaken by Zhu
and Kroemer and Ando and Mori for maximized
matching (ideal heterojunction) using current continuity.
We shall report, in a forthcoming paper, on the extension
of these matching theories to a higher energy range (non-
effective-mass case) and for the inclusion of higher-order
overlap (non-tight-binding cases) for both type I and type
II semiconductors (see Ref. 28).

The concept of generalized bands described here is
largely intuitive and has been used so far as such. The in-
troduction of the generalized Wannier functions brings
support to the concept. One interesting feature of the
generalized %Pannier picture is that it accounts consistent-
ly for the concept of spatially varying band structure.
The generalized Wannier picture appears then as an inter-
mediate method situated between the direct study at the
lattice level [e.g., linear combination of atomic orbitals
(LCAO) techniques] and the techniques based on the
effective-mass approximation.

We believe that useful insights can be drawn from this
ability of the GWF formalism to handle the concept of
band structure, through the use of the band-structure
Fourier coefficients together with their spatial dependence
on the lattice sites. The band structure appears as a phys-
ical entity established in a few lattice parameters. We
found that five to ten lattice sites were sufficient for a
close representation of a band structure along (100).
This is in qualitative agreement with the %'annier func-
tions evaluated by Kane and Kane. ' Energy bands calcu-
lated from these Wannier functions were accurate to 0.1

eV when the Wannier-function overlaps were evaluated to
twelfth neighbors (459 individual bonds). The spatial es-
tablishment of a small effective mass requires a larger
number of sites since a larger number of Wannier-
function overlaps or band-structure Fourier coefficients is
required to fit a small effective mass while accurately
reproducing the remainder of the band structure.
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