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Two-dimensional electron-hole fluid in a strong perpendicular magnetic field:
Exciton Bose condensate or maximum density two-dimensional droplet
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The two-dimensional (2D) electron-hole fluid is studied in a strong perpendicular magnetic field.
In the ideal case (simple 2D electron and hole bands), the exact ground state is a Bose condensate of
noninteracting magnetic excitons. In a quantum well the asymmetry of the transverse wave func-
tions induces an attractive interaction between excitons, and the ground state is a 2D "droplet" of
maximum local density. On the other hand, virtual transitions to excited Landau levels cause a
repulsive interaction, and the ground state becomes a Bose condensate of interacting excitons. This
condensate is a superfluid and moves under application of an electric field in a direction perpendicu-
lar to both the electric and magnetic fields. The influence of the spin-orbit coupling between hole
bands in a GaAs or Cxe quantum well is examined. Both types of ground state can occur, depending
on the polarization of the pumping light. The luminescence properties are also discussed, both for
the case of a direct- and an indirect-gap semiconductor.

I. INTRODUCTION

The quantization of the Hall resistance is a spectacular
consequence of the quasi-zero-dimensional character of
the electron gas in two dimensions in a perpendicular
magnetic field. It is worth investigating the correspond-
ing two-component system, the electron-hole ( e-h ) system
in two dimensions in the presence of a perpendicular mag-
netic field One ca.n also expect for this system new phys-
ics since the kinetic energy is quenched by the magnetic
field and the system's behavior is governed only by the
Coulomb interaction between particles. A typical system
would be created by optical pumping a gas of e-h pairs in
a semiconductor quantum well. We will study the ground
state of such a system, assuming the lifetime of the e-h
pairs to be much longer than the relaxation time towards
the equilibrium ground state.

If the following conditions are fulfilled, (i) cyclotron en-
ergies larger than the Rydberg energy, (ii) small layer
thickness so that the transverse motion is quantized with
confining energies larger than-the cyclotron ones, then one
can consider electrons and holes to be in a single Landau
level and neglect the influence of the single-particle-
excited states. This ideal problem has been investigated in
recent years in a series of papers by Lerner and Lozovik
(hereafter referred to as LL) and by Bychkov and Rash-
ba. The former authors, using diagrammatic techniques,
showed that the ground state of this many-body e-h sys-
tem can be found exactly. It is a Bose condensate of
noninteracting magnetic excitons. Our aim in this paper
will be first to understand from simple arguments this
amazing result for the ideal system. Then we will investi-

gate the properties of the system in more realistic situa-
tions and consider the influence of the transverse motion
of the particles, of the coupling to higher Landau levels,
and of the spin-orbit interaction. We will examine also
the effect of an electric field and show that, under condi-
tions such that the ground state is a Bose condensate of
magnetic excitons, this fluid, although neutral, moves as a
whole. This is a new aspect of the quantum Hall effect.

This paper is organized as follows. In Sec. II the ideal
2D case is investigated: the single magnetic exciton
dispersion curve is derived and LL's result is recovered
using very simple arguments. We show in Sec. III that, if
the transverse wave functions of electrons and holes are
different (i.e., if the confinement along the magnetic field
direction is not the same), the effective interaction be-
tween excitons is attractive. The fluid then splits into two
phases: 2D "droplets" of e-h fluid with maximum densi-
ty surrounded by a dilute gas of excitons. We show in
Sec. IV that if one assumes the same transverse wave
function for both types of particle but includes virtual
transitions to excited Landau levels, the effective interac-
tion between excitons is repulsive and the ground state is a
Bose condensate of interacting magnetic excitons whose
collective excitations are also computed. We investigate
in Sec. V the influence of an electric field on the Bose
condensate and show that the condensate acquires a su-
perfluid velocity in a direction perpendicular to both the
magnetic and electric fields. The luminescence properties
of the system are studied in Sec. VI, both in the case of a
direct or an indirect semiconductor. Section VII is devot-
ed to the study of a realistic case. We show that for cubic
semiconductors such as GaAs or Ge, the hole spin-orbit
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coupling induces a small asymmetry between the trans-
verse motions of electrons and holes. For hig'h magnetic
fields, the ground-state properties (Bose condensate or
maximum-density 2D droplet) depend on the polarization
properties of the pumping light. Finally, our results are
summarized and commented on in Sec. VIII. In the Ap-
pendix the energy of the charge-density wave state is com-
pared to that of the Bose condensate. The latter is shown
to be more stable.

A. Single magnetic exciton

The structure of an exciton in a strong magnetic field
was investigated years ago, and rederived many times.
We present here a new derivation based on group theoreti-
cal arguments.

Let us define the magnetic translation operator as usu-
al by

—iy (W& /Qo ) —[~&(B/B&)+~y(B/By)]m=e " 'e

II. THE IDEAL SYMMETRIC MODEL

We assume here the simplest conditions: the electron
and hole 20 bands split, due to the perpendicular magnet-
ic field, into discrete Landau levels whose Zeeman split-
ting is big. The strong magnetic field limit means that
electrons and holes are confined to the lowest Landau lev-
el, and that the typical electrostatic energy (the three-
dimensional Rydberg) is much smaller than the cyclotron
energies. Choosing the Landau gauge A=(O, Hx, O), the
single-particle wave functions are

I. '~ ex——p(iky)P(x+okao),

where cr = + 1 ( —1) stands for electrons (holes). p is the
harmonic-oscillator wave function:

P(x)=(m'~ ao)'~ exp[ —x /(2ao)] .

The electrons and holes have a single label k which runs
over N =L /2m. ao values, where L is the simple dimen-
sion and ao the magnetic length; ao Sic/~ e ~H. Note——
that these wave functions depend only on a p and are thus
independent of the three-dimensional band characteristics
(effective masses, etc.). The Hamiltonian of the e-h sys-
tem reduces (after dropping the gap energy) to the
Coulomb interaction, electron-electron, hole-hole, and
electron-hole terms

H = X F~~~i(q~ki —kz)c~, a, k, e~zc~ ~ k, +e~z
q, k), k~

acting on an electron, and

+iy(W„/ao) —[M„(B/Bx)+W (B/By)]W=e 'e
acting on a hole. (The phase factor comes from the
translation of the Landau gauge origin. ) One easily veri-
fies that

—ikW
co,kM e c k (~ /g&)

and consequently that the Hamiltonian commutes with
any magnetic translation. Although it is well known that
the magnetic translations form a ray group (a group up
to a phase factor), it acts on the e-h pair operators as a
nofIIlal group,

(~1~2)(aklbk2)(~1~2) =~1+2aklbk2~1+2 ~

As a consequence, the e-h pairs can be classified accord-
ing to the translation group irreducible representations

wd~Km~=e -'"~d~K,

with

—iK„qa o
dK ——X ~e " a(K /2)+qb(K /2) q .

q

As a further consequence, the pair states dK
~

vac) are
eigenstates of the Hamiltonian (which in this case is only
the e-h interaction term). One gets

Hd~
~

vac) =E„(K)dK
~

vac),
with

o&, cr&k& —q/2 o &,o &k&+q/2~c c (2)
—iK cr a~

E„(K)= gF ~(q, oK„)e

where the operator c k creates a particle o. in the state
. We will also use, when useful, the notation

ak =c+~ k and bk ——c (3)

The Coulomb matrix element is

iK ka~F (K„,k)= z gv(K)e " 'oioqA (K)A~ (K),
K

(4)

where v(K) is the 2D Fourier transform of the Coulomb
potential v(K)=e /e

~

IC
~

and

(K)= f dxP*(x ——,'oa~~)e "P(x+—,'oa~~) .

, g v(Q)& (Q)& (Q)
2L, q

&&exp( iaaoQXK—z),
which, in the ideal symmetric case, reduces to

1/2
e mE„(K)=— — e ' Io( —,K ao) . (7)

E'a p 2

Note that the whole manifold of e-h pair states is spanned
by the set of exciton wave functions. Contrary to the
standard hydrogenic problem, all the e-h pairs are bound
states and there are no scattering states. Note also that
the exciton mass (defined as K~O) depends only on the
magnetic field and is independent of the original 2D band
structure. The exciton wave function, written in real
space, is
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1t~(R,r) = exp(iK. R) exp( —iXy/ao)
1 2

&&exp —
z [(x+aoK&) +(y —aoK„) ]

4ao

(g(v) ~H
~
f(v)) =u'g[F+ (q, O)+F +(q, O)]

q, k

+u - g [F~ (O, k) —F (q, O)] .
q, k

Owing to the definition of the Coulomb matrix element

F, ,(k, q), Eq. (4), one gets

where the collective coordinates R and r are defined from
the electron (r, ) and hole (r), ) ones as g F. ..(Ok)=

k) 0')) gp

1 iX„ka02
z g u(K»0)o. ioze2L' z, k

re+&aR=
2

&=re —&P .
&&A, (K„,O)A" (K„,O)

Ari exciton wave vector K thus carries an electric dipole
in the direction perpendicular to K with a magnitude pro-
portional to E, i.e.,

(r&=a,'z)&K.

Since the exciton energy is only of electrostatic origin, one
can define, in a semiclassical way, the electric field I';„,
acting on the hole (or electron) from (9),

1
z u (0)g o,ozA (0)A. (0) .

mao CT)

But, from the definition of A (K), Eq. (5), we get
A (0)= 1; thus,

F, , (O, k) =0,
k, 0'(, H2

which is equivalent to the statement of charge neutrality.
The other U term can be written as

aE„
Int —— = XVge B(r) c

(10) F, ,(q, O)= g u(Q)aiozA (Q)A* (Q)

where vg ——(I/A')(BE„/BK) is the group velocity. This
means that the magnetic exciton can be viewed as com-
posed of an electron and a hole, traveling with the same
velocity vg, each particle causing an electric field on the
other one whose effect is just cancelled by the Lorentz
force.

S. Many excitons

When many e-h pairs are present in the system, it is
natural, as already recognized by LL, to consider the sys-
tem as a coherent superposition of excitons in the single
exciton ground state (K=O), i.e., as a Bose condensate.
Defining the filling factor v as the common fraction of
electron or hole states occupied, we describe such a state
with a BCS-type wave function

~
g(v)) = + (u+uakb k)

~

vac), (11)
k

with uu*+uu*=1. The number of electrons (holes) is
given by

~ ~ ~

y(v) gaktak y(v) =guu',
k k

leading to
~

u
~

=v. Note that in the limit v~1, the
wave function reduces to

I
q(1) & = II akb'-k

I
vac&

k

i.e., to the Slater determinant describing the full electron
and hole Landau levels. Note further that, since there is
no kinetic energy, u and U are independent of k. The ex-
pectation value of the energy is obtained straightforwardly
as

z gu(Q)[A+(Q) —A (Q)]
2L q

X [A' (Q) —A' (Q)]

and is positive, unless A+(Q)=A (Q), as occurs in our
ideal e-h symmetric case. In this case, the energy per pair

g (y(v) ~H
~
~P(v))

vX

becomes

8'(v) = g F+ (q, O)+F +(q, O) =E„(K=O) .

It does not depend on the filling factor and is just the sin-

gle exciton energy. This amazing result has been shown
by LL to be an exact result, using diagrammatic argu-
ments. It can be, however, understood from very simple
arguments. One, method is to show that all matrix ele-

ments of H connecting the variational ground state with
excited states in the lower Landau level vanish in the ideal
case. Another approach will be given here.

It can be easily checked that the following commuta-
tion relation holds:

[H, do] =E„(0)do,
which implies

[H, (do)"]=nE„(0)(do)"

H(do)"
~

vac) =nE„(0)(do)"
~

vac) .
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This means that excitons in the K=0 state do not interact
and, thus, that the ground state of n e-h pairs is formed
by n noninteracting excitons in the K=o state. Note,
however, that do and do do not obey simple Bose commu-
tation relations in the presence of other e-b pairs:

would do in a non-ideal case. It only changes the phase
coherence factors between states of different exciton num-
bers. The expectation value of the energy becomes

(g(v)
~

H
~
@(v)) = E„—(0)N'~ (@(v)

~
do

~

g(v) )

[do d0] g (akak+ bkbk ) .

Now the BCS-type variational ground-state, Eq. (11), can
be written

~
f(v) ) = + (u +Uakb k)

~

vac)

=u exp —g akb k ~

vac)
Q

=u exp —N'~ do
~
vac)

nN
U +Pl/2=u~ g —,(do)"

~

vac& .
u n!

Thus, as is well known, the BCS-type wave function de-
scribes a coherent mixture of states with a different num-
ber of excitons in the K=0 state. (This number is conju-
gate to the phase of the complex number U. ) Applying
the total Hamiltonian, we get

H ~y(v)&=u~ —"N'"
't pN ~p/2

XE (0)do g (do)
~

vac)
u p!

E„—(0)uu N =NvE„(0),
Q

as before.
The physical origin of the lack of interaction between

K=O excitons stems from the fact that, in the ideal case,
the electron and hole wave functions are identical. A
K=0 exciton is just made up of an electron and a hole on
top of one another; it is a perfectly neutral object. Its
charge density vanishes at any point. As a consequence,
two of these objects do not interact and the ground state
of the system is a condensate of noninteracting exeitons.
Note, however, that excited excitons carry an electric di-
pole and thus interact.

This ideal Bose character can be recovered while study-
ing the collective excitations of the condensate described
by the BCS-type wave function. Let us define K-
dependent density operators: electron density,

1 '+xq~o
pe(K) imp

e aq+Ic 12aq —K /2 ~

hole density,

1 iX„qa o2pk(K)=, &2 ge "
bq+K nbq xn—

q

and condensate density,

j..e.,
—ilt:„qa &~

„2 ge " ax n+q4 n-q .~1/2 y q y
(12c)

H ~q(v))= N''E„(0)d—to~a(v)) .

As a consequence, the Hamiltonian does not create from
the variational ground state any excited exciton pairs, as it

Following Anderson's treatment of collective excitation in
superconductivity, we derived the random-phase approxi-
mation (RPA) equations by linearization of the equations
of motion and obtained, in the symmetric case,

iA (p, (K) ) =imari (pk(K) ) =uu'[E„(K) —E„(0)][(d( —K) ) —(dt(K) )],
dt . Bt

iA (dt(K) ) =(2v —1)[E„(K)—E„(0)](d (K) )+uu'[E„(0)—E„(K)][(p,(K) )+ (p„(K))] .
dt

The first equation shows that (p, (K))—(pk(K)) is a
constant of motion, i.e., that there is no plasma oscillation
in the system —an unusual fact which is easily understood
when one realizes that electrons and holes cannot have
any kinetic energy when confined to a single Landau level.
The dispersion relation of the collective excitations is
given by co=E„(K)—E„(0),i.e., simply the single exciton
dispersion relation —a result underlying again the ideal
Bose condensate character of the ground state. The re-
markable fact that the exact ground state of the ideal
symmetric model is known allows us to describe below the
physics of more complicated situations as perturbations of
the ideal symmetric model.

III. THE NONSYMMETRIC CASE

In a more realistic model, one must include the devia-
tions from exact 2D character. A 20 e-h system could be
realized by optical pumping a semiconductor quantum
well whose thickness, however, is always finite. Due to
the different offsets of the valence and conduction bands
and the different masses, the wave function of electrons
and holes will spread differently within the barriers. As-
suming confinement and cyclotron energies bigger than
the Rydberg, the wave functions for the lowest Landau
levels take the form
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P» +(r)=L '~ e'+B+(z)P(x +kao)

for electrons and

(r}=L '~ e'+B (z)P(x —kao)

for holes, and the Hamiltonian is identical to (2) with dif-
ferent matrix elements:

F (IC„,k)= g u(K)eOi O2

Xo iozA, (K)A*,(K),

(13)

where u (K} is now the three-dimensional Fourier
transform of the Coulomb potential u(K) =e /eK and

A~(K) = f dz B~(z)e ' B~(z)

X f dx p'(x ——,'aooK„)

Xe " P(x+ 2aooE„) . (14)

This means that here the electron-electron, hole-hole, and
electron-hole matrix elements are no longer equal.

The same symmetry arguments as before determine the
single-exciton wave function as

2 e "
a&ac, ni+eb~~, ni «I vac&-—j.n —I~~«O t t

q

The term g» ~ F, ,(O, k) again vanishes, due to glo-
bal charge neutrality, and the other U term can be rewrit-
ten as a positive-definite quantity

F, ,(q, O)=
2 gu(Q) i A+(Q) —A (Q) i

=B.

As a final result, the energy per pair takes the form

N'(v) =E„(0)—Bv,
t

which shows that the interaction between excitons is at-
tractive. This conclusion agrees with that of Bychkov and
Rashba, although in (15) the origin of the attraction is in
the exchange rather than in the electrostatic energies.
These authors, however, argued that in this nonsymmetric
case, the ground state should be a charge-density wave.
We checked the energy per e-h pair of such a state for the
symmetric ideal model and it is substantially larger than
the Bose condensate ground-state one. A brief account is
given in the Appendix. This shows that, at least for a not
too asymmetric case, the Bose condensate is favored.

Actually, as 8'(v) is a decreasing function of v, whatev-
er the filling factor, the excitonic system will split into
two phases: an e-h maximum-density 2D droplet with lo-
cal fi11ing factor v=1 (and thus with a vanishing pairing
order parameter) surrounded by a dilute gas of excitons at
a small but finite temperature. At the 2D droplet's boun-
dary, the filling factor changes in a small distance from
one to zero. In this region, the pairing order parameter

where the K vector remains 2D and parallel to the
quantum-well plane. The energy is obtained in the same
way:

,&2 (do) =uu'=[v(1 —v)]'~'

reaches a maximum for the local filling factor value
1

g„(K)=gF~ ~(q, crKy)e

En this case, however, it cannot be written in a closed
form. In this nonsymmetric model, the electron and hole
wave functions are different, so the K=O exciton is no
longer perfectly neutral and these excitons will now in-
teract with each other.

Still assuming a variational ground state described by
the BCS-type wave function

~
P(v) & = Q (~ +ua»b" »)

~
vac),

k

IV. THE INFLUENCE OF HIGHER LANDAU
LEVELS IN THE SYMMETRIC CASE

Let us go back to the symmetric system- and study, us-
ing second-order perturbation theory, the influence of
higher Landau energy levels (both electron and holes lev-
els) on the nature of the ground state. In simple systems
without spin-orbit coupling, transitions are allowed only
between Landau levels with the same spin. We assume
also, for simplicity, that the electron and hole masses are
equal, i.e., that both cyclotron frequencies take the same
value II, . The wave functions corresponding to (1) are

we get the expectation value of the energy as Q», ,„(r)=L ' e'&P„(x+okao),

(1((v) ~M Ip(v))=u g F (q, O)
q~k, o

+u g [F, ,(O, k) —F (q, O)] .
q, k

O), Og

where Pn is the nth harmonic-oscillator- wave function.
The Harniltonian of' the system becomes rather complicat-
ed, as it involves a kinetic-energy part

g &&&c~n,n, »~o, n, »
n, o, k
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and Coulomb interactions between all the particles in dif-
ferent levels. The only term of interest at low temperature
(K~T &&iriQ, ) is the interaction coupling particles in the
ground Landau levels (n=O, o.=+1}with excited states
(n~O}. A careful but tedious analysis of the matrix ele-
ments shows ' that the nonvanishing terms only promote
two particles (which can be of different species) to Landau
levels bearing the same index n T.his takes the form

Vnp P F n, p (q~kl k2)c~&, n, n&k& q/2co&, n, u&k&+q/2
qik&~kz a,a

aia2

XCo o2k2 —q/2Ca~ 0 ~k~+q/2

~on= ~no

Cp, n (Q~k3 k4) e, cr3k& —Q/2ca4, u&k&+Q/2
Q, k3, k4

a3, 0'4

n, a4, a4k4 —Q/2 n, o3,o3k3+Q/2 &

where the Coulomb matrix elements are

F z q (X~,k) = g U (K)e
a), a'p x

with

A»q(K)= J dx P»(x —,'oa—~»)e

&& Pq (x + ,' oa—pIC'» ) . (17)

We then obtain, from second-order perturbation theory,
an effective Hamiltonian describing the interactions of
particles in the lowest Landau levels through virtual tran-
sitions to excited states as

1H=V~ —g Vpn Vnp." 2nfiQc

X F~, ,«ki —k2)c,~ k, -q/2c, ~,k, +q/2
q, k), k2

a&,a2

az, azk2 —q/2 a&,a&k&+q/2 ~Xc c

The factor 2niriQ, comes from the fact that there are al-
ways two particles in the intermediate state, each having
the bare kinetic energy nfiQ, . These two particles, creat-
ed by the interaction Vno, can recombine to their original
state through Vp„or, if they belong to the same species,
can exchange before recombining. This gives two terms.
The overall result for the effective Hamiltonian takes the
orm

A~ p q(K)A~ p q(K) (16) with

F~, ~, (q, k)=F pp (q, k) gF —p„q —IC', k —(oi+cri) +F p„q —K,k —(o.i+o2)q+K q+K
Kn~o 0 ap, a)

j. q —EF „p q+K, k+(cr&+cr, )
2nA'Q, 2

0'2, a)

We have

A. Single-exciton energy

The effective Hamiltonian has the same general form as
in the asymmetric case and we get formally similar re-
sults, as exemplified in Secs. IV A, IV 8, and IV C.

We have

B. Energy per e-h pair

i.e., the binding energy of the exciton increases.

E„(K)= g F (q, oX» )e
q, o

In particular, the K=O exciton energy takes the form

E„(0)=E„(0)+AE„(0),
with

8'(v) =E„(0) Bv, —
with

B= g F~, ,(q, O) .
q, o &, a2

b, E„(0)= —g
n+0

gF p„(Q,O)

aq —0'

2nfiQc

Taking account of the symmetries of the matrix elements
F z q

(IC', Q) which can be inferred from (16) and (17), B
aI ~ a2

can be rewritten as
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n+0
ol, n2

Q) Q2

r

0 ~+02 0)+02F.,o Q» 2 Q2 +F.,o Qi 2 Q2
CT ),CT22p 1

0 (+02F o Q» 2 Qi
CT1~CT2

2nfiQ,

O.i+a.2+F „o Q2 Qi

.Oi+O2
v(Q, )v(Qz)exp i Q, XQ2 z

2
' [~, o(Q&)~*, o(Qi)+~, o(Qi)~*, o(Qi)]

X [~~,, n, o(Q2)~~&, ~,o(Qz)+~~, ~,o(Q2)~~, , n, o(Q2)]

a quantity which can be shown, after careful inspection, to be negative. As a consequence, the virtual transitions induce
a repulsive interaction among excitons, and the energy per pair 8'(v) is a linearly increasing function of the filling factor.
The ground state is thus a Bose condensate of weakly repulsive excitons. A similar conclusion was reached by 1.1..2

C. Collective modes

To examine the analogy with the standard Bose fluid, we calculate the dispersion relations of the collective modes. We
will use the same techniques as for the ideal case and linearize the operator equation of motion
i'(dO/dE)=[O, H IJN], wh—ere p=(d/dv)[vS'(v)] is the chemical potential for e hpa-irs and X = g k ck~k, the
particle number operator-. We get

co(p, (K)) =co(pi, (K)) =[v(1—v)]'~ [E„(K)—E„(0)][(d(—K)) —(dt(K))],
co(d (K) ) =(2v —1)[E„(K)—E„(0)](dt(K) )

+[~(1—~)]' '[E„(0)—E (K)+B(K)—~(K)][(p,(K))+pq(K))],

where the two potential energies are

B(K)= g F~ (q, Ky )e

P (K)= g F~, ~ (Xy, q)e
'

gq CT ) q CT2

We again find no plasma oscillations. The dispersion re-
lations are easily derived and take the form

co = I [E„(K)—E„(0)] +4v(1 —v)[E„(K)—E„(0)]

X [~(K)—B(K)]I
'~2 . (18)

Noting that P (0)=0, because of charge neutrality, and
that B(0)=B is negative as shown previously, the disper-
sion relation reduces for small K to

co=2[v(1 —v)]'~ ( —B)'~ [E„(K)—E„(0)]'~

=2[v(1—v))' ( B)'~ (2M)' iriK+—

where M is the single-exciton mass. The result (18)
should be compared with the dispersion relation of a stan-
dard Bose gas with repulsive interaction:

2 1/2
A'K

vari K
CO= np V(K)

2fPl NZ

where m, no, and V(K) are, respectively, the single boson
mass, the condensate density, and the Fourier transform
of the repulsive interaction. We get a complete analogy
by identifying E„(K)—E„(0)with the single boson kinet-
ic energy,

~(I —~)=
~
(dp) ~'/N

with the condensate density and 2[/"(K) —B(K)] with
the Fourier transform of the effective boson-boson in-
teraction. Thus, for small K, the collective excitations are
simply exciton density fluctuations, with sound velocity

~ 1/2

v, = [v(1—v)]'

For high values of' K they reduce to single-exciton excita-
tions.

The existence of a finite sound velocity raises the possi-
bility of a finite critical velocity for superflow of the exci-
ton condensate. Note that a simple application of the
Landau criterion' is not possible in this case since the
asymptotic limit of co(K)as K woo is a constant. 'We' —
would, however, point out that at a small superflow velo-
city the dissipative processes implied by the violation of
the Landau criterion involve the creation of a widely
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separated e-h pair (i.e., an exciton with a large E value),
and the matrix element for any localized perturbation
creating such an excitation will be vanishingly small
[-exp( ——,'X a())]. Therefore, we believe that the critical
superflow velocity is finite. The next question is how to
give a velocity to the exciton condensate. This, we will
show, can be achieved by an electric field.

V. INFLUENCE OF AN ELECTRIC FIELD
PERPENDICULAR TO THE

MAGNETIC FIELD

A. A single magnetic exciton
in an applied electric field

An electric field S' parallel to x creates two extra po-
tentials:

T, =e J i(()r)S'„xg, (r)d r,
acting on the electrons, and

Tg = —8 p
X' X g

I' T,

acting on the holes. Therefore, the total Hamiltonian is
no longer translationally invariant. However, the extra
potential can be written as

+xeaa ~+y ~ a(E /2)+qa(x /2)+q

B. The exciton condensate in an electric field

+a (K& /2)+q & (K& /2) ~ )
l
vac &,

where u +U =1, and u and v are determined from

'(ak ak ~ ~hk hk ~ u ~k, k

~X„(k&—k2 ~~o/2
(ak, hk, ~ =4,+k,rc,»e

The expectation value of the energy is straightforwardly
evaluated as

(1((v,K) ~a+a
~
q(v, K))

F (O, k)u —g F~ (q, O)u
C7j, CT2, k o,q

+ gF (q, oK )yu u e
a, q

—eaaS'~Kyu X .

Let us compute the energy of a Bose condensate of exci-
tons, all of them having the same wave vector K, in the
presence of the electric field ( S'„,0). Such a condensate is
described by the BCS-type wave function,

—i7C a 2

~
g(v, K)) = g (u+ue

+~(K /2) —q~(K /2) —q

i.e., the matrix elements depend only on the e-h separa-
tion in the x direction within a pair, which in turn is pro-
portional to the Ky component of the pair wave vector.
In other words, the exciton creation operators dK still
commute with the Hamiltonian, and thus still generate
the pair eigenstates of the system. The energy of the exci-
ton is now

E„(K,S'„)=E„(K,O) —S'„ea~
The extra energy which is proportional to the electric field
is easily identified with the energy of the electric dipole
carried by the exciton. The group velocity becomes

and, taking account of the internal electric field S';„, [Eq.
(10)] acting on the hole from the electron, one gets

S';„,+ S'= —vs X
H
C

This means that the magnetic exciton can again be under-
stood as being composed of an electron and a hole travel-
ling with the same velocity vg, such that the electric and
magnetic forces cancel (Hall effect). As a consequence,
applying an electric field on the K=O exciton produces a
velocity c ( 8'/H) perpendicular to both electric and mag-
netic fields. Although the exciton is a neutral composite
particle, it reacts to the application of 8' and H as a single
charge or a rigid classical electric dipole.

The first term is the Hartree term, which vanishes due to
charge neutrality. The other terms are, respectively, the
exchange, the pairing, and the electric-field-induced
terms. Remembering that

B = g F (q 0),

the energy per e-h pair takes the form

S'(v, K) =E„(K)—v[B+ E„(K)—E„(0)]—S'„ea()Ky ',

and the condensate group velocity 7", is
2ea07",=vs(1 —v) —S' y,

where vs is the group velocity of the single exciton with
the same wave vector as the condensate.

Hence, the K=O condensate, which was the ground
state of the system in absence of the electric field, acquires
the Hall velocity —S'„ea0/A'y when the electric field is
applied. As long as this Hall velocity is smaller than the
superfluid critical velocity discussed above, the exciton
condensate cannot dissipate its kinetic energy and behaves
like a superfluid.

VI. LUMINESCENCE PROPERTIES

In discussing the luminescence we must distinguish be-
tween direct- and indirect-gap semiconductors. In the
former case (e.g., GaAs), there can be a direct decay of the
K=0 exciton with the emission of a photon. In the latter
case (e.g., Ge or Si), luminescence decay is possible only
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with the emission of a phonon as well, to conserve the
wave vector. In this case there are no restrictions on the
momentum of the decaying exciton. We will consider
first the latter case.

A. Indirect-gap semiconductor

We consider first the decay of a single exciton with 2D
wave vector K (measured from the wave vector connect-
ing the two band extrema). The luminescence process can
be calculated by the golden rule with an intensity

I,„(co)= [ (vac
~
Wd~

~

vac) [ 5(fuu —E„(K)+fico~h),

where the photon energy fuo is measured from the energy
difference between the electron and hole Landau levels
and co„h is the phonon energy which we take as a constant
independent of K. The luminescence operator W is
represented conveniently in terms of the annihilation
operators ai, (bi, ) of electrons (holes) in 2D Bloch states
in the absence of the magnetic field,

W=g+a ) b

Here, g is a coupling constant. The Landau-level opera-
tors ak (bk ) introduced in (3) are from (1) related by

ak ——g W(k„,k)ak, b k ——Q W*(k„,k)b
k„ k„

with k=(k„,k) and

M(k„,k) =L '~ exp(ik„kao —k„ao/2) .

The exciton creation operator dK can be written from
(6) as

dt =N in@ —'x~&—'o y
q k„,k„'

Ey—k„', — +q

k,K /2+q k' K /2 q

It is straightforward to evaluate the luminescence intensi-

ty and one finds

K2p 2/I,„(ai)= g e ' 5(fico E„(K)—+keogh),

i.e., there is a Ciaussian weighting factor in the lumines-
cence intensity. The origin of this factor is clear. The
luminescence intensity in an indirect-gap semiconductor is
proportional to the probability of finding the electron and
hole at the same point, "but from (8) the dipole of the ex-
citon leads to

Lao2 2

exp
2

i.e., to a Gaussian decay of the e-b overlap and thus of
the luminescence efficiency.

Turning now to the many-exciton case we wish to ex-
amine the decay process starting from the wave function
(11). There are two types of decay processes possible.
One is a direct decay of a K=0 exciton which will change
the number of K=0 excitons from Nv to Nv 1:—

It is simple to evaluate the matrix element, using the form
of the wave function, as o(:uv, leading, for this coherent
decay process, to

I„h(co)= g u U N5(fico —E„(0)+fico~h)

g v(1 —v)N5(fico —E„(0)+fico~h) .

This process reaches its maximum efficiency at an exactly
half-filled Landau level and disappears both as v~O and
v—+1.

The second (incoherent) process arises when the decay
process involves an electron and a hole from different
terms in the product wave function. The final state is
now an excited state with Nv —2 excitons in the K=0
state and one exciton is a K&0 state. After some algebra,
we find the intensity

—K2g 2/2I' K'

&&5(fico —2E„(0)+E„(K)+ficoph) .

The incoherent term grows in efficiency as v, until as
v—+1, all processes are incoherent. The total lumines-
cence intensity is the sum of the two terms, with the
coherent process more important as v—+0 and the in-
coherent one dominating as v~1. The total intensity is
shown schematically in Fig. 1 for the ideal symmetric
model. In the case of repulsive interactions between the
excitons, the collective mode or excitation spectrum has a
linear dispersion as K~O (see Sec. IV) and thus will
reduce the strength of the incoherent process as K~O or
(fico+ fico~h) +E„(0). —

B. Direct-gap semiconductor

In this case, the K=O excitons are coupled directly to
the photon and the matrix element in general is larger, as
no phonon is involved. Since the many-exciton conden-
sate wave function is essentially a superposition of K=O
noninteracting excitons, the coherent process is an exam-
ple of an ideal two-level system with a nonzero matrix ele-
ment of the electric dipole between these two levels. This
will cause a phase locking between the exciton condensate
and the photon field. In the absence of any other decay
channel, the system will oscillate in a time determined by
the strength of the electric dipole matrix element' and
the average number of excitons will be an oscillatory func-
tion of the time. Thus, we can expect a very strong lasing
action in this case. Note that the coherent process in the
indirect case will not lase so easily because of the necessity
to build up and maintain a coherent population of pho-
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nons as well. Note also that, in the direct case, there is no
analog of the incoherent process since the total wave vec-
tor is required to be conserved. As a result, there is only
the coherent process, and since this process vanishes as
v-+1, the maximum-density e-h 2D droplet will have no
bulk luminescence decay process in the direct-band-gap
case.

VII. A MORE REALISTIC MODEL:
MAC«NETIC EXCITONS IN QUASI-TWO-
DIMENSIONAL GALLIUM ARSENIDE

In reality, a 2D semiconductor is made by an epitaxial
slice of a small-gap semiconductor (e.g., GaAs)
sandwiched between two barriers of higher-gap semicon-
ductors (e.g., A1As} and both the electrons and holes are
confined in quantum wells. In the strong magnetic field
limit, the wave functions of electrons are

~
m, n, k, r) =e (z)e «P„(x+kap)~,

where the quantum numbers are m for the transverse con-
fining level, n for the Landau level within a given m level,
k for the wave vector along y which labels the x coordi-
nate of the center of a cyclotron orbit, and ~ for the spin
projection along the z axis (parallel to the magnetic field
and to the growth direction). The corresponding energies
are

E „=E +(n+ —,')A'0, +rgpsK,
where E~, Q„and g are, respectively, the confining ener-

gy, the electron cyclotron frequency, and the conduction-
band effective Lande factor. This simple labeling of the
states comes from the s character of the electron states
around the Brillouin-zone center.

The situation is far more complicated for the hole
states, due to the spin-orbit coupling. Following Lut-
tinger, ' we write the effective Hamiltonian for the lowest
hole states using the effective mass approximation as

1
Hhole

Pl 0

P2

(ri+ 2r) ~
—y(P.J) +a—J H

C

a
g(x,y,z)=e «Q f~(z)P~(x —kap)

~

—', ,m),
m = —3/2

Here, P is the operator [(A'/i)V —(e/c)A], mp is the
free-electron mass, and J is the angular momentum vector
operator acting within the j=—, hole manifold. yi, y,
and x are Luttinger parameters. We assumed for simplici-
ty a spherical symmetry for the bulk semiconductor,
neglecting the cubic anisotropy. Actually the effective pa-
rameter y (Ref. 14} amounts to y=(3y3+2y2)/5, where

yz and y3 are the cubic Luttinger coefficients. A better
approximation would be to use the so-called axial model, '

but this would not change qualitatively our results. Scal-
ing the energies by the free-electron cyclotron energy
Ari)p=irieK/mpc and lengths by the magnetic length
ap ——(iric/eK)', and assuming the wave functions of the
orm

I

+

+

+

I

I

I

l~
+ }~

I+

+

~j~
+

I

+
I

+

A„

+
l~
+

l~
l~

+

I

and using new scaled coordinates defined as
X=(1/ap)(x —kap), Y=y/ap, X=z/ap, then the Lut-
tinger Hamiltonian can be written as shown at right:



D. PARQUET, T. M. RICE, AND K. UEDA 32

has to solve this set of coupled differential equations sub-
ject to the conditions of continuity of both wave functions
and probability current densities at the two interfaces.
Although this problem has been solved numerically for su-
perlattices, ' this is a tremendous task and we will make
approximations to proceed further.

Let us assume that, (i) the offset parameter b, is large,
which implies that the wave functions do not spread
within the barrier, and (ii) the thickness d of the well is
rather small. In this situation of the confinement energy
is rather large and the dominant terms in H, 11 are those
proportional to Pz. The confinement will be stronger for
heavy holes than for light ones and, within this approxi-
mation, the low-lying states are

2E„{Q) 1/2
—1/2 1~0F

V'+, k, =L cos — @0(X)
~

—,', —,
' ),

FIG. 1. Schematic form of the luminescence intensity for an
indirect-gap semiconductor. The coherent process leads to the 6
function at E„(0), while the incoherent process has a final-state
energy between E„(0) and 2E„(0). The relative weight of the
processes is v/{1 —v). Dashed line: form of the incoherent
luminescence for the interacting case.

with energy

2

Here,

1 a 1 a
1/2

ikap F 2
dk ——L e cos Pp(X)

~

—,', ——,
' ),

a= X—,N=aat= 1

2 BX

and the matrix is written in the basis
~ 2, z ),

~

—,', —,
' ),

~

—,, ——, ),
~

—,, ——, ). The eigenfunctions clearly take the
orm

'ka F

1=0

where p„(X) is the nth harmonic-oscillator wave function.
The eigenfunctions must also be eigenstates of the barrier
effective Hamiltonian, which takes the same form as
H, ~t (with its own Luttinger parameters), except for an
additive diagonal term b. which is the offset energy be-
tween the valence bands of the two bulk materials. Qne

I

with energy

+71+7—
2 &

the thickness d of the well being measured in units of ao.
Note that g+ k is an exact eigenstate of M,~~.

There are, however, relevant corrections to g which
can be obtained by considering I'z terms as a perturba-
tion. (This corresponds to expanding in powers of d. )
The Pz term couples the Pp(X)

~

——,
' ) component

to a P~(X)
~

—,
' ) component from a constant term

in H, ll which we will drop. Within the
P~(X)

~

——,
' ),Pp(X)

~

——,
' ) manifold, the effective Hamil-

tonian which determines the transverse wave functions
6~'(Z) [see Eq. (20)] is

f1+27
2

8 3 1

BZ2
+ ~(yi y)— —yV6 a

az

yi 2T' 8—
( )2+ 71+'V —

T. &

The ground state can be easily found, assuming that the
wave functions vanish at the well edges Z =+(d/2). It is
described by a wave function of the form

-[cos(q&Z)+a cos(q2Z)]$0(X)e '
~

——,
' )

+[b sin(q&Z)+c sin(q2Z)]P&(X)e '
~

——,
' ),

I

where q~ and qq both differ from q =n./d.
To be specific, let us list some data' for GaAs, assum-

ing an applied magnetic field H=10 T: magnetic length
80 A, electron cyclotron energy 17 meV, heavy-hole cy-
clotron energy %cop(y&+y) = 12 meV, hole Zeeman
splitting 3EAcu0 ——4 meV, magnet1c exciton energy
( e

/cap�

)(n./2) ' =9 meV, elect"on Zeeman splitting
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negligible (& 1 meV), and three dimensional Rydberg en-

ergy 4 meV. With these data, the energy splitting between

g+ and f appears to be independent (to 1% accuracy) of
the well thickness d (d & 1.35). To estimate the change of
the wave function due to the spin-orbit perturbation, we
computed the projection c of f on the unperturbed
transverse wave function (2/d)'/ cos(mZ/d). c evidently
decreases with increasing d, and amounts to 0.992 for
d=1.35, which means that the perturbation of the wave
function is extremely small. When comparing numerical-
ly the

~

——', ) component of g with the unperturbed
wave function, one sees that the coupling with the

~

——,
' )

state produces a slight concentration of the wave function
towards the center of the layer: the hole described by lmt

is slightly more 2D than the one described by 1(l+. We got
similar results for Ge.

It is clear from GaAs data that the ground state of a

many e-h pair system must now be computed within the
manifold of the Zeeman split lowest Landau levels of elec-
trons and holes. The up and down spin electrons, as well
as the up (i.e., + —,

'
) hole have the same transverse wave

function. Let us define the creation operators c
which create a particle o. in the state

I. '/2e'&f, (Z)ctso(x +okao)
~
o,s ),

where s labels the spin part of the wave function,
i.e., ~

11) and
~

1, —1) are the electronic states

~
st) and

~
sl),

~

—11) and
)
—1, —1) are the

hole states
~

—', ) =
(

i (—x+iy)/v 2t) and

~

—
z ) = ~i (x iy—)IW2&). As the Coulomb interaction

does not change the spin part of the wave functions, the
Hamiltonian takes the form

H g EZC —1 1 kC —l, l, k+
k

CF~1,~2(Skl k2)Col sl, crlkl —q/2 ~2s2 ~2«2+q/2 ~2's2'~2«2 q/2 crl sl'crlkl+q/2
CT],CT2, S],S2,q, k), k2 S) s$2

where E, is the hole-splitting energy E,—31cficoo, where the electron Zeeman splitting has been neglected. The set of
Coulomb matrix elements I FI is defined by generalizing Eels. (13) and (14). The same calculation as in Sec. IV leads to
the following set of four excitons, with wave functions

4x,s, ,s, =& g e Os, , rC /2+q" s, ,z /2 q I
Vae)—

q

and energies

E„, , =5, E,+ gF (qoK~)e
s&,s2

Knowing that the most general BCS wave function involves a single pairing type,
' we choose a variational ground-state

wave function of the form

~
g(v)) = + Iu+0 fcos(ak)e "ak, +sin(ak)e "ak ][co (Ps)«e "b «, +sin(P«)e "b «, ]I ~

vac),

where the angles ak, pk, yk, and 5«specify the spin direc-
tion of the electron and the hole involved in a given pair.
Obviously, for a filling factor v smaller than one, if no
external constraint is imposed, the ground state corre-
sponds to pk=~/2, i.e., the pairs involve only

~

——', )
holes. It is easily found that the energy per e-h pair does
not depend on the electron-spin direction and is

5'(v)= gF' '(q, O) vg F', , '(—q, O) .
k, cr q, 4T ),CT2

Here the Coulomb matrix elements F', ~ '(q, O) do not

depend on the spin direction of the electrons, because both
spin electrons have the same orbital wave function. Thus,
we can apply the result of the simple asymmetric case
studied in Sec. III, i.e., there is an attractive interaction
between the excitons. The repulsive part of the interac-
tion, due to virtual transitions to excited Landau levels,
scales roughly as I/aoQ„ i.e., is independent of the mag-
netic field. Gn the other hand, the attractive part of the
interaction is an increasing function of the asymmetry be-

tween electron and hole transverse wave functions, i.e., an
increasing function of the magnetic field for a given well
thickness. As a consequence, one can expect a crossover
between the two types of ground states. A Bose conden-
sate of excitons will occur for relatively small fields (but
still big enough so that the cyclotron energies remain
bigger than the 3D Rydberg energy). At higher magnetic
fields, a maximum-density 2D droplet of e-h pairs will
occur when the attractive interaction between excitons due
to the asymmetry overcomes the repulsive interaction due
to virtual transitions.

In practice, the e-h pairs wi11 be produced by optical
pumping and this has important consequences for the e-h
states. If the incident light propagates parallel to the
magnetic field with circular polarization and with a fre-
quency small enough to prevent creation of light holes,
two different cases arise. '

(i) Right circular polarization (cr ): the excited elec-
trons are up spin and the holes are

~

——,
' ). We have just

discussed this case above.
(ii) Left circular polarization (cr+): the excited elec-

trons are down spin and the holes are
~
+ —, ). The trans-
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verse wave functions of the two types of particle are the
same and the system is exactly symmetric. Thus, the ef-
fective interaction between excitons is repulsive whatever
the ratio of the layer thickness to the magnetic length, and
the ground state is an exciton Bose condensate.

These arguments presuppose that the spin lifetimes of
both types of particle are rather long. It is well known
that, in three dimensions and without any applied magnet-
ic field, the spin lifetime of holes in GaAs, etc., is ex-
tremely small compared with the recombination time.
This is due to the fact that the hole wave functions are
not pure spin at finite K vector. As a consequence, in-
teractions with phonons can change the hole spin projec-
tion, leading to a very short hole spin lifetime. This argu-
ment is no longer valid in our case, because of the quasi-
zero-dimensional energy spectrum which imposes severe
restrictions on possible phonon transitions. Thus, the as-
sumption of a long spin lifetime should be reasonable in
our case.

VDI. CONCI. USIONS

In this paper we have examined the two-component sys-
tem of electrons and holes confined to move in 2D in a
strong perpendicular magnetic field. The quantum Hall
effect and particularly the fractional quantum Hall effect
are exceptional properties of the one-component system.
The properties of the two-component system are also ex-
ceptional but in a different way. The ground state of the
ideal two-component system with symmetry between elec-
trons and holes is exactly soluble as ideal 2I3 Bose gas.
This result was obtained some years ago by LL. In this
paper a simpler, and hopefully more transparent, deriva-
tion is given of this remarkable result. In more realistic
models, there are corrections from any asymmetry be-
tween electrons and holes and from virtual transitions to
higher Landau levels. The first type of correction favors
lower densities and therefore a uniform density exciton
Bose condensate, while the latter favors the maximum
possible density and therefore a 2D droplet with the Lan-
dau levels locally filled in the interior. As we discussed in
Sec. V, superflow of the condensate is possible in an elec-
tric field. This could in principle be observed by an exper-
iment in which the condensate was created by optical
pumping in one part of the sample and observed by
luminescence in a different part. The spectral form of the
luminescence from the exciton Bose condensate and from
the maximum e-h density pancake was examined in Sec.
VI. The essential conclusions are that a sharp condensate
emission line should occur for both direct- and indirect-

gap semiconductors with maximum intensity at a half-
filled Landau level. The maximum e-h density 2D drop-
let cannot decay directly in a direct-band-gap semicon-
ductor but only via phonon-assisted decay processes in
both direct- and indirect-band-gap cases.

Lastly, in Sec. VII we examine in some detail the forms
of the hole wave functions in GaAs and consequently the
form of the e-h system under different pumping condi-
tions. It appears that it should be possible to obtain ex-
amples of both symmetric and asymmetric systems. Ex-
periments to test these theoretical results would be most

welcome. On the theoretical side, the treatment of the
temperature dependence is an interesting, largely open
question with the possibility of a Kosterlitz-Thouless
transition as suggested by LL.
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APPENDIX: THE CHARGE-DENSITY BLAUE STATE

It has been argued that, for the asymmetric model (see
Sec. III), the ground state of the e-h system is a charge-
density wave (CDW). We will compute here the energy
per e-h pair EcDw(v) for such a state, for the ideal sym-
metric model, and show that it is larger than the energy
E„(0) of the Bose condensate state. This implies thatat,
least for small asymmetry, the Bose condensate state
remains the ground state of the e-h system.

Following Yoshioka and Lee, ' we will assume a tri-
angular CDW lattice with primitive translations

(1,—1/V 3), r2 —— 0,
2~ 2& 2

Qo
'

Qo

v
I
'T~X'r2

I
=2mao, i.e. , Qoao ——4~v

3
(A 1)

which fixes the lattice period.
Let us define p (Q) (cr=+1) as charge-density opera-

tors for both particles [see Eq. (12)], and assume the fol-
lowing:

(i) The same density pattern for electrons and holes,
which seems natural owing to their mutual attraction.

(ii) Order parameters (p (Q„)) depending only on the
modulus of the wave vector Q: (p (Q) ) =A(Q). Then
the Hartree-Fock Hamiltonian for the CDW state takes
the form

~cDw= g Ex(Q)~(Q)p~( —Q) —XEx(Q) I
~(Q)

I

Q, o Q

-where the direct Coulomb part vanishes due to charge
neutrality.

Let us specialize to a single harmonic for the CDW.
One then gets

whose Bravais lattice is generated by the wave vectors

Q„~ =Qo(n +m/2, mV 3/2),

where m and n are integers.
The commensurability relation, which forces a large

gap at the Fermi level, is
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HCDW=E (0»yc, kc,k+E (Qo)~(QO) y )o ( —Q)
k, o. (Q I =Qo

ECDW |,'Y)

Ex &0)
l

—NE~(0)v —6E„(Qo) i
b,(Qo) i

because b,(0)=vN'~ and there are six different wave vec-
tors fulfilling

~ Q ~

=Qo. It appears that the Qo-
dependent part of HcDw,

HcDw(Qo)=E (Qo)~(Qo) g p ( —Q),
I =Qp

0.4

0.2

scales on E„(Qo)b,(Qo). This implies that the spectrum
of HcDw for a given type of particle is the same (up to a
scaling constant) as in the one-component system.
Furthermore, the solution of the self-consistency relation

is also the same, which means thai ihe one-component
density pattern does not depend on the effective interac-
tion E„(Q).

The energy per e-h pair is

0.2 0.4 0.6 0.8
Y

FIG. 2. Scaled energy per e-h pair Eco~(v)/E„(0} as a func-
tion of the filling factor v for the ideal symmetric model. This
function is always & 1, demonstrating that the exciton Bose con-
densate state is the stable one.

e-h symmetry, one can show that the energy per e-h pair
fulfills the relation

EcDw(v) =E~(0»+—Ex(Qo)~'(Qo) . (A2)
vE (v) = (2v —1)E(v = 1)+(1 v)E (1——v),

EcDw(v) „vv 3 n v=v+6ve " Io (A3)

for 0(v(0.5. For v&0.5, the electron charge-density
pattern corresponds to a hole signer crystal. From the

Knowing that for v & —,
' the charge densities are the same

(within a few percent) as in the magnetic Wigner crystal

b, (Q)=N'r vexp( ——,aoQ ),
taking account of (7), (Al), and (A2), one gets

which knowing that E(v= 1 ) =E„(0) defines, from (A3),
EcDw(v) for v) 0.5.

The function EcDw(v)/E„(0) is drawn in Fig. 2 for
0&v(1. This quantity remains smaller than one. This
implies that, whatever the filling factor, the CDW energy
remains higher than the Bose condensate energy. A better
estimation would include higher harmonics. For the
single-component problem, Yoshioka and Lee ' showed
that the higher harmonics lower the CDW cohesive ener-
gy only by a few percent. It is thus extremely unlikely
that these terms could stabilize the CDW state in the ideal
e- h problem.
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