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W. T. Masselink, Yia-Chung Chang, and H. Morkoq
Coordinated Science Laboratory, University ofIllinois at Urbana Ch-ampaign, Urbana, Illinois 61801

(Received 28 May 1985)

We have used the variational method to calculate the acceptor binding energies in GaAs-
Al„Gal „As quantum wells with and without the application of electric, magnetic, and uniaxial
stress fields. The calculation includes the coupling of the top four valence bands of both materials
in the multiband effective-mass approximation. To ensure the convergence of the calculation, a
large number of basis functions which are made up of the s-like, p-like, or d-like spatial states mul-

tiplied by j =
2 spinors are used for the expansion of the acceptor wave function. Because the quan-

tum well and external field potentials reduce the point-group symmetry from Td to D2d, the bulk I 8

acceptor ground state splits into I 6 and I 7 states. The I 6 state is predominantly derived from the
heavy-hole subband and the I 7 state is predominantly derived from the light-hole subband, The
magnetic field further splits the I 6 and I 7 states. We have calculated the energies of the I 6 state
and the I"7 state for both center doped and edge doped quantum wells as well as the I 6 and I 7

valence-subband edges for various barrier heights as functions of well width. In recent studies the
photoluminescence resulting from the acceptor levels to conduction-band transition in molecular-
beam-epitaxy-grown GaAs-Al„Gal „As superlattices have been measured. Our theoretical results
are in excellent agreement with these experimental data.

I. INTRODUCTION

Because of the development and improvement of semi-
conductor growth techniques such as molecular-beam epi-
taxy (MBE), the study of artificial semiconductor super-
lattices has rapidly advanced. ' The growth rate using
MBE is slow enough (0.3—8 As ') that both material
composition and intentionally incorporated impurities can
be controlled on the atomic scale. In addition, MBE-
grown GaAs has a low enough background impurity con-
centration (-10' cm ) that for optical studies the in-
trinsic characteristics may be dominant. With this low
background impurity concentration and monoatomic
layer abruptness, recent photoluminescence experiments
indicate transition widths at 2 K of less than 0.15 meV
for the Al„Ga~ „As-GaAs system.

In the GaAs-Al„Gat „As superlattice, so far the most
widely studied system, the Al„Ga& „As band gap in-
creases with increasing x. How the difference in band gap
between GaAs and Al„Gai „As is divided between the
conduction band and valence band has been the subject of
much study; recent evidence indicates that 65% of the
band-gap discontinuity is in the conduction band, with
35% in the valence band. ' Thus both electrons and
holes are confined to rectangularly shaped potential wells
in GaAs.

Original studies of this system emphasized the intrinsic
properties. More recently, emphasis has been on the ex-
trinsic properties of doped superlattices. Extrinsic transi-
tions may involve donor- and acceptor-bound excitons,
donors, and acceptors which could be located at any posi-
tion in the well or barrier. Although in principle these are
no more complicated than in bulk GaAs, material quality

for narrow wells is not as good as for bulk GaAs.
Donor binding energies in quantum wells have been cal-

culated in several approximations. Bastard s original cal-
culation assumed a hydrogenic impurity and infinite bar-
rier height. Others have made realistic calculations in-
cluding finite barrier heights. ' Although Bastard's cal-
culation indicates a continuously increasing binding ener-

gy as well width is decreased, these more realistic calcula-
tions show that the binding energy goes through a max-
imum at some nonzero well width. Chaudhuri has recent-
ly included the coupling of adjacent quantum wells in a
calculation of the donor binding energies.

Very recently, the effect of external perturbations on
donors in quantum wells has been studied. In particular,
the binding energies of the ground state and several excit-
ed states of donors in a magnetic field have been calculat-
ed'o '2 as well as the ground-state binding energy of
donors in an electric field. ' The measured dependence of
binding energy with magnetic field seems to agree quite
well with these calculations. '

Calculating the binding energies of acceptors in a super-
lattice and/or external field is more complicated than for
donors because of the more complex valence-band struc-
ture. We have previously reported some calculations and
measurements of the binding energies of acceptors at the
centers and at the edges of GaAs-A1„Ga, „As quantum
wells. ' ' In bulk semiconductor material such as GaAs,
the valence band is threefold degenerate at k =0, ignoring
spin. When spin is included, the degeneracy would be
doubled except that the spin-orbit interaction causes two
of the bands to be split off. Thus the bulk GaAs valence
band is fourfold degenerate at I. Away from I, the
bands split into a twofold-degenerate light-hole band and
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a twofold-degenerate heavy-hole band. However, for a
quantum well or superlattice, the heavy-hole and light-
hole bands are separated even at I . In general, however,
the coupling between them is still appreciable. In this pa-
per we report a theoretical study of the binding energies of
acceptors in GaAs-Al„Ga1 „As quantum wells which are
perturbed by electric, magnetic, or uniaxial stress fields.
We include the coupling of the light-hole and heavy-hole
bands as well as the finite barriers in the calculation.

(1'i+ z Xz)P' — (P ~'+u'~'+Ji'J. )
2mp mp

2y3
( tu.uy I I &.~y I + 0ys" I I ~yJ.I
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where I ab j =(ab +ha)!2, mo is the free-electron mass, p
is the linear momentum operator, J is the angular
momentum operator for the spin- —,

' hole, e /ear is the
screened Coulomb interaction, and y1, y2, y3 are the Lut-
tinger parameters describing the valence band of the ma-
terial. The kinetic energy term can be written in k space
as
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II. ACCEPTOR IN A QUANTUM WELL

We begin with the coupled effective-mass equations for
the ideal acceptor in bulk material. In this paper an
"ideal" acceptor is one in which the total potential due to
the impurity center is only the screened Coulomb poten-
tial. In the case of infinite spin-orbit coupling, the prob-
lem reduces to four coupled equations. For four coupled
bands degenerate at k=O, the most general acceptor
Hamiltonian may be written as'

width. Hi does not couple different bands because it is
spin independent. Although the single-well nature of Hi
makes it more appropriate for completely decoupled
quantum wells, this potential will also be appropriate for
superlattices with thick barriers because the hole is bound
and virtually none of its wave function penetrates through
the barriers into the next well. In this calculation, we take
V=0.35 ~s(x), where bEs(x) is the difference in band
gaps at k =0 between the GaAs and the Al„Ga1 „As
barriers; EEg(x) is taken to be 1.247x eV for x &0.45. '
In order to find the ground-state energy of the above
Hamiltonian using the variational method. , a trial wave
function that includes the variational parameters must be
constructed. Because in this case the location of the ac-
ceptor is the center of the well, inversion symmetry is
preserved in all three directions. Clearly then, even and
odd harmonics will be decoupled. Since we expect the
ground state to have even symmetry, only the even har-
monics need be included in an expansion of the ground-
state hole envelope wave function. This expansion is trun-
cated to include only s- and d-like terms since these are
the only terms which will be directly coupled to the s
term.

Each term in the effective-mass approximation (EMA)
hole wave function is written. as a product of a spatial
term having either s- or d-like symmetry and a spin- —,

'
spinor. Thus, there are a total of 24 (=6X4) possible
types of terms. This number can be greatly reduced by
fully exploiting the symmetry through the theory of finite
groups.

Bulk GaAs has the symmetry of the tetrahedral point
group Td. The valence-band symmetry may be deduced
by coupling the p-like band with the spin- —,

' hole. In the
Td symmetry, the p-like band will transform like I'5 and
the spin- —,

' hole like I 6. According to group theory
r, xr, =r7+rs The I 7 is twofold degenerate and is
split off by the spin-orbit coupling. The I s solution is
fourfold degenerate at k=0, splitting into the heavy-hole
and light-hole bands for k&0. The Hamiltonian given
above is defined in terms of the four I s states as given in
Ref. 20. Thus

where 0 0 0
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using the basis described below. ' In order to adapt this
Hamiltonian to the quantum-well problem, we propose an
additional term for an acceptor at the center of the well

Using the coupling coefficients of Ref. 20, we couple
I 5 X I 6

——I 7+ I 8 to obtain

I =(1/v 6)(xz+iyz)t+(iv 2lv 3)xy g,
I II

———(1/v 2)(xz+iyz)g,

I s
' ———(1/v2)(xz iyz)t, —

0 for iz
i

& 8'/2,
V for

)
z

(
)W/2, (3)

where V is the valence-band discontinuity between the
well material and the barrier material, and 8' is the well

=(1/V 6)(xz iyz) t+ (i V—2/V 3)xy t,
I 7 =(1/v 3)(xz iyz) & (i/v —3)xy—t,
I 7

' ———(1/v 3)(xz+iyz) t+(i/v 3)xy g .

(4)
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The presence of the quantum well reduces the Td sym-
metry to Dzd by giving the material one preferred direc-
tion. The p-like valence band now transforms like I q+ I 5

and the spin- —,
' hole transforms like I 6. The product then

is 1 6+ 'I 7+ I 7. Again using the notation of Ref. 20,

I 6
——(1/W2)(xz+ iyz) J,

0

2I —1/2
0
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0

0
0
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0

Also
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2I '~ = —(1/~2)( xz iyz—) l,
zr7 '/ —(1/V 2)(xz+iyz ) t .

(5) and

—(1/v 2)(r, r' '—ir» r' ')=r
so

0
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Since the split-off band is I 7-like, we construct from
I 7 and I 7 new I 7 states which are orthogonal to the

split-off states, and we find

p3/2 p —1/2
8 ~ 7

p 1/2 p1/2
8 ~ 6

I —1/2 I —1/2
8 ~ 6

I —3/2
8 ~ 7

when the symmetry is reduced from Td to D2d.
These four spinors must be combined with the one s-

like and five d-like spherical harmonics to construct total
wave functions which transform like either I 6 or I 7.
First consider the wave function with overall symmetry of
I ~. The first such state is simply a spatial s term with the
I 7 or I 7

' spinor. To find the d state, we must con-
sider the product (I 6+I 7) X (ri+ I 3+14+ I 5), since in
the D~ group a d state splits into 1 i+I 3+I q+r5. We
find (I 6+1 7) X(I i+I'3+1 4+r5) =51 6+51 7. Thus
there will be five doubly degenerate d-like states and one
doubly degenerate s-like state with overall symmetry I 7.
As it makes no difference which set of states we choose,
we will consider the 17 ' states. The first of these is
I —1/2 ~

PI —1/2
0

7 Q

0

Using the coupling coefficient of Ref. 20, we couple
r7XI i r7 and find r7 ' ——I 7

' 1"i. Since
z ——,'(x +y ) transforms like 1 i and is orthogonal to
fs),

and

5~—1/2
L 7

0
0
0

—(1/V 2)(xz iyz)—
Referring back to the Hamiltonian, we see that I'7 '

does not couple to any of the matrix elements, so it does
not have to be included in the basis. The I 7

' basis is
then

0
Q
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0
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0
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(r
~
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The I 6 basis is similarly obtained and is related to the
I 7 basis by exchanging the first and second entries and
the third and fourth entries. The total 17 variational
wave function is written as

1I —1/2
7

z ——,'(x +y )

0
0
0

Similarly we find
iI-4I'6 ' ——I 7 ', and so

I —1/2 I —1/2
3 6 7

where the 35 C„(i)'s are variational parameters, the seven
a s are exponents chosen to cover a large physical range,
p is an anisotropy factor which allows the compression of
the wave function in the z direction, and "I 7 are the
five spinor-polynomial products given in (6) above. Since
p is also varied to minimize the energy, the calculation
uses 36 variational parameters. This is a vast improve-
ment over the 169 parameters which would have been
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For the case of the acceptor located at a general position
zo from the edge of the well,

0 for —zo&z& W —zo,
V for z & —zo or z & W —zo .

With the loss of inversion symmetry comes the loss of
some of the simplification made when the acceptor is in
the center of the well. The ground state will now have p,
terms since only the z direction lacks inversion symmetry.
Furthermore, the system symmetry is no longer D2d, so
I 6 and I 7 symmetries are not strictly distinct. By sym-
metry, I 6 p states cannot mix with I 6 s or d states and I 7

p states cannot mix with I 7 s or d state. Maintaining the
D2d notation, the I 6 p state can, however, mix with the
I 7 s and d states and the I 7 p, state can mix with the
I s s and d states.

Since this mixing is relatively minor we still denote the
state primarily derived from the s and d 1 z states as I'7
even though it has some I 6 character and the state pri-
marily derived from I s s and d state is still denoted I s.
Thus, the additional p, type of wave-function term is

0

0

for I q, and (10)

0

0
0'

for r,'".
The new total I 7 variational wave function is written

then as

where

necessary if we had not simplified the problem using the
group theory above.

When the acceptor is in the center of the quantum well
there is no question about where the wave function is to
be centered. By symmetry it is obvious that the hole wave
function would also be centered at the center of the well.
With the acceptor at the edge of the quantum well, the
hole wave function should be centered between the edge
and center of the quantum well because the Coulomb po-
tential tends to pull the hole to the edge of the well while
the barrier potentials push it toward the center.

The only change in the Hamiltonian is in H~. The
quantum-well term is now given by

r

0 for 0&z& W,1=
V for z & 0 or z & W .

5I —1/2 0
0

and q is a new variational parameter which allows the
wave function to be centered at an arbitrary position. For
the case of the center doped acceptor, zo ——W/2, q =0,
and Cs(i)=0. This shifted ellipsoidal Gaussian set has
the ability of reproducing reasonably well the bound-hole
wave function when the Coulomb center is at any point in
the well for any well thickness.

The ground-state energy and wave function is obtained
by numerically solving Schrodinger s equation Mg=ESg,
where S is the overlap matrix. This means solving a
35X35 secular equation if f has been expanded as in Eq.
(7) for a center-doped well or a 42X42 secular equation if
P has been expanded as in Eq. (11) for an arbitrarily
placed acceptor. The values of p and, in Eq. (11), q, are
varied until the energy E is minimized. The resulting
lowest energy eigenvalue is the I 6 or I 7 variational accep-
tor ground-state energy as measured from the bulk
valence-band edge.

In order to account for the difference in effective-mass
parameters and dielectric constants in the two materials,
GaAs and Al„Ga& As, the problem is solved twice for
each well width and barrier composition. We define

as the fraction of hole-envelope wave function in the
quantum well assuming the GaAs parameters, and. simi-
larly fz as the fraction of hole-envelope wave function in
the quantum well assuming the Al„Ga~ „As parameters.
The actual fraction of hole wave function in the well, f,
requires f=ff~+(1—f)f2. Thus f=f2/(1+ f2 —f&

).
The actual acceptor energy then is E=fE&+(1—f)Ez,
where E~ is the acceptor energy assuming the GaAs pa-
rameters and E2 is the acceptor energy assuming the
Al Ga~ „As parameters. Although this is not an ideal
method for treating the boundary condition, the exact de-
tails of how the total wave function is matched across the
interface will have very little effect on the energies. This
is due to the fact that in a variational calculation, first-
order changes in wave function result in only second-
order changes in energy.

In order to calculate the binding energy for the accep-
tor, we also calculate the I's and I'7 (heavy hole and light
hole) subband edges as measured from the bulk valence-
band edge using the same Hamiltonian with the impurity
potential excluded. The I 7 acceptor binding energy is
then the difference between the I 7 subband edge and the
I 7 acceptor energy, both measured from the same refer-
ence energy. The method for finding the I s binding ener-

gy is identical to that for the I 7 binding energy described
above except that the I s-symmetry wave function is used.

We study GaAs-Al„Ga~ „As - center and edge
acceptor-doped quantum wells with two different barrier
alloy compositions: x =0.10 and 0.30. The Luttinger pa-
rameters and dielectric constants are taken to be
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for AlAs. ' For the alloys, we use a linear interpolation
between those of GaAs and of A1As for all four parame-
ters.

The heavy- and light-hole subband energies along with
the I s and I 7 acceptor energies are shown as functions of
well width in Fig. 1. This calculation assumes the Al
mole fraction x to be 0.30 and is for an acceptor in the
center of the well. The difference between the I 6 (heavy-
hole) subband energy and the 1 6 acceptor energy is the 1 6

acceptor binding energy. The I 7 (light-hole) acceptor
binding energy is similarly defined. One can also discern
from this figure the energy difference between the I 7 and
I 6 acceptor states; this energy difference can be measured
using Raman spectroscopy. The calculated acceptor bind-
ing energies are shown for the two alloy compositions (0.1

and 0.3) and both symmetries (I 6 and I 7) as functions of
the well width in Fig. 2. In all cases the binding energy
reaches a maximum at a nonzero well width which is
similar to that calculated for donors ' and excitons in
finite-barrier-height quantum wells. As expected, a
higher barrier Al mole fraction results in a greater binding
energy. In the bulk limit, the binding energy for all six
cases is 27.1 meV, which is consistent with previously cal-
culated and measured acceptor binding energies in bulk
GaAs. As the quantum-well effects become important,
the binding energy of the I 7 ground state is greater than
that of the I 6 ground state. We see that the barrier height
is less important in determining the binding energy than is
the symmetry. For narrower wells, the effect of the hole
confinement is more pronounced, leading to increasing
binding energies. The maximum binding energy occurs at
well widths between 5 and 50 A, depending on the barrier
height and symmetry. The maximum binding energy
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FIG. 2. Binding energies of the center doped ideal acceptor
ground states as functions of well width for two barrier heights
and both symmetries. The I 6 binding energy is measured from
the top of the heavy-hole subband and the I 7 binding energy is
measured from the top of the light-hole subband.
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occurs at larger well width for smaller mole fractions and
for the I 7 symmetry. When the well width is zero, then
all that is left is bulk Al„oa~ „As and the binding energy
is, of course, simply that of the alloy. In this limit, the I 6
and I 7 solutions are again degenerate.

Figure 3 shows the squares of the heavy-hole envelope
wave function for different well widths in GaAs-
Alp 3Gap 7As quantum wells when the Coulomb center is
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FIG. 1. Energies of the valence-band edges, ground-state ac-
ceptor energies, and first excited-state acceptor energies as func-
tions of well width for acceptors in the center of GaAs-
Alo 3GSQ 7As quantum wells. Positive energy is measured up
from zero and the valence-band discontinuity is assumed to be
35% of the band-gap discontinuity between GaAs and A1GaAs.

FIG. 3. On-center acceptor ground-state envelope wave func-
tion squared, plotted along the axis normal to the interfaces for
different GaAs well thicknesses. The Coulomb potential is lo-
cated at z =0 and the vertical dashed lines indicate the heteroin-
terfaces.
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Again our results are qualitatively identical to his. Since
dE/dzo vanishes at the center of the well, gL, becomes in-
finite at the center. At the edge of the well, gL is larger
for smaller well widths and for W= 15 A is even peaked
at the edge. This explains why the edge binding energy is
more easily seen in uniformly doped samples when the
wells are narrow.

Several experimental studies have been made of the ac-
ceptor binding energies in Al„Ga& „As-GaAs quantum
wells. The samples in Refs. 24 and 25 were uniformly
doped throughout the wells with either carbon or berylli-
um. The carbon-doped samples were unintentionally
doped, utilizing the unavoidable carbon background in
MBE-grown GaAs. In the studies conducted by the au-
thors in Refs. 15 and 16, the wells were selectively doped
with beryllium at either the centers or edges of the wells.

Since the different acceptors have different bulk bind-
ing energies, an additional term is added to the Hamil-
tonian to provide a short-ranged potential. This potential

( —rlro)2
takes the form of H, = Ue ', where ro ——1 A and U
is chosen so the bulk GaAs acceptor binding energy is
shifted from 27.1 meV with U =0 to either 26.0 meV for

of acceptors in Alp 3Gap 7As-GaAs quantum wells of
width 100, 50, 30, and 15 A. For wider wells the bind-
ing energy is much more position dependent than for nar-
rower wells. These results are in qualitative agreement
with those of Fig. 2 of Ref. 6. The very small value of
dE/dzo near the center of the well implies that a relative-

ly large number of acceptor centers near the center of the
well will all have about the same binding energies. This
explains why the center acceptor binding energy is rela-
tively easy to experimentally measure. Near the edge of
the well, on the other hand, dE/dzo is large, and therefore
at a given energy there are far fewer acceptors. Bastard
has in the hydrogenic model calculated a density of im-
purity state per unit binding energy,
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FIG. 8. Calculated energy of the heavy-hole center doped
beryllium and carbon acceptors, the heavy-hole edge doped ideal
acceptor in Ala 3Gao &As-GaAs quantum wells, and experimental
data. The data indicated by squares are for selectively doped
beryllium measured by the authors, the circles are for carbon
from Ref. 24, and the triangle is for beryllium from Ref. 25.

carbon or 28.0 meV for beryllium. The choice of rp is not
at all critical; a different ro would, however, necessitate
using different values of U as well.

For the I 6-center acceptor calculation with x =0.3, H,
was included with U= 8.00 eV for carbon and U = —5.55
eV for beryllium. Figure 8 shows the calculated binding
energies for center doped carbon and beryllium in GaAs-
Alo 3Gao 7As quantum wells and the binding energy of an
ideal (U =0) edge doped acceptor. Included also is exper-
imental data measured by us and from Refs. 24 and 25.
The four points near the edge doped curve are believed to
be due to edge doped acceptors; those measured by us
were intentionally doped only at the edge of the wells.
Clearly, these experimental data measured by us and by
others are in very good agreement with the calculations.

In particular, the measured energy of about 50 meV for
Be acceptors in the centers of 30-A quantum wells is quite
consistent with the present calculation. A similar calcula-
tion reported earlier by us' ' using a smaller valence-
band discontinuity [&R„=0.15&Ez(x)] showed a serious
discrepancy at this point. Comparing these calculations,
we see that using the present valence-band discontinuity
of 35% instead of the previously accepted one of 15%
does not affect the binding energy in wells wider than
about 100 A. At 30 A, however, there is a significant
difference between these calculations, with the present one
in much better agreement. Because of the sensitivity of
the acceptor energy to valence-band offset, this data pro-
vides further evidence that the valence-band discontinuity
is much greater than 15% of the total band-gap discon-
tinuity and is around 35% as others have recently mea-
sured. ' Raman spectroscopy experiments measuring
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both the I."6 ground state to the I 6 band edge and also the
I 6 ground state to the I 6 first excited state also appear to
agree with these photoluminescence measurements and
calculations.

&04
I

I

Ga&s &cceptor Energy

III. ACCEPTOR IN A QUANTUM WELL
WITH AN ELECTRIC FIELD

In this section we consider the effect of an externally
applied electric field on the acceptor in a quantum well.
By restricting ourselves to fields applied in the z direction,
the symmetry remains that of the off-center acceptor in a
quantum well with no field. As a consequence of the elec-
tric field, an additional term must be added to the Hamil-
tonian given in Eqs. (1) and (9). The term due to the elec-
tric field may be written

0
LLj 0

LLI
LLI

10 4
10~ 10 10 106

Electric Field (V/cm)
10

H2 ——8'z,

where 8' is the field strength.
In the related hydrogenic system, such a term results in

the well-known Stark effect. In the Stark effect, no state
is truly a bound state since the potential becomes arbi-
trarily negative for values of z far from the origin.
Despite this, there are resonant states which closely
resemble the bound hydrogenic states in the absence of an
electric field. The binding energy of these states is con-
sidered then to be the difference in energy between that
state and the continuum with no field. In any first-order
approach, such as first ord-er perturbation theory, the
ground-state ls level is not affected by an electric field
since the 1s state has even parity and the electric field has
odd parity. The ground state is, however, lowered by the
electric field when one allows higher lying odd-parity
states to couple to the ls state through the field. For
small fields, this coupling results in an energy shift pro-
portional to 8' . For large fields an 8' term becomes
dominant. The donor spectrum, when considered within
the effective-mass approximation (EMA), is extremely
similar to the hydrogenic spectrum. The theory of the
Stark shift is similarly related with the quasibound states
being measured from the low-energy edge of the conduc-
tion band.

A major difference between the donor and acceptor
Stark effects is that the unperturbed donor ground state is
quite well described by a single spherical symmetry; the
acceptor ground state already includes coupling between s
and d states. The additional coupling of p states through
the electric field will, thus, be largely masked for small
fields.

Rather than relying on perturbation theory, we solve
for the ground-state acceptor energy in an electric field
using the variational method. This is done by restricting
the basis to orbitals centered near the Coulomb potential
and sufficiently located so that the lowest state calculated
resembles the unperturbed ground state. Figure 9 shows
the effect of an electric field on the bulk ground-state ac-
ceptor binding energy. The binding energy is measured
from the valence-band edge where the electric potential is
zero. Also reported in Fig. 9 is the energy assuming a hy-

FIG. 9. The relative change in acceptor energy as a function
of electric field. The curve labeled "acceptor" is for an actual
GaAs acceptor; the curve labeled "hydrogenic" is for a hydro-
genic system with the same' dielectric constant and binding ener-

gy as the GaAs acceptor.

drogenic system with the same binding energy and dielec-
tric constant as the GaAs acceptor we have studied. At
small electric fields, the acceptor is virtually unaffected by
the field and the hydrogenic energy shift is proportional
to 5'z. At large fields, both the acceptor and hydrogenic-
system energies depend on 8' as 8'. At midfields the ac-
ceptor energy changes rapidly with field, making the tran-
sition from being virtually unaffected by the field to its
high-field value.

The effect of the electric field on the acceptor in a
quantum well is qualitatively like the effect on the bulk

8- Ga&s and
GaAs-AI

—
Qu
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FIG. 10. The absolute values of the acceptor energy mea-
sured from the bulk valence band as functions of electric field
for an acceptor in GaAs and acceptor in an A1025GS075As-
GaAs quantum well. The edge doped acceptor is split because
the two edges are not degenerate in an electric field.
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acceptor. As shown in Fig. 10, the quantum-well case re-
quires a much larger field in order to observe any energy
shiA. Once the critical field needed to shift the acceptor
energy is reached, however, the derivative of acceptor en-
ergy with respect to field is approximately the same as in
the bulk case. The reason for the larger field required for
the onset of the energy shift is that the quantum-well po-
tential further lifts the energies of the p-like orbitals
whose coupling is responsible for the energy shift.

IV. ACCEPTOR IN A QUANTUM WELL
VfITH A MAGNETIC FIELD

In this section, we calculate the effect of a magnetic
field on the acceptor ground state in a quantum well. As
in the case of the electric field, we restrict ourselves to
fields applied along the z direction. The symmetry in this
case is D~ and the basis is identical to that given in Eq.
(6). The Hamiltonian for the bulk acceptor given similar-
ly to Eq. (1) by

(yi+ —,y2)k —2y2(k~J„+k~J~+k J, )—4y3([k„k„j(J J~ j+lk„k, j lJ~J, j+Ik k„jIJ J„j)— aJ B e le—r .
2mo

(14)
In this expression, K=i V +e /2c (8 && r ), a = 1.72, 8=8z,
and the other expressions are the same as in (1).

In the hydrogenic systein, a magnetic field results in the
Zeeman effect. This problem is simpler because I., and
S RI'c malntalncd as good quantum numbers. Bccausc of
this, the Zeeman-effect Hamiltonian can be simplified to

l l I

Bulk GaAs lg Acceptor States
in a Magnetic Field

2g 2
k2+ (I.,+2S,)+ I (x +y'),

2m 2mc ' Smc2
(15) -10

where B is in the z direction. Since S, is generally con-
served, the term involving S, also appears in the free-
particle Hamiltonian and may be neglected in the calcula-
tion of the binding energy.

In the acceptor system, neither L,, nor S, are well de-
fined. Figure 11(a) shows the ground state and first excit-
ed I 6 states (D2d symmetry) for an acceptor in a magnetic
field. For zero field, the I 6 states correspond to I 8 states
in the T~ symmetry. The calculation is for two cases:
sr=0 and x=1.72, the actual value. Looking at the ~=0
line, one can deduce an effective L, by looking at the
slope of this curve in the small-field liinit. Our calcula-
tion indicates the effective I., to be 0.76 and 0.69 for the
ground and excited states, respectively. This is reasonable
since the wave function is largely composed of s-like orbi-
tals, but with d-like orbitals as well. The difference be-
tween the z=O and v=1.72 curves can be similarly used
to deduce an effective J,. The difference between the ac-
ceptor energies with ~=0 and a = 1.72 is given by

geffg
cmo

from Eq. (14). In this expression J,' is the effective J„
a = 1.72, and 8 is the field. We find the effective J, to be
1.15 and 1.12 for the ground and excited states. This
again is reasonable since the wave function is composed of
J=—, and 2 spinors and is primarily derived from the
J,=+—', state. Similarly Fig. 11(b) shows the acceptor
energies for ~=0 and 1.72 in the I 7 symmetry. As in the
previous case, at B=0 the solution corresponds to the
I s-symmetry solution on the Td symmetry. The effective
I., deduced in this case is 0.32 and 0.28 for the ground
and excited states This aga. in indicates a wave function
composed primarily of I,=0 orbitals. The effective J, is
about 0.4 for both ground and excited states. This is also
reasonable since these states are priinarily composed of
J,= + —,

' spinors with some contribution from the
J = ——splnors.
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FIG. 11. The GaAs acceptor energies with {a) I 6 and {b) I 7

symmetries as functions of magnetic field. At zero field, all
solutions correspond to the I 8 representation in the Tq space
group. The energies are calculated both vvith ~=0 and ~=1.72
[sce Eq. (14)] so that an effective L, and J, can be determined.
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Figure 12 shows the acceptor energies and the valence-
band edges for both symmetries as functions of magnetic
field. The binding energy for a given symmetry is the
difference between the acceptor energy and band edge for
that symmetry. For each nonzero magnetic field, the four
energies for each state correspond to the I &

', I &
'

r,+"', and I7' symmetries which converge to the
fourfold-degenerate I s symmetry state at zero field.

In a quantum well, already at zero field the I s state is
split into the two twofold-degenerate states I & and I 7 as
we saw in Sec. II. The presence of a magnetic field splits
these states and further shifts their energies. Figure 13
shows the ground-state acceptor energies for an acceptor
at the center of a 50-A well in a magnetic field. Although
the I 6 and I 7 symmetries are distinct already at 8 =0,
the splitting due to the field is practically identical to that
of the bulk acceptor for each symmetry. In fact, even in
narrow wells the effective L, and J, remain practically
identical to those described earlier for the bulk acceptor.
This general result should be valuable for the analysis of
magnetic field measurements on GaAs acceptors both in
bulk GaAs and in quantum wells.

FIG. 12. The GaAs acceptor energies and valence-band edges
as functions of magnetic field. Shown are all four symmetries,
r,'", r ", I-7 I-7 ' . The binding energy for a given sym-
metry is the difference between the acceptor state and band edge
for that symmetry.
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V. ACCEPTOR IN A QUANTUM WELL
WITH UNIAXIAL STRESS

In this section, we consider the effect of compressive
uniaxial stress along the growth (z) direction on the accep-
tor spectrum in quantum wells. The stress contributes to
an additional term, H„ to the Hamiltonian described in
(1). In terms the strain tensor a,J, H, can be written as

H, =Dq(a +a~„+e, )+ —,'D„[(J„——,
' J2)a +c pJ.

+ —', D,'(lJ &baja y+c.p. )

(+—', lH, l+ —', ) =d+5
and

&+-' IH. I

+-'
& =d —&

d
can be determined experimentally for bulk GaAs. Here
the symbol c.p. stands for cyclic permutation of x,y, z.
We assume these deformation potentials for GaAs-
Al„Gai „As quantum wells are the same as those for
bulk GaAs.

For a uniaxial stress with strength X applied in the z
direction, the strain tensor is given by czy Eyz Bzz 0,

Byy:S]2X and czz =S~~X, where S~ ~ and S&2 are
two components of the compliance tensor. Substituting
these expressions in and expressing H, in the spin-( ——, )

basis states, we have

-30
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where

d =Dg(S i i +Si 2 )X

and

FIG. 13. The I 6 and I 7 acceptor energies and valence-band
edges for the GaAs-Ala)5GRO75As quantum-well system in a
magnetic field. Because of the quantum well, the fourfold de-
generacy is lifted already at B =0; the derivative of energy with
respect to field is virtually identical to that of the acceptor in
bulk GaAs.

ti=D„(Sii —Si2)X/3 .

Using 'the values Sii ——1.159, Siq ———0.368 (in 10
cm ldyn), and D„=3.66 eV for bulk GaAs, ' ' we have
5= 1.86X meV, if X is measured in units of kbar.

The calculation of the acceptor spectrum in GaAs-
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Al„Gai „As quantum wells follows the same prescription
as described in Sec. II. The results for center doped ideal
acceptors are presented in Figs. 14 and 15. Figure 14
shows the energy separation between the lowest energy
level of I 6 and I 7 symmetries as a function of the GaAs
well width, for uniaxial stresses from 0 to 10.5 kbar (solid
curves). Also included for comparison is the separation
between the first heavy-hole and light-hole subband ener-
gies at the zone center (dashed).

Figure 15 shows the binding energies of the acceptor
states with I 6 symmetry and I 7 symmetry for uniaxial
stresses from 0 to 10.5 kbar. The I 6 and 17 acceptor-
state binding energies are defined with respect to the first
heavy-hole (HH) and light-hole (LH) subband energies at
zone center, respectively. For comparison, the differences
for the subband energies EHH —Ei H and Ei H

—EHH are
also shown as dashed curves in 15(a) and 15(b), respective-
ly. Note that the differences between the solid curves and
the dashed curves would give rise to the binding energies
with respect to the lowest subband energies at the zone
center. We find that the I 6 acceptor binding energy in-
creases while the I 7 acceptor binding energy decreases
with increasing uniaxial stress. This is because the light-
hole subband energy approaches the heavy-hole subbed
energy as the stress increases and since I 6 (HH) acceptor
state contains a fraction of light-hole (LH) character, its
energy is pushed further away from the HH subband,
whereas since I 7 (LH) acceptor state contains a fraction
of heavy-hole (HH) character, its energy is pulled closer
toward the LH subband. As can be seen from Fig. 15, the
dependence of binding energy on the stress is not linear.

VI. CONCLUSIONS

We have calculated the acceptor spectra in GaAs-
Al„Cxa„As quantum wells with no external fields and with
electric, magnetic, or uniaxial stress field, using the varia-
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FIG. 15. Binding energies of center doped acceptor states
versus well width-for x =0, 3.5, 7, and 10.5 kbar; (a) I 6 symme-

try (heavy-hole-like), (b) I 7 symmetry (light-hole-like). The
dashed curves show EHH —ELH in {a)and ELH —EHH in (b).

tional method. This calculation includes the coupling of
the top four valence bands of both materials in the multi-
band effective-mass approximation. The ground states
and some excited states for both heavy- and light-hole ac-
ceptors at the centers and edges of quantum wells have
been calculated for various Al mole fractions as functions
of the well width. Our experimental determination of the
binding energies as well as experimental data from other
laboratories agree very well with these calculations. By
comparing the experimental and theoretical binding ener-
gies for narrow wells, we can also determine the approxi-
mate valence-band discontinuity. Our calculations using
the recent experimental value of 4E'„=0.35AE& are: in
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good agreement with the available experimental data, in-
cluding those obtained from narrow-well systems.

In addition, we report the first calculation of acceptor
energies in electric, magnetic, and uniaxial stress fields in
quantum wells as well as bulk GaAs. The effect of an
electric field on an acceptor is to lower the total acceptor
energy; the onset of this effect is rather abrupt. The pres-
ence of a quantum-well potential increases the electric
field necessary for a similarly abrupt onset of the lowering
of the total acceptor energy. The magnetic field splits the
bulk GaAs I s state into its four components; the energies
of these states vary fairly linearly at accessible laboratory
fields. In a quantum well, the I s state is already split into
two distinct states even at zero magnetic field. Applica-
tion of the magnetic field further splits these states almost
exactly as they were split in the bulk crystal. Application
of uniaxial stress increases the binding energy of the
heavy-hale acceptor, but reduces the binding energy of the
light-hole acceptor. Sufficient stress can even raise the

heavy-hole state above the light-hole state, allowing the
possibility of a detailed study of the light-hole acceptor.
All of these cases should serve as useful guides for the in-
terpretation of experimental data involving semiconductor
acceptor states in external fields.
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