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We have developed a general model of the transverse dielectric constant of III-V compounds us-
ing a hybrid method which combines the k-p method with a nonlocal pseudopotential calculation.
In our method we partition the Brillouin zone into three regions by expanding the energy bands and
matrix elements about the I', X, and L symmetry points. The real and imaginary parts of the
dielectric constant are calculated as a sum of the individual contributions of each region. By using
this partition method, we are able to get good insight into the dependence of the dielectric constant
on the shape of the band structure. Hence, it is seen that the X and L regions contribute 90—95 %
and the I region only 5—10 % to the zero-frequency dielectric constant. In general, our results for
€1(0) and €,(w) agree well with the experimental data.

I. INTRODUCTION

In the past two decades there has been considerable ex-
perimental' =3 and theoretical®—!° interest in the deter-
mination of the optical properties of III-V semiconduct-
ing compounds. From a general standpoint, all of the op-
tical properties of materials can be evaluated through a
calculation of the complex dielectric constant,
é(w)=€{(w)+ie(w). As this calculation requires the
knowledge of the entire band structure of a material, it is
necessary to determine the wave functions and energy
bands throughout the irreducible region of the first Bril-
louin zone. A number of band-structure techniques, for
example, orthogonal plane wave®’ (OPW), augmented
plane wave® (APW), pseudopotential,’ and linear combina-
tion of Gaussian orbitals'® (LCGO), have been implement-
ed to calculate, with varying success, the dielectric con-
stant of bulk semiconductors. However, these different
theoretical approaches employ sophisticated computation-
al methods which require extended running times. Hence,
with most of these models it is difficult to assess the rela-
tive importance of band-structure parameters such as ef-
fective masses and optical matrix elements in determining
the value of the real part of the transverse dielectric con-
stant. Also, the relative contributions to €;(w) of the dif-
ferent regions of the Brillouin zone, I', X, and L, are not
easily discernible. These problems become acute when in-
homogeneity, interfaces, or spatial variation of the chemi-
cal composition x of the material, for example.
Al,Ga,_,As with x varying with distance, modify the
translational invariance of bulk semiconductors and alter
their electronic and optical properties without affecting
drastically the host crystal structure. Man-made superlat-
tices!"!2 are an example of these structures which have a
high potential for applications in optoelectronics,'® and,
which are presently under intensive investigation. Previ-
ously,!* we have calculated the index of refraction of
AlAs-GaAs superlattices by using the partition method
mentioned above. It is the purpose of this paper to intro-
duce formally the method, presenting some results for
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bulk III-V compounds and discussing the merits of the
technique.

Our approach is based on the k-p method.!”® In this
technique the band structure is generated by expanding
the energies and wave functions about one or several sym-
metry points. As will be discussed in this paper, the ma-
jority of low-energy optical transitions, #w <6 eV, ori-
ginate from regions near the main symmetry points T, X,
and L. Furthermore, because they are the highest symme-
try points, it is mathematically straightforward to obtain
expansions about these points, leading to a partition of the
Brillouin zone. The k-p band parameters are fitted
empirically with experimental energy gaps and effective
masses, when available; otherwise, these parameters are
estimated from nonlocal pseudopotential calculations
which include spin-orbit effects. Since the band parame-
ters are fitted using experimental data, the k-p method
reproduces very accurately the band structure in the vicin-
ity of the expansion points. Therefore, our approach ap-
pears as a hybrid model, combining the advantages of the
k-p method with the generality of the pseudopotential
method. The dielectric constant is then calculated as the
sum of the contributions of these different Brillouin-zone
regions. Because our method considers each region
separately, it engenders a physical understanding of the
parameters which affect the dielectric constant. More-
over, it is sufficiently flexible to include secondary effects,
for example, excitons and band tailing, and it is computa-
tionally fast.

The paper is organized in the following manner. In
Sec. II we discuss the formation of the k-p band structure
for III-V compounds and present a table of the band-edge
valence and conduction-band effective masses at the I, X,
and L points for each of five III-V compounds, GaP,
GaAs, InP, InAs, and AlAs. To our knowledge, this is
the first time that effective masses at I', X, and L have
been given for all five III-V compounds. In Sec. III we
present the formulation of the complex dielectric constant
and describe the partition method used to perform the
computations. In Sec. IV we discuss our results for the
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five III-V compounds, comparing the real and imaginary
parts of the dielectric constant with the experimental data.
Special emphasis is given to the determination of €,(0) in
terms of the contributions of the I', X, and L regions be-
cause it is directly related to the index of refraction of the
materials, and, to our knowledge also, it is the first time
they have been reported.

II. k-p METHOD AND BRILLOUIN-ZONE
PARTITION

In this section the discussion of the k-p method will be
limited to points where our implementation differs from
the standard technique. The reader is referred to papers
by Kane'>!6 and Dresselhaus!’ for general theory and ap-
plications to III-V compounds. Using the k'p method,
the entire structure can be obtained by expanding about
one symmetry point; however, this requires a large basis
set and matrix Hamiltonian. Since one of our goals is to
be able to predict and understand the optical properties of
III-V compounds in general, it is desirable to have simple,
analytical expressions for the energy bands and matrix ele-
ments. Consequently, we expand about three symmetry
points, ', X, and L, and use a small number of bands in
each of our k-p basis sets, therefore, limiting the accuracy
of the energy-band expressions to regions surrounding the
expansion points. Because of the size of the X and L re-
gions, it is necessary to supplement the X- and L-point
expansions by ones about the K and W points also. How-
ever, because of the low symmetry characterizing these
points, it is difficult to obtain the energy dispersion rela-
tions and optical matrix elements in the volumes sur-
rounding these two points. Therefore, for both the K and
W points, the energy expressions and matrix elements are
obtained directly from the pseudopotential calculations.

In order to evaluate the dielectric constant for energies
less than 6 €V, it is reasonable to restrict the calculation to
transitions between band-edge states where the transition
rates are the largest. Consequently, in performing the en-
ergy expansions about I', X, and L we treat the band-edge
states exactly and incorporate the effects of the other
bands (Lowdin states) using a perturbation technique
described by Lowdin.!%!® The renormalizations are per-
formed by including only those bands which give the larg-
est contributions. This approximation results in a slight
overestimation of the matrix elements involving these
bands. This point will be discussed in more detail later in
the paper. In all of our Lowdin states, we find it neces-
sary to add d-symmetry states onto those states of I';s
symmetry in order to obtain the correct energy-band cur-
vatures. This idea was suggested by Chadi,'>?* who
showed from pseudopotential calculations that there is ap-
preciable mixing of d-symmetry states onto the I';5 states,
and in a type of tight-binding calculation, he determined
that the addition of d-symmetry states to a s-p basis set
results in more accurate wave functions and energy bands.

Our energy expansion about I is a simplification of the
one given by Kane.!® We assume the energy is isotropic
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and only consider renormalization involving the lowest
I'ys conduction states. The neglect of the I'; valence state
and the lowest I'{, conduction states is reasonable because
of the strength of the s-p wave-function interaction. The
X- and L-point expansions have only been discussed brief-
ly by both Kane!® and Dresselhaus;!” consequently, in Sec.
II A we give the basis sets and renormalized matrices for
both regions.

A. X-point region

The eight X-point basis states are

izt ,
5 yT s
XS5 s, (1a)

X5 71_2—(ix‘+id,fz)T ,

1
Xl \—/_E(S +fxyz)T ’
X —‘/1_2—(1';: Vid)t (1b)
xe iz°t ,
5 ycT .

In the above we have labeled the wave functions using
single-group symmetry notation. The superscript c¢ signi-
fies a conduction-band state (no superscript in the above
implies a valence-band state); x, y, and z are the three
orthogonal components of the p-symmetry state; and dy,
and f,, are d- and f-symmetry states transforming as yz
and xyz, respectively. The states listed in (1a) are treated
exactly while those in (1b) are incorporated by Lowdin re-
normalization. In Egs. (1) we choose the (100) axis to lie
along the x direction. The X; wave function has an f-
symmetry state for reasons analogous to those discussed
previously for the d-symmetry states.””?° The same band
structure results from the above basis set with spin down.
Because the energy gaps at the X point for III-V semicon-
ductors are large, we find it reasonable to diagonalize two
23X 2 matrices instead of one 4 X4 matrix. The resulting
2 X2 matrices are '

#k? 1

2 1 1 A
KAED+HEDI+5 - 1A

h2k2 ’
2m0

A ShkXH' +1)+

(2a5
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o 7k FES . —E5)
Sxt+iDki+ 1k —H'+G)+ ky | hx T x]
2mo 2 .
172 (2b)
. F(ES,—ES,) . (ENNEs,—ES§,)k;* RAF—(E D]+ Ak, +k2)
X D) 1,x 2(Etl‘,x —Ea,x) z 2m,
T
Equations (2a) and (2b) are for the band-edge valence L, L (5 +fap)t
and conduction bands, respectively. In Egs. (2) we choose 1 v S+ )T
the z direction as the arbitrary (neglecting the anisotropy) i
perpendicular direction and the top of the valence band as L, 7-—(x +y+z+4dy+dy+d;)T,
the zero of energy. k, and k, are the k vectors along the 6
(100) and z directions, respectively, and k; =k, —k,,, .
where k,, corrects for the X{ minimum not being at the L (x—p°tdS, —dE )1
. . . e en vz Xz ’

X point. k,, is determined empirically from the pseudo- c V2
potential calculations. A’ is the spin-orbit constant de- L3 1 € € pa2dC —dC _dE (3b)
fined analogously to Kane’s'® A, and Ef y, for example, is Vi3 (22°—x—y°+2dy, —dy, —dy;)1

the relative energy of the X state. D, (E1), (E2), F, G,
H’', and I are the Lowdin coefficients and are defined
similarly to L, M, and N of Dresselhaus et al.?! The pa-
rameters in Egs. (2) are fitted empirically by computer so
that the X;, X3, X5, X$§, and X§ bands all have the
correct relative position and dispersion relations.

B. L region

The ten L-point basis states are

L, —(x —y)t,

L ~‘/1-g(x°+y‘+z°+d§y +dE,+dS)T

1
76(2(1:2 *—d;z —-d;z)T N

A5 —d)t .

The states listed in (3a) are treated exactly and those in
(3b) are incorporated using Lowdin renormalization. For
convenience, we take the spin quantization axis to be the
(111) axis. Using this coordinate system for the spin-
orbit interaction, Hgo only connects L3 states having the

V2 same spin. The basis set with spin down is degenerate
with the states listed in Egs. (3).
1 Similar to the X-region treatment, because of the large
L, Ve 2z —x —y)1, (32)  pand gap at the L point, we diagonalize a 22 matrix
consisting of the two upper valence bands and consider
separately the lowest conduction band. The 2X2 matrix
L{ s°t, is written as
J
Lk 4 LT LT + 27 1A
2mo :
(4a)
LAn 1 2 imp2, 2|1 1 L g S(E§L—EyL)
A k*+<Tki+kf |sT+5U0+5(V _——
2 zmoﬁz +(, I+ t 3 +2 +6( +W) E‘l"’L_EBYL
and the dispersion relation for the L band is
1 S(E{.—E,.) R(E{. —Ej3.)
E =ES | +—#k?+ Tk (R +8)+k? : ’ ' ’ (4b)
YT 2mg 2 ‘| ESi—Ey | 2B —E5p)

In Egs. (4), k; and k, are the longitudinal and transverse
k basis vectors, respectively. k; is taken along the L-T"
direction and k, is arbitrarily, by symmetry, taken along
the L-W direction. In analogy with the X-region treat-
ment, A” is the spin-orbit constant; Ef; is the relative

energy of the L state, for example; and R, S, T, U, V7,
and W are the Lowdin coefficients. Again, the parame-
ters are fitted empirically so that the L,, L,, L3, and L§
bands have the correct relative positions and dispersion re-
lations.
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TABLE I. Low-temperature theoretical and experimental band-edge masses at the I', X, and L sym-
metry points. Each of the experimental masses is referenced. For I only the density-of-states masses
are given while for X and L both the longitudinal and transverse masses are presented.

GaAs AlAs InAs InP GaP
¢ m* 0.0672 0.140 0.023%¢ 0.077° 0.122
Iy m* —0.510% —0.536 —0.40¢ —0.58° —0.56°
Ty m* —0.082? —0.087 —0.026¢ —0.12¢ —0.16°
Téom* —0.154% —0.217 —0.166 —0.179 —0.289
L my 1.854 1.592 2.333 2.149 1.988
m; 0.136 0.157 0.143 0.144 0.147
Lism 1.731 2.011 1.668 2.021 1.948
m; —0.277 —0.290 —0.308 —0.295 —0.278
L m 1.731 2.011 1.668 2.021 1.948
m, —0.277 —0.290 —0.308 —0.295 —0.278
X5 m 0.495 0.385 0.593 0.566 0.551
m, 0.258 0.254 0.305 0.279 0.249
Xs my 2.100 1.158 4.516 2.772 1.70f
m, 0.277 0.268 0.307 0.278 0.191f
X5 my 1.209 1.300 1.236 1.341 1.258
m, —0.744 —0.659 —1.109 —0.839 —0.628
X¢ my 1.209 1.300 1.236 1.341 1.258
m, —0.744 —0.659 —1.109 —0.839 —0.628

*Reference 22.
YReference 23.
‘Reference 24.
dReference 25.
“Reference 26.
fReference 27.

C. Effective masses

Table I lists the low-temperature (5—77 K) values of
the band-edge effective masses at the three symmetry
points for the five III-V compounds. Presented are the
longitudinal and transverse masses for the X and L states
and the density-of-states masses for the I" states. When
experimental data is not available, the masses are calculat-
ed using the results of nonlocal pseudopotential calcula-
tions which include the spin-orbit interaction. These
masses along with the energy gaps are used to determine
the direct interaction and Léwdin coefficients at the three
symmetry points. Instead of taking the masses directly
from the energy-band curvatures, a technique with a fair
- amount of uncertainty, the mass m™* at the point k; is
calculated using!®

1 1

m* mg

gﬁ , S'V,m' , 2

. ___ , 5
m3 2 E, (ko) —E, (ko) ©)

where s is a unit vector in the direction of a principal
axis, V,, is the gradient operator between the states n and
n' at the point kg, and the summation is over all #'%n.

In order to test the accuracy of our masses, we calculat-
ed the conduction-band masses at I" for GaAs, InP, and
InAs for which experimental data are available. The
masses are 0.070, 0.075, and 0.028 for GaAs, InP, and
InAs, respectively. As can be seen, our calculated masses
compare favorably with the experimental data.

ITII. DIELECTRIC-CONSTANT FORMULATION

The dielectric constant is calculated as the sum of inter-
band optical transitions. As stated previously, we only
consider transitions between the highest valence-band
states and the lowest conduction-band states. Conse-
quently, for the I'-region contribution we include transi-
tions between the upper three valence bands and the
lowest conduction band, for the X-region contribution we
include transitions between the upper two valence bands
and the two lowest conduction- bands, and for the L-
region contribution we include transitions between the
upper two valence bands and the lowest conduction band.
In Fig. 1, arrows on the GaAs band structure represent
the aforementioned interband transitions. In our model
both the L and X regions include the K and W points,
even though Fig. 1 only shows the K point as being part
of the X region.

Because of our restriction to band-edge transitions, we
have to calculate both the real and imaginary parts of the
dielectric constant since the Kramers-Kronig relation®®
cannot be used to determine €;(w) as a function of €;(w)
since €,;(w) is only computed for a limited range of ener-
gies. Explicit formulas for €,(w) and €,(w) are given by
Bassani and Parravicini.2® In evaluating e(w), we ignore
excitonic effects and assume the valence band is filled and
the conduction band is empty.

In calculating the dielectric constant, the summation
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FIG. 1. Optical transitions between the band-edge valence
and conduction bands for the three regions, I', X, and L, for

GaAs. Only these transitions are included in our model.

over k states is replaced by an integration over the first
Brillouin zone. Since we calculate the dielectric constant
by summing over the contributions of the regions around
the I', X, and L points, the integration is performed
separately for each region. The integration volumes for
the I, X, and L regions are approximated by a sphere and
two cones, respectively (see Fig. 2). For GaAs, the
volumes of these regions, taking into account the sixfold
and eightfold degeneracies of the X and_L regions, respec-
tively, are 8.24 10~2, 1.35, and 4.01 A—3 for I, X, and
L, respectively. The total volume of 5.44 A~ is less than
1% different from the actual volume of the first Brillouin
zone of GaAs.

The integration over the I' region is straightforward
since we assume the region to be isotropic. The integra-
tions over the X and L regions are performed analogously
and are accomplished in the following manner. We in-
corporate the anisotropy of the two regions into our
model by performing k-p expansions from both points to-
wards the I', K, and W points. Using the results of non-
local pseudopotential calculations, we also obtain analyti-

FIG. 2. Partition of the first Brillouin zone of a zinc-blende
lattice into the I', X, and L regions. The I' region is a sphere
while the X and L regions are both cones. The K and W points
are also part of the X region.
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cal expressions for expansions from K and W towards the
I', X, and L points. For simplicity, the energies and ma-
trix elements between the expansion lines are computed by
linear interpolation. By comparing these interpolated
values with those resulting from a nonlocal pseudopoten-
tial calculation, we have determined that our linear inter-
polation approximation, in spite of its roughness, yields
reasonable results. Having obtained analytical expressions
for the dispersion relations, we are able to obtain the ener-
gies and matrix elements at a large number of mesh points
using a small amount of computation time.

IV. RESULTS AND DISCUSSION

Figures 3 compare our calculated €,(w) curves with the
experimental data of Aspnes and Studna.?® As the
theoretical curves are generated using low-temperature (5
K) band-structure data while the experimental data are
obtained at 300 K, we have shifted the experimental
curves by 0.1 eV in order to account for this difference.
Experimental data does not exist for AlAs.

The most noticeable feature of all of the curves is the
presence of the two well-known E; and E, peaks. The
E, peak arises from transitions occurring over a large
portion of the Brillouin zone around the L points. There
is no E; peak for AlAs because the L- and K-point ener-
gy gaps differ by less than 1 eV; hence, the position of the
AlAs E; peak overlaps with the low-energy slope of its
E, peak. Except for InAs and GaAs for which our
theoretical curves show a small structure due to the L-
point spin-orbit splitting, the Ga and In compounds ex-
hibit unsplit E; peaks which are broader than the experi-
mental peaks. We believe that this occurs mainly because
of the absence of excitons in our model. Exciton effects
might have various consequences on the magnitudes of
the E, peaks because they alter both the density of states
and the optical matrix elements. According to Velicky
and Sak® and Hanke and Sham,3! excitons should shar-
pen and enhance the E; peak. We account qualitatively
for their results by the following argument. Without exci-
tons, the E; peak arises from transitions away from the
L-T" line because the band-edge conduction and valence
bands along that line have small transverse masses and,
correspondingly, small densities of states which are insuf-
ficient to support a peak. Consequently, the peak is shift-
ed to higher energies where the phase space is larger. Ex-
citon effects should lower the L gap and raise the trans-
verse effective masses, resulting in higher densities of
states along the L-T" line. Thus, the structure of the line
would be reflected in the shape of the E; peak, i.e., the
peak would become split.

These ideas are corroborated by our theoretical results.
The InAs band-edge matrix elements are a factor of 2
smaller than those of GaP; however, InAs has the largest
E, peak. Furthermore, its peak is the sharpest and the
most centered of the four compounds. This occurs be-
cause its transverse energy-band curvature is the smallest
among these compounds; hence, the E, peak is supported
mainly by transitions occurring close to the L-T" line.
However, for more precise information, an explicit calcu-
lation is required to determine the overall effect of exci-
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FIG. 3. Imaginary part of the dielectric constant of five III-V compounds. The solid and dot-dashed lines are calculated by the
k-p and nonlocal pseudopotential methods, respectively, while the dashed line is the experimental results. (a), (b), (c), (d), and (e) are
for GaAs, GaP, InAs, InP, and AlAs, respectively. The experimental data are extrapolated to SK.

tons on the E, peak. This will be treated in a forthcom-
ing paper.3?

The E; peak originates from a region around the spe-
cial k point (3,+,7) as suggested by Aspnes®® and com-
puted by Chelikowsky and Cohen.3* From our calcula-
tions, we find that the density of states in this region is
more important than the magnitude of the optical matrix
elements in influencing the strength of the E, peak. Exci-
tons should lower the E, peak.’®3! A possible explana-

tion is that excitons could disrupt the parallel-band curva-
ture in the vicinity of the special k point. This would
lower the effective density of states in this region and,
consequently, reduce the E, peak. The same exciton ef-
fect can account for the slight energy difference between
the experimental and theoretical curves for GaAs, GaP,
InAs, and InP.

The other regions of the Brillouin zone have small con-
tributions to the dielectric constant in the (0—6) eV range.
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The I'-valley contribution is negligible because of its small
phase space as shown in Sec. III. The X-region contribu-
tion is small because its phase space and matrix elements
are, respectively, about a factor of 3 and 2 smaller than
those of the L region.

A. Comparison with pseudopotential

Figures 3 also compare our results with those generated
using a nonlocal pseudopotential calculation. The spin-
orbit interaction is not included in the pseudopotential
calculations. For GaP, the effect of the omission is negli-
gible; however, for the other four compounds, the spin-
orbit interaction effectively lowers the important band
gaps by ~0.1 eV. Consequently, for these four com-
pounds, we have shifted the €,(w) curves so that the L-
point energy gaps agree with the spin-orbit results. From
k-p theory, it can be shown that this is a good approxima-
tion since the spin-orbit interaction only shifts the bands,
having a small effect on the band curvatures and matrix
elements at L, X, and K.

The results of our model compare favorably with both
the experimental and pseudopotential results. The magni-
tudes of our E; peaks are larger and more closely approx-
imate the experimental peaks than those determined by
the pseudopotential calculations. For GaAs, InAs, and
InP, the E, peaks calculated by the k-p and pseudopoten-
tial methods are comparable in magnitude, but, slightly
shifted with respect to the experimental E, peaks, while,
for AlAs and GaP, the k-p peaks are substantially larger
than the pseudopotential peaks. The discrepancy in the
magnitudes of the E| and E, peaks calculated by the k-p
and pseudopotential methods can be attributed to the
difference in the values of the optical matrix elements and
to our linear interpolation approximation of the off-
expansion line energies as discussed in Sec. III. As stated
previously, the k-p matrix elements involving the Lowdin
states are overestimated due to the neglect of all but the
closest higher bands of the proper symmetry.>> However,
we found that the band-edge k-p and pseudopotential ma-
trix elements differ by only a few percent. This result
agrees with the calculation of Hermann and Weisbuch?’
who found that the I'-point band-edge matrix elements
are insensitive to the higher-band contributions. Since the
band-edge matrix elements determine the low-frequency
dielectric constant, the discrepancy in the peaks is, there-
fore, largely the result of our linear interpolation approxi-
mation. The problem with this approximation is that al-
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though it provides a good average energy dispersion rela-
tion, it sometimes produces a poor value for the density of
states. This discrepancy also accounts for the difference
in the shapes of the two curves. Nevertheless, despite the
approximations involving the matrix elements and energy
dispersion relations, the results of the two models are
comparable for GaAs, InAs, and InP and assert the valid-
ity of our model.

B. The zero-frequency dielectric constant: €;(0)

In Table II we give €,(0) at 5 K for the five III-V com-
pounds. We also list the experimental values and the indi-
vidual contributions of the three regions. Only the GaAs
experimental data are 5 K values; for the other four ma-
terials the values are extrapolated from 300 K using the
GaAs €/(0) temperature dependence. The theoretical
values are uniformly low with an average error of
~7.5%. The error is partly due to the omission of all
high-energy transitions. The errors for AlAs, InP, and
GaP are small because of the overestimation of the virtual
transitions corresponding to the E, peak. This effect is
particularly pronounced for GaP where the E, transitions
compensate for the small contribution from the E; transi-
tions. For GaAs, the error results also from its weak E,
contribution. For InAs the error is ~12% in spite of its
large E;| peak. This probably stems from the fact that its
E, peak is small and €;(0) of this small gap material is af-
fected most by the neglect of higher-band contributions in
our model.

The valley contributions are split up according to the
partition of the Brillouin zone as presented in Sec. III.
For all materials, the L region contributes approximately
60—70 % to the total value of the dielectric constant while
the T' region accounts for about 5—10%. This general
trend is also confirmed for optical frequencies correspond-
ing to the I" energy gap. Thus, the index of refraction is
essentially determined by the band structure away from
the center of the Brillouin zone. The implications of these
results are important for complex materials and struc-
tures, such as ternaries, quaternaries, and superstructures,
where the modifications of the electronic structure at L
and X, rather than at I, produce the variations in the in-
dex of refraction. An additional consequence of these re-
sults is a better understanding of the validity of the Penn
model.>® The latter is based on a three-dimensional (3D),
nearly-free-electron, band model. The Brillouin zone is
approximated as a sphere and the band edges are dis-

TABLE II. Theoretical and experimental €,(0) values at 5 K for five III-V compounds. Also included are the calculated individual
contributions of the I, X, and L regions to €;(0) for each of the five compounds.

Contributions of the
three regions

Material €(0) (theory) €,(0) (expt.) % error L X r
GaAs 8.68 10.60 18.1 6.01 1.25 0.41
AlAs 7.42 7.90 6.1 5.12 1.16 0.14
InP 9.13 9.27 1.5 6.68 1.12 0.33
InAs 10.10 11.49 12.1 7.26 0.94 0.91
GaP 8.77 8.80 0.4 6.30 1.21 0.25
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placed from the center to the surface of the zone, resulting
in a singular density of states around the band gap. It is
pointed out® that such a singular behavior in a 3D system
would not appear if the gap is placed at the center of the
zone. It is the fortuitous coincidence of this singular den-
sity of states at the edge of the zone with the actual
description of the states around the L and K points,
characterized by large interband matrix elements and den-
sities of states, which provides the Penn model with its
validity and success in calculating the dielectric constant.

V. CONCLUSION

We have developed a general model of the dielectric
constant of III-V compounds, using a hybrid method
which combines the k-p method with a nonlocal pseudo-
potential calculation. We have introduced a technique
which partitions the Brillouin zone into three regions by
expanding the energy bands and matrix elements about
the I', X, and L symmetry points. In order to keep the
expressions simple and limited to small basis sets, expan-
sions about the K and W points are also performed and
included in the X and L regions. The real and imaginary
parts of the dielectric constant are calculated by determin-
ing the individual contributions of each region to the
dielectric constant. The partition method enables us to
determine easily the dependence of the dielectric constant
on the form of the band structure. The advantage of this
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method is its flexibility, enabling it to analyze more com-
plex structures and materials, such as heterostructures and
alloys.

Our results for the imaginary part of the dielectric con-
stant are consistent with other one-electron band-structure
techniques. The peak at E; is broader and weaker than
the experimental peak and is mainly influenced by the
transverse-band curvature at the L point. The E, peak is
slightly stronger and shifted with respect to the experi-
mental peak, being mostly determined by the density of
states around the special point (3, +,5). The real part of
the dielectric constant at low frequency is strongly influ-
enced by the band structure at the edges of the Brillouin
zone, with a contribution of 90—95 % for the X and L re-
gions and only 5—10 % for the I region. Consequently,
except for optical absorption in the vicinity of the " gap,
most of the optical properties of materials, especially the
index of refraction, are essentially determined by the elec-
tronic structure around the L point, rather than at the
center of the Brillouin zone.
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