
PHYSICAL REVIEW B VOLUME 32, NUMBER 8 15 OCTOBER 1985

Inelastic light scattering by collective charge-density excitations
in semi-infinite semiconductor superlattices
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An analytic expression for the resonant, inelastic light scattering cross section from collective
charge-density excitations of a semi-infinite semiconductor superlattice is derived. Raman intensi-
ties of bulk and surface modes of an n-type GaAs-A1„Ga1 „Assample are analyzed. Calculations
show that intersubband surface plasmons have higher intensity than intrasubband ones and should
be easier to observe experimentally. The line shapes of bulk spectra are explained in terms of photon
broadening and broken translational symmetry in the superlattice direction. A new band of inter-
subband surface modes, with frequencies below the longitudinal-optical phonon frequency, is found.

I. INTRODUCTION

In the last few years resonant inelastic light scattering
has been successfully applied to study single-particle and
collective excitations of semiconductor superlattices. '

While most experiments are performed with incident and
scattered photons on the vacuum side of a semi-infinite
superlattice, they are interpreted in terms of the bulk
modes of infinite superlattices. ' The presence of an in-
terface, however, is an essential ingredient of the problein.
This has been demonstrated by recent theoretical study of
collective charge-density excitations in such systems.
A host of novel, intrasubband and intersubband surface
modes has been predicted. These modes exist only for
wavelengths shorter than a critical value A,', and they can
be studied by inelastic light scattering. Raman intensities
for light scattering from a semi-infinite array of two-
dimensional electron-gas layers have been calculated re-
cently by Jain and Allen. Katayama and Ando per-
formed full self-consistent calculations of Raman intensi-
ties for an infinite superlattice in a multiple-quantum-well
approximation. Clearly, the first approach does not take
into account intersubband structure. The second fails to
address the surface modes altogether, and required large
numerical calculations. Here we adopt an intermediate
approach. Using simple single-particle electronic states
and various clearly stated approximations, we obtain an
analytic expression for Raman intensities of intrasubband
and intersubband excitations. This is used to predict con-
ditions for observation of surface modes. The line shape
of bulk spectrum is explained in terms of broken transla-
tional symmetry in the superlattice direction. Also, for a
polar semiconductor superlattice, a new band of surface
modes with frequencies below the longitudinal-optical fre-
quency is found.

This article is organized as follows. In Sec. II we dis-
cuss inelastic light scattering from collective charge-
density excitations via ihe three-step "carrier-density"
mechanism. In Sec. III the integral equation for the po-
larizability of semi-infinite superlattice is solved, and in
Sec. IV the Raman intensity is calculated analytically.
This is used to calculate the dispersion of bulk and surface

collective modes of a selected n-type GaAs-Al„Gai „As
sample and to analyze their Raman spectra in Sec. V.
Concluding remarks are contained in Sec. VI.

II. SCATTERING CROSS SECTION

Inelastic light scattering from charge-density excita-
tions in semiconductors with arbitrary band structure has
been discussed in detail by Jha, ' Blum, " Hamilton and
McWhorter, ' and others. 's Light scattering from two-
dimensional plasmas has been considered qualitatively by
Burstein, Pinczuk, and Mills. ' According to Burstein
et al. the major contribution to the scattering cross sec-
tion from collective excitations comes from a three-step
carrier-density mechanism. In the first two steps an elec-
tron from the valence band in a given quantum well is op-
tically excited to an empty state in any of the conduction-
band subbands, and an electron from an occupied subband
with identical spin annihilates the hole in the valence
band. The net result is the excitation of an electron-hole
pair which, via Coulomb interaction, generates collective
excitations of the superlattice in a third step.

Following the formulation of Hamilton and McVRiort-
er' and the recent work of Katayama and Ando, 6 the dif-
ferential cross section due to collective charge-density ex-
citations per unit solid angle and per unit frequency inter-
val may be written as

cE 0
d cog d0

XF(oi; —co„Q'—Q'),
where the function F(co,Q) is given [Q=(q, k, )] by

F(co,Q)

= f dt e'"' f f dzdz'(p+(q, z, t)p(q, z', 0))

Xexp[i (k,'+ kg )z]

Xexp[ —i(k,'+k,')'z'] .
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The resonant enhancement factor is given by'

II (co;)=
2IFvcl

Ez/(Eg —coI ) .
3m

(2.3)

Here I'vc is the valence-to-conduction-band momentum
matrix element, evaluated at the bottom of the band, Eg is
an appropriate gap energy (Ep+kp in most experiments),
D is the transfer function connecting the fields inside and
outside the sample, ' z is the axis of the superlattice (the
vacuum-semiconductor interface is at z =. —5), and
(co;,e;,q', k,') and (co„e„q',k,') denote the frequency, po-
larization. and wave vectors of incident and scattered pho-
tons. Also, p(x,z, t) is the Fourier transform of the
conduction-band density operator

p(q, z, t) = f dxe 'q'"p(x, z, t) . (2.4)

Formula (2.1) is valid for incident laser frequency co; close
to the gap energy Eg, although Eg —co; is still large com-
pared to typical intersubband energy difference.

With the use of fluctuation-dissipation theorem, the
function F(co,q) can be related to the imaginary part of
the density-density correlation function II(co,q,z,z'):

FIG. 1. Semi-infinite array of quantum wells (hatched area)
of thickness I., whose centers are separated by distance a, em-

bedded in a semiconductor with dielectric constant e (shaded
area). An insulator with dielectric constant eo occupies the
space to the left from the interface at z = —5.

F(co g) = [n (co)+—1]e f f e
h

=rr —5 —5
~
n, k, l ) =e'"'g„(z—la) . (3.1)

&& e '+' '~" Im[ —II(co,q, z,z'))dz dz' . (2.5)

Due to rotational symmetry in the plane perpendicular to
the superlattice axis, functions F and II depend only upon
the magnitude of q and g =(q,k). In Eq. (2.5) we have
approximated k, by k, =k+i/2A, , where k and A, are de-
fined by the equations

k =(co;/c) Re@e,
—=2(co; /c) Im~e .1

III. DENSITY-DENSITY CORRELATION FUNCTION

The mode1 system corresponding to the semiconductor
superlattice under consideration is shown in Fig. 1. A
semi-infinite array of quantum wells of thickness L,
whose centers are separated by distance a occupies a half
space z & —5, of background dielectric constant e. An in-
sulator with dielectric constant eo occupies the space
z ~ —5. We assume that single-particle electronic states
are not changed by the presence of the interface from
their bulk form and are given by

Thus 2k is the momentum transfer to the electronic exci-
tation along the superlattice axis. e is a background semi-
conductor dielectric constant and A, gives photon decay
length inside the material. For GaAs, A, =-6000 A, so that
the effect of photon decay is negligible for single-particle
excitations. However, for a superlattice this means that
only 5—15 quantum wells close to the vacuum interface
are strongly excited in the scattering experiment and the
photon decay length cannot be neglected. This fact was
first pointed out by Jain and Allen. To calculate the Ra-
man intensity F(g, co) we need the density-density correla-
tion function of the semiconductor superlattice.

Here n refers to subband index, k is the momentum in the
plane perpendicular to the z axis, and the interger l
denotes the quantum well centered at z =la. We make
the assumption that the wave functions g„(z)on different
layers do not overlap, so that the minibands are fiat.

The energy eigenvalues are

flak
Eygkl —Egg +

2m
(3.2)

&& g«(z' —l'a)g, (z' —l'a) . (3.3)

Within the random-phase approximation
II,

& «, (l, l') satisfy an integral equation

II,I„(i,i )=lr,', s,,s,,s„.+ g II,', v,, (i, i")

(RPA),

&&II «, (I",l') . (3A)

II;J, the polarizability of the noninteracting system, is
layer independent and given by

f(ej,g+q) —f(e;,g)

~ g+ct —ec g
—fRD

The electron-electron interaction is given by

(3.5)

where E„is the energy at the bottom of each subband,
and m is an effective mass.

The density-density correlation function II(co,q, z,z')
has been discussed for infinite superlattice, layered elec-
tron gas, and inversion (accumulation) layers' previous-
ly. It is sufficient to say that expanding density operators
in terms of the real functions g„(z—Ia) allow us to write

II(co,q, z,zz') = g g II,J «, (l, l')g; (z —la)g (z —ia)
l, l' ijpt
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V~ ~(/, /') = Vq f f dz dz'g;(z —/a)gj(z —la)
—q [ z —z'

~ + —q(s+z')
)

Xg, (z' —/'a)g', (z' —1'a) . (3.6)

cently by Jain and Allen for a semi-infinite array of
electron-gas layers. Since they discussed this transforma-
tion in detail, only a brief sketch will be given in the Ap-
pendix. Here we give the final result:

The terms within parentheses are Fourier transforms of
direct and image Coulomb interactions, respectively.
Also, V~ and u are given by

Vq
——2IIe /e(co)q, (3.7)

e(co) —ep
~

—25@ (3.8)
e(co)+ep

so that interaction with optical phonons can be taken into
account via the frequency-dependent dielectric function
e(co }.

In solving Eq. (3.4} we limit ourselves to the case of
zero temperature and low electron densities so that only
lowest subband is occupied. Furthermore, we employ the
commonly used diagonal approximation, ' which decou-
ples different intersubband excitations. Equation (3.4) can
then be written in a simple form for every O~m subband
transition

X VqG sinh(qa)e
e '(l, l', m) =5(i y y2(b2 1}1»2

X' V (e'~~ 2—aeI'+C)e I-~'+'~
m q

y22e2&(b2 1)Q

Here all quantities are defined as follows:

y= 1 —X Vq(V —6 ),
b =cosh(qa) X~—VqG ~ sinh(qa)/y,

ei'=b +(b' —1)'",
qaao ——6 +—e~ 6+m ~

bo ——6 cosh(qa)+ —eq'6+
2

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

X (l, l') =X~5( i +X~ g V ~(/, /")X (/", /'), (3.9)

where X~ =IIp +Il~p for m&0 and Xp ——IIop, and
V~ ~(l 1')= V~p p~(l 1 ). Formal solution to Eq. (3.9) can
be obtained by defining a dielectric matrix e(/, 1;m)

CK

co ——G +—G+

, e P(b —1)» —e q sinh(qa)
[sinh(qa)6 ]

(3.19}

(3.20)

6 = —,
' [(b —1) ' —sinh(qa') ']/[sinh(qa)6 ],

e(1,1';m) =5( i X~ V~ ~(/,—/') (3.10) (3.21)

and its inverse as e '(l, l', m). Now the polarizability ma-
trix X~ (1,1 ) can be written in a fanuliar way,

Q = 1 —6( pa+ pc)+2bp&+(H —6 )(bp —apcp)

(3.22)

X (l, l')=X e '(l, l', m) . (3.11)

Using Eqs. (3.3) and (3.11), we can finally write the
density-density correlation function as

A =6(bp aocp)+ap, —

e =a(bzp —aoco)+bo

(3.23)

(3.24)

II(co,q, z,z') = QX~e '(/, /', m)i/~(z —la)
m=O, ], . . . l, l'

C =6 (bp —apco)+cp,

V = z z' z -&~'+-'I z' .

(3.25)

(3.26)

Xg (z' —/'a), (3.12)

where g (z —la}=g (z —la)gp(z —la).
Note that dielectric matrix g(/, 1',m) given by Eq. (3.10)

has been derived by us earlier using self-consistent linear-
density-response theory. Zeros of e(/, 1';m) yield in a
very simple way surface and bulk collective modes, the
later in complete agreement with the theory of Tselis and
Quinn. However, here we need an inverse of the dielec-
tric matrix. In order to find e '(l, l';m) [or solve Eq.
(3.9)] we make use of the transformation introduced re-

The matrix elements 6+ (q) are defined by a similar ex-
pression, except for the replacement of

~

z+z'
~

by (z+z').
Here e~ is defined such that

~
e~~ &1. If not, the re-

placement (b2 I}'» by —(b—1}'»2 is under—stood in
Eqs. (3.14)—(3.26).

The first two terms in Eq. (3.13) give the bulk contribu-
tion, while the last term which decays away from the sur-
face, gives the surface correction. Equation (3.13) reduces
exactly to the result of Jain and Allen if we set m=O,
V+ ——6+ ——y=l as appropriate for layered electron
gas.

IV. RAMAN INTENSITIES

(4.1)

The Raman intensity is proportional to the function F(co,Q). Using Eqs. (2.4) and (3.12), we have (at T=O),
Ii (co Q) = g g e s» f f dz dz'Im[ Xe '(l, l';m)]—e '"' ' 'e '+' ' g (z /a)f~(z' 1'a) . — —

m l l' —5 —5

Noting that exp[ —i2k(z —z')] under the double integral
and double sum over I, and 1' is real, we can carry all

I

operations in Eq. (4.1) with X~e '(/, /', m) and take the
imaginary part at the end:
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( o~Q)= Ql
m I I,

lit (l, i '~)e —i2k(1
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CO —CO

e(co)=e~00
CO —COTo+ l P&hCO

with longitudinal-o ti
hoo f

M -op (

ion - 1 ngth forms of Xm(q, (o) have

(5.1)—(l+l') /A, (4.2)

with an amplitude A
'

yi u e Am given by

=e-"/~ f gz dz~e 2ik(z——z')—z' —(z +z') /A,

mass m =0.068, . e8'm, . We ac ground dielectric

Xg (z)P (z') .

Now all sums ma be 'c', e

(4.3

Now ay e done ex lic'c, e ave the fi-

I' co, Q ) = g /1~ Im —X
e (co,q, 2k)

(4.4)

1

e~ ((o,q, 2k)
y

—1

e —2a/A,

&m~ 6 sinh(qa)(e ~

(1 e
—2a/A, )2(b2 1 i/2~

q(e /I 2Be~+C-&m~ e'
2E(b2 1)Q

' (45)
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given by
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o ~9'
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These equations are completely equivalent to the ones de-
rived by us from the zeros of the dielectric matrix; for the
bulk modes they reproduce the results of Tselis and
Quinn. ' The results are shown in Fig. 2 for m=0 (in-
trasubband modes) and m = 1 (lowest intersubband
modes). Due to mixing with I.O phonons we have two
coupled electron-phonon bands for each transition which
we denote by I+, where + ( —) stands for higher
(lower) energy mode for 0—m transition. Intrasubband
and intersubband surface mades are denoted by S+
Surface modes exist because of the difference of dielectric
constants between an insulator and semiconductor. There
are two modes associated with intrasubband transitions, a
surface plasmon S which exists only for wave vectors
larger than qa=0.4 and a surface phononlike mode S+
which exists for arbitrary wave vector and has a frequen-
cy below coLa. Two surface modes associated with inter-
subband excitations exist for the wave vectors larger than
qa=0.6 and qa=1.3 for S' and S+, respectively. Note,
however, that there is an extra mode with frequency below
coLa associated with 0—1 intersubband transition. In fact,
there should be a band of modes below coLo, one mode for
each intersubband excitation. This is a new feature not
repor'ted previously, a superlattice 'analog of the trapped
surface modes in accumulation layers recently discovered
by Puri and Schaich. '

We now turn to Raman intensities I'(co, g) as given by
Eq. (4.4) for the following parameters: qa = 1,
ka=2.828, and y, =y~h ——0.1 meV. An overall spectrum
is shown in Fig. 3. The dominant feature is the peak due
to bulk intersubband transitions I' with a much weaker
peak due to I'+ and intersubband plasmon I . Surface
plasmons are also indicated. Clearly the intersubband
p asmon S has the highest intensity and would be easiest
to detect experimentally. In Fig. 4 an intrasubband spec-
trum is shown. The peak at 10.9 meV is due to bulk
plasmon and at 12.86 meV is due to the surface plasmon.
The broadening of the former is due to photon decay
while that of the latter is controlled by y, . Since intrasub-
band plasmons are often approximated by plasmons of an
array of two-dimensional layers, ' it is interesting to com-
pare the two spectra. As we can see from Fig. 4, qualita-

Bulk
plasmon

~ 0.2

Layered
electron gas

ace
mon

I

l2
~rnox

%~ (meV)

FIG. 4. Raman intensity for intrasubband bulk and surface
plasmon for parameters as in Fig. 3. For comparison, Raman
intensity from layered electron gas is shown (dashed line).

XXXX F ((gp )
ooooo F (~ )5

F (co)

4.0

tive agreement is quite good but there is clearly a quanti-
tative difference both in overall intensity and position of
the resonances.

In Figs. 5 and 6 Raman intensities for the intersubband
excitations are shown in detail. Here we plot bulk and
surface contributions to the total intensity. The cancella-
tion between bulk and surface contributions, both of
which display sharp structure at the boundary of the bulk
plasmon band, is illustrated. This remarkable feature has
been pointed out by Jain and Allen for an array of
electron-gas layers. They attributed the singular behavior
in the bulk part to the divergence of the density of states
of a one-dimensional plasman band at the band edge (Van
Hove singularity). The surface part cancels this diver-
gence, but this has not yet been explained. It can be un-
derstood if we realize that the bulk part is the answer one
would obtain far a translationally invariant system, i.e.,
such that the Hamiltonian V(z,z')=V(z —z') and the

inter subband
I coupled LO phonon

bulk plasmons

CO

0)

3
V)

QP

Io lntrasubband
2 — —bulk plasrnon

Intra subband
—sur face plasrnon

!l

S ~
Intersubband

—surface plasmon

ro 'I
onons O~

l.o

000 00000000000 0
OOO

XXX
ooo

I I I I I I

25.5 ~6.0 ~max

l 0 l5 20 25 30 35 40
6m Cmev)

FIG. 3. Raman intensities for bulk and surface plasmons for
in-plane momentum transfer qa = 1, and for momentum
transfer along the superlattice axis of 2ka=5.656 (m=0, 1

only). And y, =y~h ——0.1 meV.

%cu (meV)

FIG. 5. Raman intensity from intersubband bulk 1' and sur-
face S' plasmons. Here contributions from surface and bulk
parts are shown. Band boundaries are indicated by cu;„and
co,„.(All parameters as in Figs. 3 and 4.) Surface plasmon is
visible above the upper band edge.
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0.4— 0.5
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0.2—
0.2

0, I

'U V«J Qp
p

pp pppp

s7 4 &76 I 57.8 sa-o I 38.20
~min ~max

a~(meV)
FIG. 6. Raman intensity from intersubband bulk plasmon

I+. Note asymmetric broadening due to a surface plasmon
"emerging" in a continuous way from the bulk band. (All pa-
rameters as in Figs. 3—5.)

periodic boundary conditions can be applied. Due to the
interface, translational symmetry of the system is broken.
Hence two necessary conditions for the existence of Van
Hove singularities are not met. Since matrix e(l, l';m) is
exactly inverted (see the Appendix for more details), full
answer to the intensity does not show any structure at the
band edge.

The surface intersubband plasmon S', shown in Fig. 5,
is significantly broadened due to its closeness to the bulk
plasmon band. While the dispersion relation predicts no
S+ plasmon at this wave vector, we see clearly a shoulder
on the high-energy side of the I'+ peak (Fig. 6). This
asymmetric broadening is due to the surface plasmon
which emerges from the bulk spectrum in a continuous
way when broadening due to finite mobility is included.

The Raman intensity of the surface modes with ener-
gies below ~~o is shown in Fig. 7. Their intensity is very
weak, with the intensity of the intersubband mode higher
than that of the intrasubband mode.

VI. CONCI. USIONS

In summary, an analytic expression for the cross sec-
tion of the inelastic light scattering from collective
charge-density excitations of a semi-infinite semiconduct-
or superlattice has been derived. Basic approximations in-
volve siinple single-particle electronic states and decou-
pling of intersubband excitations. The results are valid
for low-density samples, i.e., those with only the lowest
subband occupied.

We have analyzed Raman intensities of bulk and sur-
face collective modes of an existing n-type GaAs-
Al Gar „Assample for realistic values of parameters.
Bulk spectra reveal broken translational symmetry in the
superlattice direction, manifested by the lack of structure

p
p

p
p

p p

O.O 1

56.5 36.6
Aced (meV)

FIG. 7. Raman intensities from surface modes with frequen-
cies below cur.o. Surface contribution is shown by a dotted line.
(All parameters as in Figs. 3—6.)

at the plasmon band edges. Our results suggest that while
intrasubband collective surface modes have received most
of the attention up to now, it is the intersubband surface
modes which should be more easily observed in experi-
ment New. surface modes, with energies below coLo cou-
ple to light very weakly and should be difficult to observe.
We feel that our results, although only semiquantitative,
should prove very useful in interpreting experimental re-
sults.
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APPENMX

+ G —q(l+l')~
+m (A2)

Symbols V&, a, V+~, and G+~ have been defined in the
text [Eqs. (3.7), (3.8), and (3.26)]. Note that Eq. (Al) is
written for a finite system of N quantum wells, and its
solution has now been reduced to an N-layer problem.
The layers are labeled by index l (l =0, 1, . . . , N —1).

Here we outline the solution to Eq. (3.9), i.e., the way
the inverse dielectric matrix is computed. Equation (3.9)
reads

P —1

Xm(l«l )=X~5t,t'+ g &mVqVm, m(l«l )&m(l «1 ) . (Al)
l"=0

Matrix elements V (l, l') can be written, after simple
algebra, from Eq. (3.6) (we omit subscript m and q, co

dependence of all quantities) as

V(l, l')=(V „G)S„.+G e—
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The first (1=0) and last ( I =N —1) layers are not
equivalent due to the interface with vacuum at 1=0.
Hence no mirror symmetry can be assumed; yet all quan-
tities can be expanded in the basis of orthogonal functions
on (O,N —1), e.g.,

g &
—iklaX(i i }eik'I'a

I, I'

and inverse transform

(A3)

X( I it ) y eiklaX(k ki)e ik'i'a— (A4)

X(k,k')=X 5kk+X Vq Q V(k, k")X(k",k) .
k"

(A5)

We write V(k, k') in terms of "bulk" and "surface" parts
where bulk part merely means a part diagonal in k space
and surface part is the rest:

V(k, k') = V"(k)5k k + V'(k, k'),
where (q, k measured in units of a)

Vb(k)=V —6 +G S(k),
—qX

2NP (k)P (k')

(A7)

+c ei(k —k')) (A8)

P (k) =cosh(q) —cos(k),

S (k) =sinh(q)/P {k),
(A9)

(A10)

and ao, bo, co, are given by Eqs. (3.17)—(3.19). In analogy
to Eq. (A6) we split X(k,k'} into the diagonal (bulk) part
and the rest

X( k, k') =X (k)5k k +X'(k,k') . (Al 1)

Substitution of Eqs. (All) and (A6) into Eq. (A5) gives
two coupled equations; for the bulk part (diagonal) and
the rest (surface part):

X (k)5i, k =X 5k k +X Vq V (k)X (k)5k, k,
X'(k, k') =X Vq Vb(k)X'{k,k')+XoV'(k, k')X (k')

~X Vq g V'(k, k")X'(k",k') .
k"

(A12)

(A13)

where

2H nk= —,n =0, 12, . . . , N —1.
a

This transformation was used recently by Jain and Al-
len. s Fourier transform of Eq. (Al} gives

Equation (A12) can easily be solved, giving the bulk part
of the susceptibility:

X'5k k X'X(k)= ' = 5ki, .
1 X-ovq Vb(k) E(k) " (A14)

This is precisely the answer one obtains for a translation-
ally invariant system, hence the name bulk. Using (A14)
we can write Eq. (A13) for the surface (off-diagonal) part
of the polarizability:

(X) Vq

e(k)e(k')

X V' gV'(k, k")X'(k",k') . (A15)
e(k)

X'(k, k') =

Examination of the structure in k space of the bare vertex
V'(k, k') allows us to write the solution to Eq. (A15) in
the form

e qÃ — g g (eik+e —
I k )+Cei(k —k')

2N q P(k)e(k)P(k')e(k')

(A16)

Substitution of (A16) to (A15) yields three equations for
coefficients A,B,C, whose solution (in the large-N limit)
is given in Sec. III. From Eq. (A16) we see that the sur-
face contribution is proportional to 1/N, while the bulk

part fEq. (A14)] is not. However, if the surface part is
neglected, the inverse transform is violated and the impor-
tant part of X(l,i') is lost.

Note that at no place was it essential that the potential
V(l, l') be of the form V(l —l'}. For any finite N transla-
tional symmetry of the system is broken. But the density
of states of a finite system does not diverge (no Van Hove
singularities), even though its normal modes can still be
characterized by a quantum number k, . Hence there
should be no divergence in Raman intensities at the
plasmon band edges if the full, exact solution is used.

Also, there must be no contribution from the surface part
at the resonance since normal modes of a finite system
and infinite one (but periodic) are identical. This is seen

in Figs. 5 and 6. It is the ability to solve exactly Eq. (Al)
which reveals broken translational symmetry in the Ra-
man intensities.

Note that translational symmetry and periodic
boundary conditions are merely a clever method we use to
solve problems which would otherwise be intractable.
Here we have a finite system (30—100 layers) and an exact
solution is possible.
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